idx
int64
2
7.85k
idx_lca
int64
0
223
offset
int64
165
54.4k
repo
stringclasses
54 values
commit_hash
stringclasses
100 values
target_file
stringclasses
118 values
line_type_lca
stringclasses
6 values
ground_truth
stringlengths
1
40
in_completions
bool
1 class
completion_type
stringclasses
6 values
non_dunder_count_intellij
int64
1
127
non_dunder_count_jedi
int64
1
128
start_with_
bool
1 class
first_occurrence
bool
2 classes
intellij_completions
listlengths
1
149
jedi_completions
listlengths
3
148
prefix
stringlengths
165
54.4k
intellij_completions_filtered
listlengths
1
123
prefix_truncated
stringlengths
165
1.92k
__index_level_0__
int64
1
5.53k
7,660
216
3,685
vizzuhq__ipyvizzu
54b0334aa736a77f9430739c9375b16be145b3fd
tests/test_data/test_pandas.py
inproject
add_df
true
function
28
30
false
false
[ "add_df", "add_data_frame", "build", "add_data_frame_index", "add_df_index", "add_dimension", "add_measure", "add_np_array", "add_record", "add_records", "add_series", "add_series_list", "add_spark_df", "dump", "filter", "from_json", "set_filter", "clear", "copy", "fromkeys", "get", "items", "keys", "pop", "popitem", "setdefault", "update", "values", "__annotations__", "__class__", "__class_getitem__", "__contains__", "__delattr__", "__delitem__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__getitem__", "__hash__", "__init__", "__init_subclass__", "__ior__", "__iter__", "__len__", "__ne__", "__new__", "__or__", "__reduce__", "__reduce_ex__", "__repr__", "__reversed__", "__ror__", "__setattr__", "__setitem__", "__sizeof__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "add_data_frame", "type": "function" }, { "name": "add_data_frame_index", "type": "function" }, { "name": "add_df", "type": "function" }, { "name": "add_df_index", "type": "function" }, { "name": "add_dimension", "type": "function" }, { "name": "add_measure", "type": "function" }, { "name": "add_np_array", "type": "function" }, { "name": "add_record", "type": "function" }, { "name": "add_records", "type": "function" }, { "name": "add_series", "type": "function" }, { "name": "add_series_list", "type": "function" }, { "name": "add_spark_df", "type": "function" }, { "name": "build", "type": "function" }, { "name": "clear", "type": "function" }, { "name": "copy", "type": "function" }, { "name": "dump", "type": "function" }, { "name": "filter", "type": "function" }, { "name": "from_json", "type": "function" }, { "name": "fromkeys", "type": "function" }, { "name": "get", "type": "function" }, { "name": "items", "type": "function" }, { "name": "keys", "type": "function" }, { "name": "pop", "type": "function" }, { "name": "popitem", "type": "function" }, { "name": "set_filter", "type": "function" }, { "name": "setdefault", "type": "function" }, { "name": "update", "type": "function" }, { "name": "values", "type": "function" }, { "name": "_add_named_value", "type": "function" }, { "name": "_add_value", "type": "function" }, { "name": "__annotations__", "type": "statement" }, { "name": "__class__", "type": "property" }, { "name": "__class_getitem__", "type": "function" }, { "name": "__contains__", "type": "function" }, { "name": "__delattr__", "type": "function" }, { "name": "__delitem__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__getitem__", "type": "function" }, { "name": "__hash__", "type": "statement" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__ior__", "type": "function" }, { "name": "__iter__", "type": "function" }, { "name": "__len__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__or__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__reversed__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__setitem__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
# pylint: disable=missing-module-docstring,missing-class-docstring,missing-function-docstring import pandas as pd from tests.test_data import DataWithAssets from tests.utils.import_error import RaiseImportError class TestDf(DataWithAssets): def test_add_df_if_pandas_not_installed(self) -> None: with RaiseImportError.module_name("pandas"): with self.assertRaises(ImportError): self.data.add_df(pd.DataFrame()) def test_add_df_with_none(self) -> None: self.data.add_df(None) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_df_with_empty_df(self) -> None: self.data.add_df(pd.DataFrame()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_df_with_df(self) -> None: df = self.in_pd_df_by_series_with_duplicated_popularity self.data.add_df(df) self.assertEqual( self.ref_pd_df_by_series_with_duplicated_popularity, self.data.build(), ) def test_add_df_with_df_contains_na(self) -> None: df = self.in_pd_df_by_series_with_nan self.data.add_df(df) self.assertEqual( self.ref_pd_df_by_series_with_nan, self.data.build(), ) def test_add_df_with_df_and_with_include_index(self) -> None: df = self.in_pd_df_by_series_with_index self.data.add_df(df, include_index="Index") self.assertEqual( self.ref_pd_df_by_series_with_index, self.data.build(), ) def test_add_df_with_df_and_max_rows(self) -> None: df = self.in_pd_df_by_series self.data.add_df(df, max_rows=2) self.assertEqual( self.ref_pd_df_by_series_max_rows, self.data.build(), ) class TestDataFrame(DataWithAssets): def test_add_data_frame_with_none(self) -> None: self.data.add_data_frame(None) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_data_frame_with_empty_df(self) -> None: self.data.add_data_frame(pd.DataFrame()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_data_frame_with_df(self) -> None: df = self.in_pd_df_by_series_with_duplicated_popularity self.data.add_data_frame(df) self.assertEqual( self.ref_pd_df_by_series_with_duplicated_popularity, self.data.build(), ) def test_add_data_frame_with_df_contains_na(self) -> None: df = self.in_pd_df_by_series_with_nan self.data.add_data_frame(df) self.assertEqual( self.ref_pd_df_by_series_with_nan, self.data.build(), ) class TestDfWithSeries(DataWithAssets): def test_add_df_with_empty_series(self) -> None: self.data.add_df(pd.Series()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_df_with_series(self) -> None: self.data.add_df(self.in_pd_series_dimension) self.data.add_df(self.in_pd_series_measure) self.assertEqual( self.ref_pd_series, self.data.build(), ) def test_add_df_with_series_contains_na(self) -> None: self.data.add_df(self.in_pd_series_dimension_with_nan) self.data.add_df(self.in_pd_series_measure_with_nan) self.assertEqual( self.ref_pd_series_with_nan, self.data.build(), ) def test_add_df_with_series_and_with_include_index(self) -> None: self.data.
[ "add_df", "add_data_frame", "build", "add_data_frame_index", "add_df_index", "add_dimension", "add_measure", "add_np_array", "add_record", "add_records", "add_series", "add_series_list", "add_spark_df", "dump", "filter", "from_json", "set_filter", "clear", "copy", "fromkeys", "get", "items", "keys", "pop", "popitem", "setdefault", "update", "values" ]
( self.ref_pd_df_by_series_max_rows, self.data.build(), ) class TestDataFrame(DataWithAssets): def test_add_data_frame_with_none(self) -> None: self.data.add_data_frame(None) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_data_frame_with_empty_df(self) -> None: self.data.add_data_frame(pd.DataFrame()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_data_frame_with_df(self) -> None: df = self.in_pd_df_by_series_with_duplicated_popularity self.data.add_data_frame(df) self.assertEqual( self.ref_pd_df_by_series_with_duplicated_popularity, self.data.build(), ) def test_add_data_frame_with_df_contains_na(self) -> None: df = self.in_pd_df_by_series_with_nan self.data.add_data_frame(df) self.assertEqual( self.ref_pd_df_by_series_with_nan, self.data.build(), ) class TestDfWithSeries(DataWithAssets): def test_add_df_with_empty_series(self) -> None: self.data.add_df(pd.Series()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_df_with_series(self) -> None: self.data.add_df(self.in_pd_series_dimension) self.data.add_df(self.in_pd_series_measure) self.assertEqual( self.ref_pd_series, self.data.build(), ) def test_add_df_with_series_contains_na(self) -> None: self.data.add_df(self.in_pd_series_dimension_with_nan) self.data.add_df(self.in_pd_series_measure_with_nan) self.assertEqual( self.ref_pd_series_with_nan, self.data.build(), ) def test_add_df_with_series_and_with_include_index(self) -> None: self.data.
5,394
7,668
216
4,160
vizzuhq__ipyvizzu
54b0334aa736a77f9430739c9375b16be145b3fd
tests/test_data/test_pandas.py
inproject
data
true
statement
97
101
false
false
[ "data", "ref_pd_series", "in_pd_df_by_series", "test_add_data_frame_with_series", "assertEqual", "test_add_data_frame_with_empty_series", "test_add_data_frame_with_series_contains_na", "asset_dir", "in_pd_df_by_series_with_duplicated_popularity", "in_pd_df_by_series_with_index", "in_pd_df_by_series_with_nan", "in_pd_series_dimension", "in_pd_series_dimension_with_index", "in_pd_series_dimension_with_nan", "in_pd_series_measure", "in_pd_series_measure_with_index", "in_pd_series_measure_with_nan", "ref_pd_df_by_series", "ref_pd_df_by_series_max_rows", "ref_pd_df_by_series_only_index", "ref_pd_df_by_series_with_duplicated_popularity", "ref_pd_df_by_series_with_index", "ref_pd_df_by_series_with_nan", "ref_pd_series_only_index", "ref_pd_series_with_index", "ref_pd_series_with_nan", "set_up_pd_df", "set_up_pd_series", "setUp", "setUpClass", "addClassCleanup", "addCleanup", "addTypeEqualityFunc", "assert_", "assertAlmostEqual", "assertAlmostEquals", "assertCountEqual", "assertDictContainsSubset", "assertDictEqual", "assertEquals", "assertFalse", "assertGreater", "assertGreaterEqual", "assertIn", "assertIs", "assertIsInstance", "assertIsNone", "assertIsNot", "assertIsNotNone", "assertLess", "assertLessEqual", "assertListEqual", "assertLogs", "assertMultiLineEqual", "assertNoLogs", "assertNotAlmostEqual", "assertNotAlmostEquals", "assertNotEqual", "assertNotEquals", "assertNotIn", "assertNotIsInstance", "assertNotRegex", "assertNotRegexpMatches", "assertRaises", "assertRaisesRegex", "assertRaisesRegexp", "assertRegex", "assertRegexpMatches", "assertSequenceEqual", "assertSetEqual", "assertTrue", "assertTupleEqual", "assertWarns", "assertWarnsRegex", "countTestCases", "debug", "defaultTestResult", "doClassCleanups", "doCleanups", "fail", "failIf", "failIfAlmostEqual", "failIfEqual", "failUnless", "failUnlessAlmostEqual", "failUnlessEqual", "failUnlessRaises", "failureException", "id", "longMessage", "maxDiff", "run", "shortDescription", "skipTest", "subTest", "tearDown", "tearDownClass", "__annotations__", "__call__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "addClassCleanup", "type": "function" }, { "name": "addCleanup", "type": "function" }, { "name": "addTypeEqualityFunc", "type": "function" }, { "name": "assert_", "type": "function" }, { "name": "assertAlmostEqual", "type": "function" }, { "name": "assertAlmostEquals", "type": "function" }, { "name": "assertCountEqual", "type": "function" }, { "name": "assertDictContainsSubset", "type": "function" }, { "name": "assertDictEqual", "type": "function" }, { "name": "assertEqual", "type": "function" }, { "name": "assertEquals", "type": "function" }, { "name": "assertFalse", "type": "function" }, { "name": "assertGreater", "type": "function" }, { "name": "assertGreaterEqual", "type": "function" }, { "name": "assertIn", "type": "function" }, { "name": "assertIs", "type": "function" }, { "name": "assertIsInstance", "type": "function" }, { "name": "assertIsNone", "type": "function" }, { "name": "assertIsNot", "type": "function" }, { "name": "assertIsNotNone", "type": "function" }, { "name": "assertLess", "type": "function" }, { "name": "assertLessEqual", "type": "function" }, { "name": "assertListEqual", "type": "function" }, { "name": "assertLogs", "type": "function" }, { "name": "assertMultiLineEqual", "type": "function" }, { "name": "assertNotAlmostEqual", "type": "function" }, { "name": "assertNotAlmostEquals", "type": "function" }, { "name": "assertNotEqual", "type": "function" }, { "name": "assertNotEquals", "type": "function" }, { "name": "assertNotIn", "type": "function" }, { "name": "assertNotIsInstance", "type": "function" }, { "name": "assertNotRegex", "type": "function" }, { "name": "assertNotRegexpMatches", "type": "function" }, { "name": "assertRaises", "type": "function" }, { "name": "assertRaisesRegex", "type": "function" }, { "name": "assertRaisesRegexp", "type": "function" }, { "name": "assertRegex", "type": "function" }, { "name": "assertRegexpMatches", "type": "function" }, { "name": "assertSequenceEqual", "type": "function" }, { "name": "assertSetEqual", "type": "function" }, { "name": "assertTrue", "type": "function" }, { "name": "assertTupleEqual", "type": "function" }, { "name": "assertWarns", "type": "function" }, { "name": "assertWarnsRegex", "type": "function" }, { "name": "asset_dir", "type": "statement" }, { "name": "countTestCases", "type": "function" }, { "name": "data", "type": "statement" }, { "name": "debug", "type": "function" }, { "name": "defaultTestResult", "type": "function" }, { "name": "doClassCleanups", "type": "function" }, { "name": "doCleanups", "type": "function" }, { "name": "fail", "type": "function" }, { "name": "failIf", "type": "function" }, { "name": "failIfAlmostEqual", "type": "function" }, { "name": "failIfEqual", "type": "function" }, { "name": "failUnless", "type": "function" }, { "name": "failUnlessAlmostEqual", "type": "function" }, { "name": "failUnlessEqual", "type": "function" }, { "name": "failUnlessRaises", "type": "function" }, { "name": "failureException", "type": "statement" }, { "name": "id", "type": "function" }, { "name": "in_pd_df_by_series", "type": "statement" }, { "name": "in_pd_df_by_series_with_duplicated_popularity", "type": "statement" }, { "name": "in_pd_df_by_series_with_index", "type": "statement" }, { "name": "in_pd_df_by_series_with_nan", "type": "statement" }, { "name": "in_pd_series_dimension", "type": "statement" }, { "name": "in_pd_series_dimension_with_index", "type": "statement" }, { "name": "in_pd_series_dimension_with_nan", "type": "statement" }, { "name": "in_pd_series_measure", "type": "statement" }, { "name": "in_pd_series_measure_with_index", "type": "statement" }, { "name": "in_pd_series_measure_with_nan", "type": "statement" }, { "name": "longMessage", "type": "statement" }, { "name": "maxDiff", "type": "statement" }, { "name": "ref_pd_df_by_series", "type": "statement" }, { "name": "ref_pd_df_by_series_max_rows", "type": "statement" }, { "name": "ref_pd_df_by_series_only_index", "type": "statement" }, { "name": "ref_pd_df_by_series_with_duplicated_popularity", "type": "statement" }, { "name": "ref_pd_df_by_series_with_index", "type": "statement" }, { "name": "ref_pd_df_by_series_with_nan", "type": "statement" }, { "name": "ref_pd_series", "type": "statement" }, { "name": "ref_pd_series_only_index", "type": "statement" }, { "name": "ref_pd_series_with_index", "type": "statement" }, { "name": "ref_pd_series_with_nan", "type": "statement" }, { "name": "run", "type": "function" }, { "name": "set_up_pd_df", "type": "function" }, { "name": "set_up_pd_series", "type": "function" }, { "name": "setUp", "type": "function" }, { "name": "setUpClass", "type": "function" }, { "name": "shortDescription", "type": "function" }, { "name": "skipTest", "type": "function" }, { "name": "subTest", "type": "function" }, { "name": "tearDown", "type": "function" }, { "name": "tearDownClass", "type": "function" }, { "name": "test_add_data_frame_with_empty_series", "type": "function" }, { "name": "test_add_data_frame_with_series", "type": "function" }, { "name": "test_add_data_frame_with_series_contains_na", "type": "function" }, { "name": "_addSkip", "type": "function" }, { "name": "_formatMessage", "type": "function" }, { "name": "_getAssertEqualityFunc", "type": "function" }, { "name": "_testMethodDoc", "type": "statement" }, { "name": "_testMethodName", "type": "statement" }, { "name": "__annotations__", "type": "statement" }, { "name": "__call__", "type": "function" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
# pylint: disable=missing-module-docstring,missing-class-docstring,missing-function-docstring import pandas as pd from tests.test_data import DataWithAssets from tests.utils.import_error import RaiseImportError class TestDf(DataWithAssets): def test_add_df_if_pandas_not_installed(self) -> None: with RaiseImportError.module_name("pandas"): with self.assertRaises(ImportError): self.data.add_df(pd.DataFrame()) def test_add_df_with_none(self) -> None: self.data.add_df(None) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_df_with_empty_df(self) -> None: self.data.add_df(pd.DataFrame()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_df_with_df(self) -> None: df = self.in_pd_df_by_series_with_duplicated_popularity self.data.add_df(df) self.assertEqual( self.ref_pd_df_by_series_with_duplicated_popularity, self.data.build(), ) def test_add_df_with_df_contains_na(self) -> None: df = self.in_pd_df_by_series_with_nan self.data.add_df(df) self.assertEqual( self.ref_pd_df_by_series_with_nan, self.data.build(), ) def test_add_df_with_df_and_with_include_index(self) -> None: df = self.in_pd_df_by_series_with_index self.data.add_df(df, include_index="Index") self.assertEqual( self.ref_pd_df_by_series_with_index, self.data.build(), ) def test_add_df_with_df_and_max_rows(self) -> None: df = self.in_pd_df_by_series self.data.add_df(df, max_rows=2) self.assertEqual( self.ref_pd_df_by_series_max_rows, self.data.build(), ) class TestDataFrame(DataWithAssets): def test_add_data_frame_with_none(self) -> None: self.data.add_data_frame(None) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_data_frame_with_empty_df(self) -> None: self.data.add_data_frame(pd.DataFrame()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_data_frame_with_df(self) -> None: df = self.in_pd_df_by_series_with_duplicated_popularity self.data.add_data_frame(df) self.assertEqual( self.ref_pd_df_by_series_with_duplicated_popularity, self.data.build(), ) def test_add_data_frame_with_df_contains_na(self) -> None: df = self.in_pd_df_by_series_with_nan self.data.add_data_frame(df) self.assertEqual( self.ref_pd_df_by_series_with_nan, self.data.build(), ) class TestDfWithSeries(DataWithAssets): def test_add_df_with_empty_series(self) -> None: self.data.add_df(pd.Series()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_df_with_series(self) -> None: self.data.add_df(self.in_pd_series_dimension) self.data.add_df(self.in_pd_series_measure) self.assertEqual( self.ref_pd_series, self.data.build(), ) def test_add_df_with_series_contains_na(self) -> None: self.data.add_df(self.in_pd_series_dimension_with_nan) self.data.add_df(self.in_pd_series_measure_with_nan) self.assertEqual( self.ref_pd_series_with_nan, self.data.build(), ) def test_add_df_with_series_and_with_include_index(self) -> None: self.data.add_df( self.in_pd_series_dimension_with_index, include_index="DimensionIndex", ) self.data.add_df( self.in_pd_series_measure_with_index, include_index="MeasureIndex", ) self.assertEqual( self.ref_pd_series_with_index, self.data.build(), ) class TestDataFrameWithSeries(DataWithAssets): def test_add_data_frame_with_empty_series(self) -> None: self.
[ "data", "ref_pd_series", "in_pd_df_by_series", "test_add_data_frame_with_series", "assertEqual", "test_add_data_frame_with_empty_series", "test_add_data_frame_with_series_contains_na", "asset_dir", "in_pd_df_by_series_with_duplicated_popularity", "in_pd_df_by_series_with_index", "in_pd_df_by_series_with_nan", "in_pd_series_dimension", "in_pd_series_dimension_with_index", "in_pd_series_dimension_with_nan", "in_pd_series_measure", "in_pd_series_measure_with_index", "in_pd_series_measure_with_nan", "ref_pd_df_by_series", "ref_pd_df_by_series_max_rows", "ref_pd_df_by_series_only_index", "ref_pd_df_by_series_with_duplicated_popularity", "ref_pd_df_by_series_with_index", "ref_pd_df_by_series_with_nan", "ref_pd_series_only_index", "ref_pd_series_with_index", "ref_pd_series_with_nan", "set_up_pd_df", "set_up_pd_series", "setUp", "setUpClass", "addClassCleanup", "addCleanup", "addTypeEqualityFunc", "assert_", "assertAlmostEqual", "assertAlmostEquals", "assertCountEqual", "assertDictContainsSubset", "assertDictEqual", "assertEquals", "assertFalse", "assertGreater", "assertGreaterEqual", "assertIn", "assertIs", "assertIsInstance", "assertIsNone", "assertIsNot", "assertIsNotNone", "assertLess", "assertLessEqual", "assertListEqual", "assertLogs", "assertMultiLineEqual", "assertNoLogs", "assertNotAlmostEqual", "assertNotAlmostEquals", "assertNotEqual", "assertNotEquals", "assertNotIn", "assertNotIsInstance", "assertNotRegex", "assertNotRegexpMatches", "assertRaises", "assertRaisesRegex", "assertRaisesRegexp", "assertRegex", "assertRegexpMatches", "assertSequenceEqual", "assertSetEqual", "assertTrue", "assertTupleEqual", "assertWarns", "assertWarnsRegex", "countTestCases", "debug", "defaultTestResult", "doClassCleanups", "doCleanups", "fail", "failIf", "failIfAlmostEqual", "failIfEqual", "failUnless", "failUnlessAlmostEqual", "failUnlessEqual", "failUnlessRaises", "failureException", "id", "longMessage", "maxDiff", "run", "shortDescription", "skipTest", "subTest", "tearDown", "tearDownClass" ]
self.data.build(), ) def test_add_data_frame_with_df(self) -> None: df = self.in_pd_df_by_series_with_duplicated_popularity self.data.add_data_frame(df) self.assertEqual( self.ref_pd_df_by_series_with_duplicated_popularity, self.data.build(), ) def test_add_data_frame_with_df_contains_na(self) -> None: df = self.in_pd_df_by_series_with_nan self.data.add_data_frame(df) self.assertEqual( self.ref_pd_df_by_series_with_nan, self.data.build(), ) class TestDfWithSeries(DataWithAssets): def test_add_df_with_empty_series(self) -> None: self.data.add_df(pd.Series()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_df_with_series(self) -> None: self.data.add_df(self.in_pd_series_dimension) self.data.add_df(self.in_pd_series_measure) self.assertEqual( self.ref_pd_series, self.data.build(), ) def test_add_df_with_series_contains_na(self) -> None: self.data.add_df(self.in_pd_series_dimension_with_nan) self.data.add_df(self.in_pd_series_measure_with_nan) self.assertEqual( self.ref_pd_series_with_nan, self.data.build(), ) def test_add_df_with_series_and_with_include_index(self) -> None: self.data.add_df( self.in_pd_series_dimension_with_index, include_index="DimensionIndex", ) self.data.add_df( self.in_pd_series_measure_with_index, include_index="MeasureIndex", ) self.assertEqual( self.ref_pd_series_with_index, self.data.build(), ) class TestDataFrameWithSeries(DataWithAssets): def test_add_data_frame_with_empty_series(self) -> None: self.
5,402
7,669
216
4,165
vizzuhq__ipyvizzu
54b0334aa736a77f9430739c9375b16be145b3fd
tests/test_data/test_pandas.py
inproject
add_data_frame
true
function
28
30
false
false
[ "add_df", "add_data_frame", "build", "add_data_frame_index", "add_df_index", "add_dimension", "add_measure", "add_np_array", "add_record", "add_records", "add_series", "add_series_list", "add_spark_df", "dump", "filter", "from_json", "set_filter", "clear", "copy", "fromkeys", "get", "items", "keys", "pop", "popitem", "setdefault", "update", "values", "__annotations__", "__class__", "__class_getitem__", "__contains__", "__delattr__", "__delitem__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__getitem__", "__hash__", "__init__", "__init_subclass__", "__ior__", "__iter__", "__len__", "__ne__", "__new__", "__or__", "__reduce__", "__reduce_ex__", "__repr__", "__reversed__", "__ror__", "__setattr__", "__setitem__", "__sizeof__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "add_data_frame", "type": "function" }, { "name": "add_data_frame_index", "type": "function" }, { "name": "add_df", "type": "function" }, { "name": "add_df_index", "type": "function" }, { "name": "add_dimension", "type": "function" }, { "name": "add_measure", "type": "function" }, { "name": "add_np_array", "type": "function" }, { "name": "add_record", "type": "function" }, { "name": "add_records", "type": "function" }, { "name": "add_series", "type": "function" }, { "name": "add_series_list", "type": "function" }, { "name": "add_spark_df", "type": "function" }, { "name": "build", "type": "function" }, { "name": "clear", "type": "function" }, { "name": "copy", "type": "function" }, { "name": "dump", "type": "function" }, { "name": "filter", "type": "function" }, { "name": "from_json", "type": "function" }, { "name": "fromkeys", "type": "function" }, { "name": "get", "type": "function" }, { "name": "items", "type": "function" }, { "name": "keys", "type": "function" }, { "name": "pop", "type": "function" }, { "name": "popitem", "type": "function" }, { "name": "set_filter", "type": "function" }, { "name": "setdefault", "type": "function" }, { "name": "update", "type": "function" }, { "name": "values", "type": "function" }, { "name": "_add_named_value", "type": "function" }, { "name": "_add_value", "type": "function" }, { "name": "__annotations__", "type": "statement" }, { "name": "__class__", "type": "property" }, { "name": "__class_getitem__", "type": "function" }, { "name": "__contains__", "type": "function" }, { "name": "__delattr__", "type": "function" }, { "name": "__delitem__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__getitem__", "type": "function" }, { "name": "__hash__", "type": "statement" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__ior__", "type": "function" }, { "name": "__iter__", "type": "function" }, { "name": "__len__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__or__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__reversed__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__setitem__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
# pylint: disable=missing-module-docstring,missing-class-docstring,missing-function-docstring import pandas as pd from tests.test_data import DataWithAssets from tests.utils.import_error import RaiseImportError class TestDf(DataWithAssets): def test_add_df_if_pandas_not_installed(self) -> None: with RaiseImportError.module_name("pandas"): with self.assertRaises(ImportError): self.data.add_df(pd.DataFrame()) def test_add_df_with_none(self) -> None: self.data.add_df(None) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_df_with_empty_df(self) -> None: self.data.add_df(pd.DataFrame()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_df_with_df(self) -> None: df = self.in_pd_df_by_series_with_duplicated_popularity self.data.add_df(df) self.assertEqual( self.ref_pd_df_by_series_with_duplicated_popularity, self.data.build(), ) def test_add_df_with_df_contains_na(self) -> None: df = self.in_pd_df_by_series_with_nan self.data.add_df(df) self.assertEqual( self.ref_pd_df_by_series_with_nan, self.data.build(), ) def test_add_df_with_df_and_with_include_index(self) -> None: df = self.in_pd_df_by_series_with_index self.data.add_df(df, include_index="Index") self.assertEqual( self.ref_pd_df_by_series_with_index, self.data.build(), ) def test_add_df_with_df_and_max_rows(self) -> None: df = self.in_pd_df_by_series self.data.add_df(df, max_rows=2) self.assertEqual( self.ref_pd_df_by_series_max_rows, self.data.build(), ) class TestDataFrame(DataWithAssets): def test_add_data_frame_with_none(self) -> None: self.data.add_data_frame(None) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_data_frame_with_empty_df(self) -> None: self.data.add_data_frame(pd.DataFrame()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_data_frame_with_df(self) -> None: df = self.in_pd_df_by_series_with_duplicated_popularity self.data.add_data_frame(df) self.assertEqual( self.ref_pd_df_by_series_with_duplicated_popularity, self.data.build(), ) def test_add_data_frame_with_df_contains_na(self) -> None: df = self.in_pd_df_by_series_with_nan self.data.add_data_frame(df) self.assertEqual( self.ref_pd_df_by_series_with_nan, self.data.build(), ) class TestDfWithSeries(DataWithAssets): def test_add_df_with_empty_series(self) -> None: self.data.add_df(pd.Series()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_df_with_series(self) -> None: self.data.add_df(self.in_pd_series_dimension) self.data.add_df(self.in_pd_series_measure) self.assertEqual( self.ref_pd_series, self.data.build(), ) def test_add_df_with_series_contains_na(self) -> None: self.data.add_df(self.in_pd_series_dimension_with_nan) self.data.add_df(self.in_pd_series_measure_with_nan) self.assertEqual( self.ref_pd_series_with_nan, self.data.build(), ) def test_add_df_with_series_and_with_include_index(self) -> None: self.data.add_df( self.in_pd_series_dimension_with_index, include_index="DimensionIndex", ) self.data.add_df( self.in_pd_series_measure_with_index, include_index="MeasureIndex", ) self.assertEqual( self.ref_pd_series_with_index, self.data.build(), ) class TestDataFrameWithSeries(DataWithAssets): def test_add_data_frame_with_empty_series(self) -> None: self.data.
[ "add_df", "add_data_frame", "build", "add_data_frame_index", "add_df_index", "add_dimension", "add_measure", "add_np_array", "add_record", "add_records", "add_series", "add_series_list", "add_spark_df", "dump", "filter", "from_json", "set_filter", "clear", "copy", "fromkeys", "get", "items", "keys", "pop", "popitem", "setdefault", "update", "values" ]
self.data.build(), ) def test_add_data_frame_with_df(self) -> None: df = self.in_pd_df_by_series_with_duplicated_popularity self.data.add_data_frame(df) self.assertEqual( self.ref_pd_df_by_series_with_duplicated_popularity, self.data.build(), ) def test_add_data_frame_with_df_contains_na(self) -> None: df = self.in_pd_df_by_series_with_nan self.data.add_data_frame(df) self.assertEqual( self.ref_pd_df_by_series_with_nan, self.data.build(), ) class TestDfWithSeries(DataWithAssets): def test_add_df_with_empty_series(self) -> None: self.data.add_df(pd.Series()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_df_with_series(self) -> None: self.data.add_df(self.in_pd_series_dimension) self.data.add_df(self.in_pd_series_measure) self.assertEqual( self.ref_pd_series, self.data.build(), ) def test_add_df_with_series_contains_na(self) -> None: self.data.add_df(self.in_pd_series_dimension_with_nan) self.data.add_df(self.in_pd_series_measure_with_nan) self.assertEqual( self.ref_pd_series_with_nan, self.data.build(), ) def test_add_df_with_series_and_with_include_index(self) -> None: self.data.add_df( self.in_pd_series_dimension_with_index, include_index="DimensionIndex", ) self.data.add_df( self.in_pd_series_measure_with_index, include_index="MeasureIndex", ) self.assertEqual( self.ref_pd_series_with_index, self.data.build(), ) class TestDataFrameWithSeries(DataWithAssets): def test_add_data_frame_with_empty_series(self) -> None: self.data.
5,403
7,672
216
4,355
vizzuhq__ipyvizzu
54b0334aa736a77f9430739c9375b16be145b3fd
tests/test_data/test_pandas.py
inproject
data
true
statement
97
101
false
false
[ "data", "ref_pd_series", "in_pd_df_by_series", "assertEqual", "test_add_data_frame_with_empty_series", "test_add_data_frame_with_series", "test_add_data_frame_with_series_contains_na", "asset_dir", "in_pd_df_by_series_with_duplicated_popularity", "in_pd_df_by_series_with_index", "in_pd_df_by_series_with_nan", "in_pd_series_dimension", "in_pd_series_dimension_with_index", "in_pd_series_dimension_with_nan", "in_pd_series_measure", "in_pd_series_measure_with_index", "in_pd_series_measure_with_nan", "ref_pd_df_by_series", "ref_pd_df_by_series_max_rows", "ref_pd_df_by_series_only_index", "ref_pd_df_by_series_with_duplicated_popularity", "ref_pd_df_by_series_with_index", "ref_pd_df_by_series_with_nan", "ref_pd_series_only_index", "ref_pd_series_with_index", "ref_pd_series_with_nan", "set_up_pd_df", "set_up_pd_series", "setUp", "setUpClass", "addClassCleanup", "addCleanup", "addTypeEqualityFunc", "assert_", "assertAlmostEqual", "assertAlmostEquals", "assertCountEqual", "assertDictContainsSubset", "assertDictEqual", "assertEquals", "assertFalse", "assertGreater", "assertGreaterEqual", "assertIn", "assertIs", "assertIsInstance", "assertIsNone", "assertIsNot", "assertIsNotNone", "assertLess", "assertLessEqual", "assertListEqual", "assertLogs", "assertMultiLineEqual", "assertNoLogs", "assertNotAlmostEqual", "assertNotAlmostEquals", "assertNotEqual", "assertNotEquals", "assertNotIn", "assertNotIsInstance", "assertNotRegex", "assertNotRegexpMatches", "assertRaises", "assertRaisesRegex", "assertRaisesRegexp", "assertRegex", "assertRegexpMatches", "assertSequenceEqual", "assertSetEqual", "assertTrue", "assertTupleEqual", "assertWarns", "assertWarnsRegex", "countTestCases", "debug", "defaultTestResult", "doClassCleanups", "doCleanups", "fail", "failIf", "failIfAlmostEqual", "failIfEqual", "failUnless", "failUnlessAlmostEqual", "failUnlessEqual", "failUnlessRaises", "failureException", "id", "longMessage", "maxDiff", "run", "shortDescription", "skipTest", "subTest", "tearDown", "tearDownClass", "__annotations__", "__call__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "addClassCleanup", "type": "function" }, { "name": "addCleanup", "type": "function" }, { "name": "addTypeEqualityFunc", "type": "function" }, { "name": "assert_", "type": "function" }, { "name": "assertAlmostEqual", "type": "function" }, { "name": "assertAlmostEquals", "type": "function" }, { "name": "assertCountEqual", "type": "function" }, { "name": "assertDictContainsSubset", "type": "function" }, { "name": "assertDictEqual", "type": "function" }, { "name": "assertEqual", "type": "function" }, { "name": "assertEquals", "type": "function" }, { "name": "assertFalse", "type": "function" }, { "name": "assertGreater", "type": "function" }, { "name": "assertGreaterEqual", "type": "function" }, { "name": "assertIn", "type": "function" }, { "name": "assertIs", "type": "function" }, { "name": "assertIsInstance", "type": "function" }, { "name": "assertIsNone", "type": "function" }, { "name": "assertIsNot", "type": "function" }, { "name": "assertIsNotNone", "type": "function" }, { "name": "assertLess", "type": "function" }, { "name": "assertLessEqual", "type": "function" }, { "name": "assertListEqual", "type": "function" }, { "name": "assertLogs", "type": "function" }, { "name": "assertMultiLineEqual", "type": "function" }, { "name": "assertNotAlmostEqual", "type": "function" }, { "name": "assertNotAlmostEquals", "type": "function" }, { "name": "assertNotEqual", "type": "function" }, { "name": "assertNotEquals", "type": "function" }, { "name": "assertNotIn", "type": "function" }, { "name": "assertNotIsInstance", "type": "function" }, { "name": "assertNotRegex", "type": "function" }, { "name": "assertNotRegexpMatches", "type": "function" }, { "name": "assertRaises", "type": "function" }, { "name": "assertRaisesRegex", "type": "function" }, { "name": "assertRaisesRegexp", "type": "function" }, { "name": "assertRegex", "type": "function" }, { "name": "assertRegexpMatches", "type": "function" }, { "name": "assertSequenceEqual", "type": "function" }, { "name": "assertSetEqual", "type": "function" }, { "name": "assertTrue", "type": "function" }, { "name": "assertTupleEqual", "type": "function" }, { "name": "assertWarns", "type": "function" }, { "name": "assertWarnsRegex", "type": "function" }, { "name": "asset_dir", "type": "statement" }, { "name": "countTestCases", "type": "function" }, { "name": "data", "type": "statement" }, { "name": "debug", "type": "function" }, { "name": "defaultTestResult", "type": "function" }, { "name": "doClassCleanups", "type": "function" }, { "name": "doCleanups", "type": "function" }, { "name": "fail", "type": "function" }, { "name": "failIf", "type": "function" }, { "name": "failIfAlmostEqual", "type": "function" }, { "name": "failIfEqual", "type": "function" }, { "name": "failUnless", "type": "function" }, { "name": "failUnlessAlmostEqual", "type": "function" }, { "name": "failUnlessEqual", "type": "function" }, { "name": "failUnlessRaises", "type": "function" }, { "name": "failureException", "type": "statement" }, { "name": "id", "type": "function" }, { "name": "in_pd_df_by_series", "type": "statement" }, { "name": "in_pd_df_by_series_with_duplicated_popularity", "type": "statement" }, { "name": "in_pd_df_by_series_with_index", "type": "statement" }, { "name": "in_pd_df_by_series_with_nan", "type": "statement" }, { "name": "in_pd_series_dimension", "type": "statement" }, { "name": "in_pd_series_dimension_with_index", "type": "statement" }, { "name": "in_pd_series_dimension_with_nan", "type": "statement" }, { "name": "in_pd_series_measure", "type": "statement" }, { "name": "in_pd_series_measure_with_index", "type": "statement" }, { "name": "in_pd_series_measure_with_nan", "type": "statement" }, { "name": "longMessage", "type": "statement" }, { "name": "maxDiff", "type": "statement" }, { "name": "ref_pd_df_by_series", "type": "statement" }, { "name": "ref_pd_df_by_series_max_rows", "type": "statement" }, { "name": "ref_pd_df_by_series_only_index", "type": "statement" }, { "name": "ref_pd_df_by_series_with_duplicated_popularity", "type": "statement" }, { "name": "ref_pd_df_by_series_with_index", "type": "statement" }, { "name": "ref_pd_df_by_series_with_nan", "type": "statement" }, { "name": "ref_pd_series", "type": "statement" }, { "name": "ref_pd_series_only_index", "type": "statement" }, { "name": "ref_pd_series_with_index", "type": "statement" }, { "name": "ref_pd_series_with_nan", "type": "statement" }, { "name": "run", "type": "function" }, { "name": "set_up_pd_df", "type": "function" }, { "name": "set_up_pd_series", "type": "function" }, { "name": "setUp", "type": "function" }, { "name": "setUpClass", "type": "function" }, { "name": "shortDescription", "type": "function" }, { "name": "skipTest", "type": "function" }, { "name": "subTest", "type": "function" }, { "name": "tearDown", "type": "function" }, { "name": "tearDownClass", "type": "function" }, { "name": "test_add_data_frame_with_empty_series", "type": "function" }, { "name": "test_add_data_frame_with_series", "type": "function" }, { "name": "test_add_data_frame_with_series_contains_na", "type": "function" }, { "name": "_addSkip", "type": "function" }, { "name": "_formatMessage", "type": "function" }, { "name": "_getAssertEqualityFunc", "type": "function" }, { "name": "_testMethodDoc", "type": "statement" }, { "name": "_testMethodName", "type": "statement" }, { "name": "__annotations__", "type": "statement" }, { "name": "__call__", "type": "function" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
# pylint: disable=missing-module-docstring,missing-class-docstring,missing-function-docstring import pandas as pd from tests.test_data import DataWithAssets from tests.utils.import_error import RaiseImportError class TestDf(DataWithAssets): def test_add_df_if_pandas_not_installed(self) -> None: with RaiseImportError.module_name("pandas"): with self.assertRaises(ImportError): self.data.add_df(pd.DataFrame()) def test_add_df_with_none(self) -> None: self.data.add_df(None) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_df_with_empty_df(self) -> None: self.data.add_df(pd.DataFrame()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_df_with_df(self) -> None: df = self.in_pd_df_by_series_with_duplicated_popularity self.data.add_df(df) self.assertEqual( self.ref_pd_df_by_series_with_duplicated_popularity, self.data.build(), ) def test_add_df_with_df_contains_na(self) -> None: df = self.in_pd_df_by_series_with_nan self.data.add_df(df) self.assertEqual( self.ref_pd_df_by_series_with_nan, self.data.build(), ) def test_add_df_with_df_and_with_include_index(self) -> None: df = self.in_pd_df_by_series_with_index self.data.add_df(df, include_index="Index") self.assertEqual( self.ref_pd_df_by_series_with_index, self.data.build(), ) def test_add_df_with_df_and_max_rows(self) -> None: df = self.in_pd_df_by_series self.data.add_df(df, max_rows=2) self.assertEqual( self.ref_pd_df_by_series_max_rows, self.data.build(), ) class TestDataFrame(DataWithAssets): def test_add_data_frame_with_none(self) -> None: self.data.add_data_frame(None) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_data_frame_with_empty_df(self) -> None: self.data.add_data_frame(pd.DataFrame()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_data_frame_with_df(self) -> None: df = self.in_pd_df_by_series_with_duplicated_popularity self.data.add_data_frame(df) self.assertEqual( self.ref_pd_df_by_series_with_duplicated_popularity, self.data.build(), ) def test_add_data_frame_with_df_contains_na(self) -> None: df = self.in_pd_df_by_series_with_nan self.data.add_data_frame(df) self.assertEqual( self.ref_pd_df_by_series_with_nan, self.data.build(), ) class TestDfWithSeries(DataWithAssets): def test_add_df_with_empty_series(self) -> None: self.data.add_df(pd.Series()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_df_with_series(self) -> None: self.data.add_df(self.in_pd_series_dimension) self.data.add_df(self.in_pd_series_measure) self.assertEqual( self.ref_pd_series, self.data.build(), ) def test_add_df_with_series_contains_na(self) -> None: self.data.add_df(self.in_pd_series_dimension_with_nan) self.data.add_df(self.in_pd_series_measure_with_nan) self.assertEqual( self.ref_pd_series_with_nan, self.data.build(), ) def test_add_df_with_series_and_with_include_index(self) -> None: self.data.add_df( self.in_pd_series_dimension_with_index, include_index="DimensionIndex", ) self.data.add_df( self.in_pd_series_measure_with_index, include_index="MeasureIndex", ) self.assertEqual( self.ref_pd_series_with_index, self.data.build(), ) class TestDataFrameWithSeries(DataWithAssets): def test_add_data_frame_with_empty_series(self) -> None: self.data.add_data_frame(pd.Series()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_data_frame_with_series(self) -> None: self.
[ "data", "ref_pd_series", "in_pd_df_by_series", "assertEqual", "test_add_data_frame_with_empty_series", "test_add_data_frame_with_series", "test_add_data_frame_with_series_contains_na", "asset_dir", "in_pd_df_by_series_with_duplicated_popularity", "in_pd_df_by_series_with_index", "in_pd_df_by_series_with_nan", "in_pd_series_dimension", "in_pd_series_dimension_with_index", "in_pd_series_dimension_with_nan", "in_pd_series_measure", "in_pd_series_measure_with_index", "in_pd_series_measure_with_nan", "ref_pd_df_by_series", "ref_pd_df_by_series_max_rows", "ref_pd_df_by_series_only_index", "ref_pd_df_by_series_with_duplicated_popularity", "ref_pd_df_by_series_with_index", "ref_pd_df_by_series_with_nan", "ref_pd_series_only_index", "ref_pd_series_with_index", "ref_pd_series_with_nan", "set_up_pd_df", "set_up_pd_series", "setUp", "setUpClass", "addClassCleanup", "addCleanup", "addTypeEqualityFunc", "assert_", "assertAlmostEqual", "assertAlmostEquals", "assertCountEqual", "assertDictContainsSubset", "assertDictEqual", "assertEquals", "assertFalse", "assertGreater", "assertGreaterEqual", "assertIn", "assertIs", "assertIsInstance", "assertIsNone", "assertIsNot", "assertIsNotNone", "assertLess", "assertLessEqual", "assertListEqual", "assertLogs", "assertMultiLineEqual", "assertNoLogs", "assertNotAlmostEqual", "assertNotAlmostEquals", "assertNotEqual", "assertNotEquals", "assertNotIn", "assertNotIsInstance", "assertNotRegex", "assertNotRegexpMatches", "assertRaises", "assertRaisesRegex", "assertRaisesRegexp", "assertRegex", "assertRegexpMatches", "assertSequenceEqual", "assertSetEqual", "assertTrue", "assertTupleEqual", "assertWarns", "assertWarnsRegex", "countTestCases", "debug", "defaultTestResult", "doClassCleanups", "doCleanups", "fail", "failIf", "failIfAlmostEqual", "failIfEqual", "failUnless", "failUnlessAlmostEqual", "failUnlessEqual", "failUnlessRaises", "failureException", "id", "longMessage", "maxDiff", "run", "shortDescription", "skipTest", "subTest", "tearDown", "tearDownClass" ]
self.assertEqual( self.ref_pd_df_by_series_with_duplicated_popularity, self.data.build(), ) def test_add_data_frame_with_df_contains_na(self) -> None: df = self.in_pd_df_by_series_with_nan self.data.add_data_frame(df) self.assertEqual( self.ref_pd_df_by_series_with_nan, self.data.build(), ) class TestDfWithSeries(DataWithAssets): def test_add_df_with_empty_series(self) -> None: self.data.add_df(pd.Series()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_df_with_series(self) -> None: self.data.add_df(self.in_pd_series_dimension) self.data.add_df(self.in_pd_series_measure) self.assertEqual( self.ref_pd_series, self.data.build(), ) def test_add_df_with_series_contains_na(self) -> None: self.data.add_df(self.in_pd_series_dimension_with_nan) self.data.add_df(self.in_pd_series_measure_with_nan) self.assertEqual( self.ref_pd_series_with_nan, self.data.build(), ) def test_add_df_with_series_and_with_include_index(self) -> None: self.data.add_df( self.in_pd_series_dimension_with_index, include_index="DimensionIndex", ) self.data.add_df( self.in_pd_series_measure_with_index, include_index="MeasureIndex", ) self.assertEqual( self.ref_pd_series_with_index, self.data.build(), ) class TestDataFrameWithSeries(DataWithAssets): def test_add_data_frame_with_empty_series(self) -> None: self.data.add_data_frame(pd.Series()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_data_frame_with_series(self) -> None: self.
5,406
7,673
216
4,360
vizzuhq__ipyvizzu
54b0334aa736a77f9430739c9375b16be145b3fd
tests/test_data/test_pandas.py
inproject
add_data_frame
true
function
28
30
false
false
[ "add_df", "add_data_frame", "build", "add_data_frame_index", "add_df_index", "add_dimension", "add_measure", "add_np_array", "add_record", "add_records", "add_series", "add_series_list", "add_spark_df", "dump", "filter", "from_json", "set_filter", "clear", "copy", "fromkeys", "get", "items", "keys", "pop", "popitem", "setdefault", "update", "values", "__annotations__", "__class__", "__class_getitem__", "__contains__", "__delattr__", "__delitem__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__getitem__", "__hash__", "__init__", "__init_subclass__", "__ior__", "__iter__", "__len__", "__ne__", "__new__", "__or__", "__reduce__", "__reduce_ex__", "__repr__", "__reversed__", "__ror__", "__setattr__", "__setitem__", "__sizeof__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "add_data_frame", "type": "function" }, { "name": "add_data_frame_index", "type": "function" }, { "name": "add_df", "type": "function" }, { "name": "add_df_index", "type": "function" }, { "name": "add_dimension", "type": "function" }, { "name": "add_measure", "type": "function" }, { "name": "add_np_array", "type": "function" }, { "name": "add_record", "type": "function" }, { "name": "add_records", "type": "function" }, { "name": "add_series", "type": "function" }, { "name": "add_series_list", "type": "function" }, { "name": "add_spark_df", "type": "function" }, { "name": "build", "type": "function" }, { "name": "clear", "type": "function" }, { "name": "copy", "type": "function" }, { "name": "dump", "type": "function" }, { "name": "filter", "type": "function" }, { "name": "from_json", "type": "function" }, { "name": "fromkeys", "type": "function" }, { "name": "get", "type": "function" }, { "name": "items", "type": "function" }, { "name": "keys", "type": "function" }, { "name": "pop", "type": "function" }, { "name": "popitem", "type": "function" }, { "name": "set_filter", "type": "function" }, { "name": "setdefault", "type": "function" }, { "name": "update", "type": "function" }, { "name": "values", "type": "function" }, { "name": "_add_named_value", "type": "function" }, { "name": "_add_value", "type": "function" }, { "name": "__annotations__", "type": "statement" }, { "name": "__class__", "type": "property" }, { "name": "__class_getitem__", "type": "function" }, { "name": "__contains__", "type": "function" }, { "name": "__delattr__", "type": "function" }, { "name": "__delitem__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__getitem__", "type": "function" }, { "name": "__hash__", "type": "statement" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__ior__", "type": "function" }, { "name": "__iter__", "type": "function" }, { "name": "__len__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__or__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__reversed__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__setitem__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
# pylint: disable=missing-module-docstring,missing-class-docstring,missing-function-docstring import pandas as pd from tests.test_data import DataWithAssets from tests.utils.import_error import RaiseImportError class TestDf(DataWithAssets): def test_add_df_if_pandas_not_installed(self) -> None: with RaiseImportError.module_name("pandas"): with self.assertRaises(ImportError): self.data.add_df(pd.DataFrame()) def test_add_df_with_none(self) -> None: self.data.add_df(None) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_df_with_empty_df(self) -> None: self.data.add_df(pd.DataFrame()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_df_with_df(self) -> None: df = self.in_pd_df_by_series_with_duplicated_popularity self.data.add_df(df) self.assertEqual( self.ref_pd_df_by_series_with_duplicated_popularity, self.data.build(), ) def test_add_df_with_df_contains_na(self) -> None: df = self.in_pd_df_by_series_with_nan self.data.add_df(df) self.assertEqual( self.ref_pd_df_by_series_with_nan, self.data.build(), ) def test_add_df_with_df_and_with_include_index(self) -> None: df = self.in_pd_df_by_series_with_index self.data.add_df(df, include_index="Index") self.assertEqual( self.ref_pd_df_by_series_with_index, self.data.build(), ) def test_add_df_with_df_and_max_rows(self) -> None: df = self.in_pd_df_by_series self.data.add_df(df, max_rows=2) self.assertEqual( self.ref_pd_df_by_series_max_rows, self.data.build(), ) class TestDataFrame(DataWithAssets): def test_add_data_frame_with_none(self) -> None: self.data.add_data_frame(None) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_data_frame_with_empty_df(self) -> None: self.data.add_data_frame(pd.DataFrame()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_data_frame_with_df(self) -> None: df = self.in_pd_df_by_series_with_duplicated_popularity self.data.add_data_frame(df) self.assertEqual( self.ref_pd_df_by_series_with_duplicated_popularity, self.data.build(), ) def test_add_data_frame_with_df_contains_na(self) -> None: df = self.in_pd_df_by_series_with_nan self.data.add_data_frame(df) self.assertEqual( self.ref_pd_df_by_series_with_nan, self.data.build(), ) class TestDfWithSeries(DataWithAssets): def test_add_df_with_empty_series(self) -> None: self.data.add_df(pd.Series()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_df_with_series(self) -> None: self.data.add_df(self.in_pd_series_dimension) self.data.add_df(self.in_pd_series_measure) self.assertEqual( self.ref_pd_series, self.data.build(), ) def test_add_df_with_series_contains_na(self) -> None: self.data.add_df(self.in_pd_series_dimension_with_nan) self.data.add_df(self.in_pd_series_measure_with_nan) self.assertEqual( self.ref_pd_series_with_nan, self.data.build(), ) def test_add_df_with_series_and_with_include_index(self) -> None: self.data.add_df( self.in_pd_series_dimension_with_index, include_index="DimensionIndex", ) self.data.add_df( self.in_pd_series_measure_with_index, include_index="MeasureIndex", ) self.assertEqual( self.ref_pd_series_with_index, self.data.build(), ) class TestDataFrameWithSeries(DataWithAssets): def test_add_data_frame_with_empty_series(self) -> None: self.data.add_data_frame(pd.Series()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_data_frame_with_series(self) -> None: self.data.
[ "add_df", "add_data_frame", "build", "add_data_frame_index", "add_df_index", "add_dimension", "add_measure", "add_np_array", "add_record", "add_records", "add_series", "add_series_list", "add_spark_df", "dump", "filter", "from_json", "set_filter", "clear", "copy", "fromkeys", "get", "items", "keys", "pop", "popitem", "setdefault", "update", "values" ]
self.assertEqual( self.ref_pd_df_by_series_with_duplicated_popularity, self.data.build(), ) def test_add_data_frame_with_df_contains_na(self) -> None: df = self.in_pd_df_by_series_with_nan self.data.add_data_frame(df) self.assertEqual( self.ref_pd_df_by_series_with_nan, self.data.build(), ) class TestDfWithSeries(DataWithAssets): def test_add_df_with_empty_series(self) -> None: self.data.add_df(pd.Series()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_df_with_series(self) -> None: self.data.add_df(self.in_pd_series_dimension) self.data.add_df(self.in_pd_series_measure) self.assertEqual( self.ref_pd_series, self.data.build(), ) def test_add_df_with_series_contains_na(self) -> None: self.data.add_df(self.in_pd_series_dimension_with_nan) self.data.add_df(self.in_pd_series_measure_with_nan) self.assertEqual( self.ref_pd_series_with_nan, self.data.build(), ) def test_add_df_with_series_and_with_include_index(self) -> None: self.data.add_df( self.in_pd_series_dimension_with_index, include_index="DimensionIndex", ) self.data.add_df( self.in_pd_series_measure_with_index, include_index="MeasureIndex", ) self.assertEqual( self.ref_pd_series_with_index, self.data.build(), ) class TestDataFrameWithSeries(DataWithAssets): def test_add_data_frame_with_empty_series(self) -> None: self.data.add_data_frame(pd.Series()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_data_frame_with_series(self) -> None: self.data.
5,407
7,674
216
4,380
vizzuhq__ipyvizzu
54b0334aa736a77f9430739c9375b16be145b3fd
tests/test_data/test_pandas.py
inproject
in_pd_series_dimension
true
statement
97
101
false
false
[ "data", "ref_pd_series", "test_add_data_frame_with_empty_series", "in_pd_df_by_series", "test_add_data_frame_with_series_contains_na", "test_add_data_frame_with_series", "asset_dir", "in_pd_df_by_series_with_duplicated_popularity", "in_pd_df_by_series_with_index", "in_pd_df_by_series_with_nan", "in_pd_series_dimension", "in_pd_series_dimension_with_index", "in_pd_series_dimension_with_nan", "in_pd_series_measure", "in_pd_series_measure_with_index", "in_pd_series_measure_with_nan", "ref_pd_df_by_series", "ref_pd_df_by_series_max_rows", "ref_pd_df_by_series_only_index", "ref_pd_df_by_series_with_duplicated_popularity", "ref_pd_df_by_series_with_index", "ref_pd_df_by_series_with_nan", "ref_pd_series_only_index", "ref_pd_series_with_index", "ref_pd_series_with_nan", "set_up_pd_df", "set_up_pd_series", "setUp", "setUpClass", "addClassCleanup", "addCleanup", "addTypeEqualityFunc", "assert_", "assertAlmostEqual", "assertAlmostEquals", "assertCountEqual", "assertDictContainsSubset", "assertDictEqual", "assertEqual", "assertEquals", "assertFalse", "assertGreater", "assertGreaterEqual", "assertIn", "assertIs", "assertIsInstance", "assertIsNone", "assertIsNot", "assertIsNotNone", "assertLess", "assertLessEqual", "assertListEqual", "assertLogs", "assertMultiLineEqual", "assertNoLogs", "assertNotAlmostEqual", "assertNotAlmostEquals", "assertNotEqual", "assertNotEquals", "assertNotIn", "assertNotIsInstance", "assertNotRegex", "assertNotRegexpMatches", "assertRaises", "assertRaisesRegex", "assertRaisesRegexp", "assertRegex", "assertRegexpMatches", "assertSequenceEqual", "assertSetEqual", "assertTrue", "assertTupleEqual", "assertWarns", "assertWarnsRegex", "countTestCases", "debug", "defaultTestResult", "doClassCleanups", "doCleanups", "fail", "failIf", "failIfAlmostEqual", "failIfEqual", "failUnless", "failUnlessAlmostEqual", "failUnlessEqual", "failUnlessRaises", "failureException", "id", "longMessage", "maxDiff", "run", "shortDescription", "skipTest", "subTest", "tearDown", "tearDownClass", "__annotations__", "__call__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "addClassCleanup", "type": "function" }, { "name": "addCleanup", "type": "function" }, { "name": "addTypeEqualityFunc", "type": "function" }, { "name": "assert_", "type": "function" }, { "name": "assertAlmostEqual", "type": "function" }, { "name": "assertAlmostEquals", "type": "function" }, { "name": "assertCountEqual", "type": "function" }, { "name": "assertDictContainsSubset", "type": "function" }, { "name": "assertDictEqual", "type": "function" }, { "name": "assertEqual", "type": "function" }, { "name": "assertEquals", "type": "function" }, { "name": "assertFalse", "type": "function" }, { "name": "assertGreater", "type": "function" }, { "name": "assertGreaterEqual", "type": "function" }, { "name": "assertIn", "type": "function" }, { "name": "assertIs", "type": "function" }, { "name": "assertIsInstance", "type": "function" }, { "name": "assertIsNone", "type": "function" }, { "name": "assertIsNot", "type": "function" }, { "name": "assertIsNotNone", "type": "function" }, { "name": "assertLess", "type": "function" }, { "name": "assertLessEqual", "type": "function" }, { "name": "assertListEqual", "type": "function" }, { "name": "assertLogs", "type": "function" }, { "name": "assertMultiLineEqual", "type": "function" }, { "name": "assertNotAlmostEqual", "type": "function" }, { "name": "assertNotAlmostEquals", "type": "function" }, { "name": "assertNotEqual", "type": "function" }, { "name": "assertNotEquals", "type": "function" }, { "name": "assertNotIn", "type": "function" }, { "name": "assertNotIsInstance", "type": "function" }, { "name": "assertNotRegex", "type": "function" }, { "name": "assertNotRegexpMatches", "type": "function" }, { "name": "assertRaises", "type": "function" }, { "name": "assertRaisesRegex", "type": "function" }, { "name": "assertRaisesRegexp", "type": "function" }, { "name": "assertRegex", "type": "function" }, { "name": "assertRegexpMatches", "type": "function" }, { "name": "assertSequenceEqual", "type": "function" }, { "name": "assertSetEqual", "type": "function" }, { "name": "assertTrue", "type": "function" }, { "name": "assertTupleEqual", "type": "function" }, { "name": "assertWarns", "type": "function" }, { "name": "assertWarnsRegex", "type": "function" }, { "name": "asset_dir", "type": "statement" }, { "name": "countTestCases", "type": "function" }, { "name": "data", "type": "statement" }, { "name": "debug", "type": "function" }, { "name": "defaultTestResult", "type": "function" }, { "name": "doClassCleanups", "type": "function" }, { "name": "doCleanups", "type": "function" }, { "name": "fail", "type": "function" }, { "name": "failIf", "type": "function" }, { "name": "failIfAlmostEqual", "type": "function" }, { "name": "failIfEqual", "type": "function" }, { "name": "failUnless", "type": "function" }, { "name": "failUnlessAlmostEqual", "type": "function" }, { "name": "failUnlessEqual", "type": "function" }, { "name": "failUnlessRaises", "type": "function" }, { "name": "failureException", "type": "statement" }, { "name": "id", "type": "function" }, { "name": "in_pd_df_by_series", "type": "statement" }, { "name": "in_pd_df_by_series_with_duplicated_popularity", "type": "statement" }, { "name": "in_pd_df_by_series_with_index", "type": "statement" }, { "name": "in_pd_df_by_series_with_nan", "type": "statement" }, { "name": "in_pd_series_dimension", "type": "statement" }, { "name": "in_pd_series_dimension_with_index", "type": "statement" }, { "name": "in_pd_series_dimension_with_nan", "type": "statement" }, { "name": "in_pd_series_measure", "type": "statement" }, { "name": "in_pd_series_measure_with_index", "type": "statement" }, { "name": "in_pd_series_measure_with_nan", "type": "statement" }, { "name": "longMessage", "type": "statement" }, { "name": "maxDiff", "type": "statement" }, { "name": "ref_pd_df_by_series", "type": "statement" }, { "name": "ref_pd_df_by_series_max_rows", "type": "statement" }, { "name": "ref_pd_df_by_series_only_index", "type": "statement" }, { "name": "ref_pd_df_by_series_with_duplicated_popularity", "type": "statement" }, { "name": "ref_pd_df_by_series_with_index", "type": "statement" }, { "name": "ref_pd_df_by_series_with_nan", "type": "statement" }, { "name": "ref_pd_series", "type": "statement" }, { "name": "ref_pd_series_only_index", "type": "statement" }, { "name": "ref_pd_series_with_index", "type": "statement" }, { "name": "ref_pd_series_with_nan", "type": "statement" }, { "name": "run", "type": "function" }, { "name": "set_up_pd_df", "type": "function" }, { "name": "set_up_pd_series", "type": "function" }, { "name": "setUp", "type": "function" }, { "name": "setUpClass", "type": "function" }, { "name": "shortDescription", "type": "function" }, { "name": "skipTest", "type": "function" }, { "name": "subTest", "type": "function" }, { "name": "tearDown", "type": "function" }, { "name": "tearDownClass", "type": "function" }, { "name": "test_add_data_frame_with_empty_series", "type": "function" }, { "name": "test_add_data_frame_with_series", "type": "function" }, { "name": "test_add_data_frame_with_series_contains_na", "type": "function" }, { "name": "_addSkip", "type": "function" }, { "name": "_formatMessage", "type": "function" }, { "name": "_getAssertEqualityFunc", "type": "function" }, { "name": "_testMethodDoc", "type": "statement" }, { "name": "_testMethodName", "type": "statement" }, { "name": "__annotations__", "type": "statement" }, { "name": "__call__", "type": "function" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
# pylint: disable=missing-module-docstring,missing-class-docstring,missing-function-docstring import pandas as pd from tests.test_data import DataWithAssets from tests.utils.import_error import RaiseImportError class TestDf(DataWithAssets): def test_add_df_if_pandas_not_installed(self) -> None: with RaiseImportError.module_name("pandas"): with self.assertRaises(ImportError): self.data.add_df(pd.DataFrame()) def test_add_df_with_none(self) -> None: self.data.add_df(None) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_df_with_empty_df(self) -> None: self.data.add_df(pd.DataFrame()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_df_with_df(self) -> None: df = self.in_pd_df_by_series_with_duplicated_popularity self.data.add_df(df) self.assertEqual( self.ref_pd_df_by_series_with_duplicated_popularity, self.data.build(), ) def test_add_df_with_df_contains_na(self) -> None: df = self.in_pd_df_by_series_with_nan self.data.add_df(df) self.assertEqual( self.ref_pd_df_by_series_with_nan, self.data.build(), ) def test_add_df_with_df_and_with_include_index(self) -> None: df = self.in_pd_df_by_series_with_index self.data.add_df(df, include_index="Index") self.assertEqual( self.ref_pd_df_by_series_with_index, self.data.build(), ) def test_add_df_with_df_and_max_rows(self) -> None: df = self.in_pd_df_by_series self.data.add_df(df, max_rows=2) self.assertEqual( self.ref_pd_df_by_series_max_rows, self.data.build(), ) class TestDataFrame(DataWithAssets): def test_add_data_frame_with_none(self) -> None: self.data.add_data_frame(None) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_data_frame_with_empty_df(self) -> None: self.data.add_data_frame(pd.DataFrame()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_data_frame_with_df(self) -> None: df = self.in_pd_df_by_series_with_duplicated_popularity self.data.add_data_frame(df) self.assertEqual( self.ref_pd_df_by_series_with_duplicated_popularity, self.data.build(), ) def test_add_data_frame_with_df_contains_na(self) -> None: df = self.in_pd_df_by_series_with_nan self.data.add_data_frame(df) self.assertEqual( self.ref_pd_df_by_series_with_nan, self.data.build(), ) class TestDfWithSeries(DataWithAssets): def test_add_df_with_empty_series(self) -> None: self.data.add_df(pd.Series()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_df_with_series(self) -> None: self.data.add_df(self.in_pd_series_dimension) self.data.add_df(self.in_pd_series_measure) self.assertEqual( self.ref_pd_series, self.data.build(), ) def test_add_df_with_series_contains_na(self) -> None: self.data.add_df(self.in_pd_series_dimension_with_nan) self.data.add_df(self.in_pd_series_measure_with_nan) self.assertEqual( self.ref_pd_series_with_nan, self.data.build(), ) def test_add_df_with_series_and_with_include_index(self) -> None: self.data.add_df( self.in_pd_series_dimension_with_index, include_index="DimensionIndex", ) self.data.add_df( self.in_pd_series_measure_with_index, include_index="MeasureIndex", ) self.assertEqual( self.ref_pd_series_with_index, self.data.build(), ) class TestDataFrameWithSeries(DataWithAssets): def test_add_data_frame_with_empty_series(self) -> None: self.data.add_data_frame(pd.Series()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_data_frame_with_series(self) -> None: self.data.add_data_frame(self.
[ "data", "ref_pd_series", "test_add_data_frame_with_empty_series", "in_pd_df_by_series", "test_add_data_frame_with_series_contains_na", "test_add_data_frame_with_series", "asset_dir", "in_pd_df_by_series_with_duplicated_popularity", "in_pd_df_by_series_with_index", "in_pd_df_by_series_with_nan", "in_pd_series_dimension", "in_pd_series_dimension_with_index", "in_pd_series_dimension_with_nan", "in_pd_series_measure", "in_pd_series_measure_with_index", "in_pd_series_measure_with_nan", "ref_pd_df_by_series", "ref_pd_df_by_series_max_rows", "ref_pd_df_by_series_only_index", "ref_pd_df_by_series_with_duplicated_popularity", "ref_pd_df_by_series_with_index", "ref_pd_df_by_series_with_nan", "ref_pd_series_only_index", "ref_pd_series_with_index", "ref_pd_series_with_nan", "set_up_pd_df", "set_up_pd_series", "setUp", "setUpClass", "addClassCleanup", "addCleanup", "addTypeEqualityFunc", "assert_", "assertAlmostEqual", "assertAlmostEquals", "assertCountEqual", "assertDictContainsSubset", "assertDictEqual", "assertEqual", "assertEquals", "assertFalse", "assertGreater", "assertGreaterEqual", "assertIn", "assertIs", "assertIsInstance", "assertIsNone", "assertIsNot", "assertIsNotNone", "assertLess", "assertLessEqual", "assertListEqual", "assertLogs", "assertMultiLineEqual", "assertNoLogs", "assertNotAlmostEqual", "assertNotAlmostEquals", "assertNotEqual", "assertNotEquals", "assertNotIn", "assertNotIsInstance", "assertNotRegex", "assertNotRegexpMatches", "assertRaises", "assertRaisesRegex", "assertRaisesRegexp", "assertRegex", "assertRegexpMatches", "assertSequenceEqual", "assertSetEqual", "assertTrue", "assertTupleEqual", "assertWarns", "assertWarnsRegex", "countTestCases", "debug", "defaultTestResult", "doClassCleanups", "doCleanups", "fail", "failIf", "failIfAlmostEqual", "failIfEqual", "failUnless", "failUnlessAlmostEqual", "failUnlessEqual", "failUnlessRaises", "failureException", "id", "longMessage", "maxDiff", "run", "shortDescription", "skipTest", "subTest", "tearDown", "tearDownClass" ]
self.ref_pd_df_by_series_with_duplicated_popularity, self.data.build(), ) def test_add_data_frame_with_df_contains_na(self) -> None: df = self.in_pd_df_by_series_with_nan self.data.add_data_frame(df) self.assertEqual( self.ref_pd_df_by_series_with_nan, self.data.build(), ) class TestDfWithSeries(DataWithAssets): def test_add_df_with_empty_series(self) -> None: self.data.add_df(pd.Series()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_df_with_series(self) -> None: self.data.add_df(self.in_pd_series_dimension) self.data.add_df(self.in_pd_series_measure) self.assertEqual( self.ref_pd_series, self.data.build(), ) def test_add_df_with_series_contains_na(self) -> None: self.data.add_df(self.in_pd_series_dimension_with_nan) self.data.add_df(self.in_pd_series_measure_with_nan) self.assertEqual( self.ref_pd_series_with_nan, self.data.build(), ) def test_add_df_with_series_and_with_include_index(self) -> None: self.data.add_df( self.in_pd_series_dimension_with_index, include_index="DimensionIndex", ) self.data.add_df( self.in_pd_series_measure_with_index, include_index="MeasureIndex", ) self.assertEqual( self.ref_pd_series_with_index, self.data.build(), ) class TestDataFrameWithSeries(DataWithAssets): def test_add_data_frame_with_empty_series(self) -> None: self.data.add_data_frame(pd.Series()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_data_frame_with_series(self) -> None: self.data.add_data_frame(self.
5,408
7,675
216
4,417
vizzuhq__ipyvizzu
54b0334aa736a77f9430739c9375b16be145b3fd
tests/test_data/test_pandas.py
inproject
data
true
statement
97
101
false
false
[ "data", "ref_pd_series", "in_pd_df_by_series", "assertEqual", "test_add_data_frame_with_empty_series", "test_add_data_frame_with_series", "test_add_data_frame_with_series_contains_na", "asset_dir", "in_pd_df_by_series_with_duplicated_popularity", "in_pd_df_by_series_with_index", "in_pd_df_by_series_with_nan", "in_pd_series_dimension", "in_pd_series_dimension_with_index", "in_pd_series_dimension_with_nan", "in_pd_series_measure", "in_pd_series_measure_with_index", "in_pd_series_measure_with_nan", "ref_pd_df_by_series", "ref_pd_df_by_series_max_rows", "ref_pd_df_by_series_only_index", "ref_pd_df_by_series_with_duplicated_popularity", "ref_pd_df_by_series_with_index", "ref_pd_df_by_series_with_nan", "ref_pd_series_only_index", "ref_pd_series_with_index", "ref_pd_series_with_nan", "set_up_pd_df", "set_up_pd_series", "setUp", "setUpClass", "addClassCleanup", "addCleanup", "addTypeEqualityFunc", "assert_", "assertAlmostEqual", "assertAlmostEquals", "assertCountEqual", "assertDictContainsSubset", "assertDictEqual", "assertEquals", "assertFalse", "assertGreater", "assertGreaterEqual", "assertIn", "assertIs", "assertIsInstance", "assertIsNone", "assertIsNot", "assertIsNotNone", "assertLess", "assertLessEqual", "assertListEqual", "assertLogs", "assertMultiLineEqual", "assertNoLogs", "assertNotAlmostEqual", "assertNotAlmostEquals", "assertNotEqual", "assertNotEquals", "assertNotIn", "assertNotIsInstance", "assertNotRegex", "assertNotRegexpMatches", "assertRaises", "assertRaisesRegex", "assertRaisesRegexp", "assertRegex", "assertRegexpMatches", "assertSequenceEqual", "assertSetEqual", "assertTrue", "assertTupleEqual", "assertWarns", "assertWarnsRegex", "countTestCases", "debug", "defaultTestResult", "doClassCleanups", "doCleanups", "fail", "failIf", "failIfAlmostEqual", "failIfEqual", "failUnless", "failUnlessAlmostEqual", "failUnlessEqual", "failUnlessRaises", "failureException", "id", "longMessage", "maxDiff", "run", "shortDescription", "skipTest", "subTest", "tearDown", "tearDownClass", "__annotations__", "__call__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "addClassCleanup", "type": "function" }, { "name": "addCleanup", "type": "function" }, { "name": "addTypeEqualityFunc", "type": "function" }, { "name": "assert_", "type": "function" }, { "name": "assertAlmostEqual", "type": "function" }, { "name": "assertAlmostEquals", "type": "function" }, { "name": "assertCountEqual", "type": "function" }, { "name": "assertDictContainsSubset", "type": "function" }, { "name": "assertDictEqual", "type": "function" }, { "name": "assertEqual", "type": "function" }, { "name": "assertEquals", "type": "function" }, { "name": "assertFalse", "type": "function" }, { "name": "assertGreater", "type": "function" }, { "name": "assertGreaterEqual", "type": "function" }, { "name": "assertIn", "type": "function" }, { "name": "assertIs", "type": "function" }, { "name": "assertIsInstance", "type": "function" }, { "name": "assertIsNone", "type": "function" }, { "name": "assertIsNot", "type": "function" }, { "name": "assertIsNotNone", "type": "function" }, { "name": "assertLess", "type": "function" }, { "name": "assertLessEqual", "type": "function" }, { "name": "assertListEqual", "type": "function" }, { "name": "assertLogs", "type": "function" }, { "name": "assertMultiLineEqual", "type": "function" }, { "name": "assertNotAlmostEqual", "type": "function" }, { "name": "assertNotAlmostEquals", "type": "function" }, { "name": "assertNotEqual", "type": "function" }, { "name": "assertNotEquals", "type": "function" }, { "name": "assertNotIn", "type": "function" }, { "name": "assertNotIsInstance", "type": "function" }, { "name": "assertNotRegex", "type": "function" }, { "name": "assertNotRegexpMatches", "type": "function" }, { "name": "assertRaises", "type": "function" }, { "name": "assertRaisesRegex", "type": "function" }, { "name": "assertRaisesRegexp", "type": "function" }, { "name": "assertRegex", "type": "function" }, { "name": "assertRegexpMatches", "type": "function" }, { "name": "assertSequenceEqual", "type": "function" }, { "name": "assertSetEqual", "type": "function" }, { "name": "assertTrue", "type": "function" }, { "name": "assertTupleEqual", "type": "function" }, { "name": "assertWarns", "type": "function" }, { "name": "assertWarnsRegex", "type": "function" }, { "name": "asset_dir", "type": "statement" }, { "name": "countTestCases", "type": "function" }, { "name": "data", "type": "statement" }, { "name": "debug", "type": "function" }, { "name": "defaultTestResult", "type": "function" }, { "name": "doClassCleanups", "type": "function" }, { "name": "doCleanups", "type": "function" }, { "name": "fail", "type": "function" }, { "name": "failIf", "type": "function" }, { "name": "failIfAlmostEqual", "type": "function" }, { "name": "failIfEqual", "type": "function" }, { "name": "failUnless", "type": "function" }, { "name": "failUnlessAlmostEqual", "type": "function" }, { "name": "failUnlessEqual", "type": "function" }, { "name": "failUnlessRaises", "type": "function" }, { "name": "failureException", "type": "statement" }, { "name": "id", "type": "function" }, { "name": "in_pd_df_by_series", "type": "statement" }, { "name": "in_pd_df_by_series_with_duplicated_popularity", "type": "statement" }, { "name": "in_pd_df_by_series_with_index", "type": "statement" }, { "name": "in_pd_df_by_series_with_nan", "type": "statement" }, { "name": "in_pd_series_dimension", "type": "statement" }, { "name": "in_pd_series_dimension_with_index", "type": "statement" }, { "name": "in_pd_series_dimension_with_nan", "type": "statement" }, { "name": "in_pd_series_measure", "type": "statement" }, { "name": "in_pd_series_measure_with_index", "type": "statement" }, { "name": "in_pd_series_measure_with_nan", "type": "statement" }, { "name": "longMessage", "type": "statement" }, { "name": "maxDiff", "type": "statement" }, { "name": "ref_pd_df_by_series", "type": "statement" }, { "name": "ref_pd_df_by_series_max_rows", "type": "statement" }, { "name": "ref_pd_df_by_series_only_index", "type": "statement" }, { "name": "ref_pd_df_by_series_with_duplicated_popularity", "type": "statement" }, { "name": "ref_pd_df_by_series_with_index", "type": "statement" }, { "name": "ref_pd_df_by_series_with_nan", "type": "statement" }, { "name": "ref_pd_series", "type": "statement" }, { "name": "ref_pd_series_only_index", "type": "statement" }, { "name": "ref_pd_series_with_index", "type": "statement" }, { "name": "ref_pd_series_with_nan", "type": "statement" }, { "name": "run", "type": "function" }, { "name": "set_up_pd_df", "type": "function" }, { "name": "set_up_pd_series", "type": "function" }, { "name": "setUp", "type": "function" }, { "name": "setUpClass", "type": "function" }, { "name": "shortDescription", "type": "function" }, { "name": "skipTest", "type": "function" }, { "name": "subTest", "type": "function" }, { "name": "tearDown", "type": "function" }, { "name": "tearDownClass", "type": "function" }, { "name": "test_add_data_frame_with_empty_series", "type": "function" }, { "name": "test_add_data_frame_with_series", "type": "function" }, { "name": "test_add_data_frame_with_series_contains_na", "type": "function" }, { "name": "_addSkip", "type": "function" }, { "name": "_formatMessage", "type": "function" }, { "name": "_getAssertEqualityFunc", "type": "function" }, { "name": "_testMethodDoc", "type": "statement" }, { "name": "_testMethodName", "type": "statement" }, { "name": "__annotations__", "type": "statement" }, { "name": "__call__", "type": "function" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
# pylint: disable=missing-module-docstring,missing-class-docstring,missing-function-docstring import pandas as pd from tests.test_data import DataWithAssets from tests.utils.import_error import RaiseImportError class TestDf(DataWithAssets): def test_add_df_if_pandas_not_installed(self) -> None: with RaiseImportError.module_name("pandas"): with self.assertRaises(ImportError): self.data.add_df(pd.DataFrame()) def test_add_df_with_none(self) -> None: self.data.add_df(None) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_df_with_empty_df(self) -> None: self.data.add_df(pd.DataFrame()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_df_with_df(self) -> None: df = self.in_pd_df_by_series_with_duplicated_popularity self.data.add_df(df) self.assertEqual( self.ref_pd_df_by_series_with_duplicated_popularity, self.data.build(), ) def test_add_df_with_df_contains_na(self) -> None: df = self.in_pd_df_by_series_with_nan self.data.add_df(df) self.assertEqual( self.ref_pd_df_by_series_with_nan, self.data.build(), ) def test_add_df_with_df_and_with_include_index(self) -> None: df = self.in_pd_df_by_series_with_index self.data.add_df(df, include_index="Index") self.assertEqual( self.ref_pd_df_by_series_with_index, self.data.build(), ) def test_add_df_with_df_and_max_rows(self) -> None: df = self.in_pd_df_by_series self.data.add_df(df, max_rows=2) self.assertEqual( self.ref_pd_df_by_series_max_rows, self.data.build(), ) class TestDataFrame(DataWithAssets): def test_add_data_frame_with_none(self) -> None: self.data.add_data_frame(None) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_data_frame_with_empty_df(self) -> None: self.data.add_data_frame(pd.DataFrame()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_data_frame_with_df(self) -> None: df = self.in_pd_df_by_series_with_duplicated_popularity self.data.add_data_frame(df) self.assertEqual( self.ref_pd_df_by_series_with_duplicated_popularity, self.data.build(), ) def test_add_data_frame_with_df_contains_na(self) -> None: df = self.in_pd_df_by_series_with_nan self.data.add_data_frame(df) self.assertEqual( self.ref_pd_df_by_series_with_nan, self.data.build(), ) class TestDfWithSeries(DataWithAssets): def test_add_df_with_empty_series(self) -> None: self.data.add_df(pd.Series()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_df_with_series(self) -> None: self.data.add_df(self.in_pd_series_dimension) self.data.add_df(self.in_pd_series_measure) self.assertEqual( self.ref_pd_series, self.data.build(), ) def test_add_df_with_series_contains_na(self) -> None: self.data.add_df(self.in_pd_series_dimension_with_nan) self.data.add_df(self.in_pd_series_measure_with_nan) self.assertEqual( self.ref_pd_series_with_nan, self.data.build(), ) def test_add_df_with_series_and_with_include_index(self) -> None: self.data.add_df( self.in_pd_series_dimension_with_index, include_index="DimensionIndex", ) self.data.add_df( self.in_pd_series_measure_with_index, include_index="MeasureIndex", ) self.assertEqual( self.ref_pd_series_with_index, self.data.build(), ) class TestDataFrameWithSeries(DataWithAssets): def test_add_data_frame_with_empty_series(self) -> None: self.data.add_data_frame(pd.Series()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_data_frame_with_series(self) -> None: self.data.add_data_frame(self.in_pd_series_dimension) self.
[ "data", "ref_pd_series", "in_pd_df_by_series", "assertEqual", "test_add_data_frame_with_empty_series", "test_add_data_frame_with_series", "test_add_data_frame_with_series_contains_na", "asset_dir", "in_pd_df_by_series_with_duplicated_popularity", "in_pd_df_by_series_with_index", "in_pd_df_by_series_with_nan", "in_pd_series_dimension", "in_pd_series_dimension_with_index", "in_pd_series_dimension_with_nan", "in_pd_series_measure", "in_pd_series_measure_with_index", "in_pd_series_measure_with_nan", "ref_pd_df_by_series", "ref_pd_df_by_series_max_rows", "ref_pd_df_by_series_only_index", "ref_pd_df_by_series_with_duplicated_popularity", "ref_pd_df_by_series_with_index", "ref_pd_df_by_series_with_nan", "ref_pd_series_only_index", "ref_pd_series_with_index", "ref_pd_series_with_nan", "set_up_pd_df", "set_up_pd_series", "setUp", "setUpClass", "addClassCleanup", "addCleanup", "addTypeEqualityFunc", "assert_", "assertAlmostEqual", "assertAlmostEquals", "assertCountEqual", "assertDictContainsSubset", "assertDictEqual", "assertEquals", "assertFalse", "assertGreater", "assertGreaterEqual", "assertIn", "assertIs", "assertIsInstance", "assertIsNone", "assertIsNot", "assertIsNotNone", "assertLess", "assertLessEqual", "assertListEqual", "assertLogs", "assertMultiLineEqual", "assertNoLogs", "assertNotAlmostEqual", "assertNotAlmostEquals", "assertNotEqual", "assertNotEquals", "assertNotIn", "assertNotIsInstance", "assertNotRegex", "assertNotRegexpMatches", "assertRaises", "assertRaisesRegex", "assertRaisesRegexp", "assertRegex", "assertRegexpMatches", "assertSequenceEqual", "assertSetEqual", "assertTrue", "assertTupleEqual", "assertWarns", "assertWarnsRegex", "countTestCases", "debug", "defaultTestResult", "doClassCleanups", "doCleanups", "fail", "failIf", "failIfAlmostEqual", "failIfEqual", "failUnless", "failUnlessAlmostEqual", "failUnlessEqual", "failUnlessRaises", "failureException", "id", "longMessage", "maxDiff", "run", "shortDescription", "skipTest", "subTest", "tearDown", "tearDownClass" ]
th_duplicated_popularity, self.data.build(), ) def test_add_data_frame_with_df_contains_na(self) -> None: df = self.in_pd_df_by_series_with_nan self.data.add_data_frame(df) self.assertEqual( self.ref_pd_df_by_series_with_nan, self.data.build(), ) class TestDfWithSeries(DataWithAssets): def test_add_df_with_empty_series(self) -> None: self.data.add_df(pd.Series()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_df_with_series(self) -> None: self.data.add_df(self.in_pd_series_dimension) self.data.add_df(self.in_pd_series_measure) self.assertEqual( self.ref_pd_series, self.data.build(), ) def test_add_df_with_series_contains_na(self) -> None: self.data.add_df(self.in_pd_series_dimension_with_nan) self.data.add_df(self.in_pd_series_measure_with_nan) self.assertEqual( self.ref_pd_series_with_nan, self.data.build(), ) def test_add_df_with_series_and_with_include_index(self) -> None: self.data.add_df( self.in_pd_series_dimension_with_index, include_index="DimensionIndex", ) self.data.add_df( self.in_pd_series_measure_with_index, include_index="MeasureIndex", ) self.assertEqual( self.ref_pd_series_with_index, self.data.build(), ) class TestDataFrameWithSeries(DataWithAssets): def test_add_data_frame_with_empty_series(self) -> None: self.data.add_data_frame(pd.Series()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_data_frame_with_series(self) -> None: self.data.add_data_frame(self.in_pd_series_dimension) self.
5,409
7,676
216
4,422
vizzuhq__ipyvizzu
54b0334aa736a77f9430739c9375b16be145b3fd
tests/test_data/test_pandas.py
inproject
add_data_frame
true
function
28
30
false
false
[ "add_df", "add_data_frame", "build", "add_data_frame_index", "add_df_index", "add_dimension", "add_measure", "add_np_array", "add_record", "add_records", "add_series", "add_series_list", "add_spark_df", "dump", "filter", "from_json", "set_filter", "clear", "copy", "fromkeys", "get", "items", "keys", "pop", "popitem", "setdefault", "update", "values", "__annotations__", "__class__", "__class_getitem__", "__contains__", "__delattr__", "__delitem__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__getitem__", "__hash__", "__init__", "__init_subclass__", "__ior__", "__iter__", "__len__", "__ne__", "__new__", "__or__", "__reduce__", "__reduce_ex__", "__repr__", "__reversed__", "__ror__", "__setattr__", "__setitem__", "__sizeof__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "add_data_frame", "type": "function" }, { "name": "add_data_frame_index", "type": "function" }, { "name": "add_df", "type": "function" }, { "name": "add_df_index", "type": "function" }, { "name": "add_dimension", "type": "function" }, { "name": "add_measure", "type": "function" }, { "name": "add_np_array", "type": "function" }, { "name": "add_record", "type": "function" }, { "name": "add_records", "type": "function" }, { "name": "add_series", "type": "function" }, { "name": "add_series_list", "type": "function" }, { "name": "add_spark_df", "type": "function" }, { "name": "build", "type": "function" }, { "name": "clear", "type": "function" }, { "name": "copy", "type": "function" }, { "name": "dump", "type": "function" }, { "name": "filter", "type": "function" }, { "name": "from_json", "type": "function" }, { "name": "fromkeys", "type": "function" }, { "name": "get", "type": "function" }, { "name": "items", "type": "function" }, { "name": "keys", "type": "function" }, { "name": "pop", "type": "function" }, { "name": "popitem", "type": "function" }, { "name": "set_filter", "type": "function" }, { "name": "setdefault", "type": "function" }, { "name": "update", "type": "function" }, { "name": "values", "type": "function" }, { "name": "_add_named_value", "type": "function" }, { "name": "_add_value", "type": "function" }, { "name": "__annotations__", "type": "statement" }, { "name": "__class__", "type": "property" }, { "name": "__class_getitem__", "type": "function" }, { "name": "__contains__", "type": "function" }, { "name": "__delattr__", "type": "function" }, { "name": "__delitem__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__getitem__", "type": "function" }, { "name": "__hash__", "type": "statement" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__ior__", "type": "function" }, { "name": "__iter__", "type": "function" }, { "name": "__len__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__or__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__reversed__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__setitem__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
# pylint: disable=missing-module-docstring,missing-class-docstring,missing-function-docstring import pandas as pd from tests.test_data import DataWithAssets from tests.utils.import_error import RaiseImportError class TestDf(DataWithAssets): def test_add_df_if_pandas_not_installed(self) -> None: with RaiseImportError.module_name("pandas"): with self.assertRaises(ImportError): self.data.add_df(pd.DataFrame()) def test_add_df_with_none(self) -> None: self.data.add_df(None) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_df_with_empty_df(self) -> None: self.data.add_df(pd.DataFrame()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_df_with_df(self) -> None: df = self.in_pd_df_by_series_with_duplicated_popularity self.data.add_df(df) self.assertEqual( self.ref_pd_df_by_series_with_duplicated_popularity, self.data.build(), ) def test_add_df_with_df_contains_na(self) -> None: df = self.in_pd_df_by_series_with_nan self.data.add_df(df) self.assertEqual( self.ref_pd_df_by_series_with_nan, self.data.build(), ) def test_add_df_with_df_and_with_include_index(self) -> None: df = self.in_pd_df_by_series_with_index self.data.add_df(df, include_index="Index") self.assertEqual( self.ref_pd_df_by_series_with_index, self.data.build(), ) def test_add_df_with_df_and_max_rows(self) -> None: df = self.in_pd_df_by_series self.data.add_df(df, max_rows=2) self.assertEqual( self.ref_pd_df_by_series_max_rows, self.data.build(), ) class TestDataFrame(DataWithAssets): def test_add_data_frame_with_none(self) -> None: self.data.add_data_frame(None) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_data_frame_with_empty_df(self) -> None: self.data.add_data_frame(pd.DataFrame()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_data_frame_with_df(self) -> None: df = self.in_pd_df_by_series_with_duplicated_popularity self.data.add_data_frame(df) self.assertEqual( self.ref_pd_df_by_series_with_duplicated_popularity, self.data.build(), ) def test_add_data_frame_with_df_contains_na(self) -> None: df = self.in_pd_df_by_series_with_nan self.data.add_data_frame(df) self.assertEqual( self.ref_pd_df_by_series_with_nan, self.data.build(), ) class TestDfWithSeries(DataWithAssets): def test_add_df_with_empty_series(self) -> None: self.data.add_df(pd.Series()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_df_with_series(self) -> None: self.data.add_df(self.in_pd_series_dimension) self.data.add_df(self.in_pd_series_measure) self.assertEqual( self.ref_pd_series, self.data.build(), ) def test_add_df_with_series_contains_na(self) -> None: self.data.add_df(self.in_pd_series_dimension_with_nan) self.data.add_df(self.in_pd_series_measure_with_nan) self.assertEqual( self.ref_pd_series_with_nan, self.data.build(), ) def test_add_df_with_series_and_with_include_index(self) -> None: self.data.add_df( self.in_pd_series_dimension_with_index, include_index="DimensionIndex", ) self.data.add_df( self.in_pd_series_measure_with_index, include_index="MeasureIndex", ) self.assertEqual( self.ref_pd_series_with_index, self.data.build(), ) class TestDataFrameWithSeries(DataWithAssets): def test_add_data_frame_with_empty_series(self) -> None: self.data.add_data_frame(pd.Series()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_data_frame_with_series(self) -> None: self.data.add_data_frame(self.in_pd_series_dimension) self.data.
[ "add_df", "add_data_frame", "build", "add_data_frame_index", "add_df_index", "add_dimension", "add_measure", "add_np_array", "add_record", "add_records", "add_series", "add_series_list", "add_spark_df", "dump", "filter", "from_json", "set_filter", "clear", "copy", "fromkeys", "get", "items", "keys", "pop", "popitem", "setdefault", "update", "values" ]
plicated_popularity, self.data.build(), ) def test_add_data_frame_with_df_contains_na(self) -> None: df = self.in_pd_df_by_series_with_nan self.data.add_data_frame(df) self.assertEqual( self.ref_pd_df_by_series_with_nan, self.data.build(), ) class TestDfWithSeries(DataWithAssets): def test_add_df_with_empty_series(self) -> None: self.data.add_df(pd.Series()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_df_with_series(self) -> None: self.data.add_df(self.in_pd_series_dimension) self.data.add_df(self.in_pd_series_measure) self.assertEqual( self.ref_pd_series, self.data.build(), ) def test_add_df_with_series_contains_na(self) -> None: self.data.add_df(self.in_pd_series_dimension_with_nan) self.data.add_df(self.in_pd_series_measure_with_nan) self.assertEqual( self.ref_pd_series_with_nan, self.data.build(), ) def test_add_df_with_series_and_with_include_index(self) -> None: self.data.add_df( self.in_pd_series_dimension_with_index, include_index="DimensionIndex", ) self.data.add_df( self.in_pd_series_measure_with_index, include_index="MeasureIndex", ) self.assertEqual( self.ref_pd_series_with_index, self.data.build(), ) class TestDataFrameWithSeries(DataWithAssets): def test_add_data_frame_with_empty_series(self) -> None: self.data.add_data_frame(pd.Series()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_data_frame_with_series(self) -> None: self.data.add_data_frame(self.in_pd_series_dimension) self.data.
5,410
7,677
216
4,442
vizzuhq__ipyvizzu
54b0334aa736a77f9430739c9375b16be145b3fd
tests/test_data/test_pandas.py
inproject
in_pd_series_measure
true
statement
97
101
false
false
[ "data", "ref_pd_series", "test_add_data_frame_with_empty_series", "in_pd_df_by_series", "in_pd_series_dimension", "test_add_data_frame_with_series", "test_add_data_frame_with_series_contains_na", "asset_dir", "in_pd_df_by_series_with_duplicated_popularity", "in_pd_df_by_series_with_index", "in_pd_df_by_series_with_nan", "in_pd_series_dimension_with_index", "in_pd_series_dimension_with_nan", "in_pd_series_measure", "in_pd_series_measure_with_index", "in_pd_series_measure_with_nan", "ref_pd_df_by_series", "ref_pd_df_by_series_max_rows", "ref_pd_df_by_series_only_index", "ref_pd_df_by_series_with_duplicated_popularity", "ref_pd_df_by_series_with_index", "ref_pd_df_by_series_with_nan", "ref_pd_series_only_index", "ref_pd_series_with_index", "ref_pd_series_with_nan", "set_up_pd_df", "set_up_pd_series", "setUp", "setUpClass", "addClassCleanup", "addCleanup", "addTypeEqualityFunc", "assert_", "assertAlmostEqual", "assertAlmostEquals", "assertCountEqual", "assertDictContainsSubset", "assertDictEqual", "assertEqual", "assertEquals", "assertFalse", "assertGreater", "assertGreaterEqual", "assertIn", "assertIs", "assertIsInstance", "assertIsNone", "assertIsNot", "assertIsNotNone", "assertLess", "assertLessEqual", "assertListEqual", "assertLogs", "assertMultiLineEqual", "assertNoLogs", "assertNotAlmostEqual", "assertNotAlmostEquals", "assertNotEqual", "assertNotEquals", "assertNotIn", "assertNotIsInstance", "assertNotRegex", "assertNotRegexpMatches", "assertRaises", "assertRaisesRegex", "assertRaisesRegexp", "assertRegex", "assertRegexpMatches", "assertSequenceEqual", "assertSetEqual", "assertTrue", "assertTupleEqual", "assertWarns", "assertWarnsRegex", "countTestCases", "debug", "defaultTestResult", "doClassCleanups", "doCleanups", "fail", "failIf", "failIfAlmostEqual", "failIfEqual", "failUnless", "failUnlessAlmostEqual", "failUnlessEqual", "failUnlessRaises", "failureException", "id", "longMessage", "maxDiff", "run", "shortDescription", "skipTest", "subTest", "tearDown", "tearDownClass", "__annotations__", "__call__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "addClassCleanup", "type": "function" }, { "name": "addCleanup", "type": "function" }, { "name": "addTypeEqualityFunc", "type": "function" }, { "name": "assert_", "type": "function" }, { "name": "assertAlmostEqual", "type": "function" }, { "name": "assertAlmostEquals", "type": "function" }, { "name": "assertCountEqual", "type": "function" }, { "name": "assertDictContainsSubset", "type": "function" }, { "name": "assertDictEqual", "type": "function" }, { "name": "assertEqual", "type": "function" }, { "name": "assertEquals", "type": "function" }, { "name": "assertFalse", "type": "function" }, { "name": "assertGreater", "type": "function" }, { "name": "assertGreaterEqual", "type": "function" }, { "name": "assertIn", "type": "function" }, { "name": "assertIs", "type": "function" }, { "name": "assertIsInstance", "type": "function" }, { "name": "assertIsNone", "type": "function" }, { "name": "assertIsNot", "type": "function" }, { "name": "assertIsNotNone", "type": "function" }, { "name": "assertLess", "type": "function" }, { "name": "assertLessEqual", "type": "function" }, { "name": "assertListEqual", "type": "function" }, { "name": "assertLogs", "type": "function" }, { "name": "assertMultiLineEqual", "type": "function" }, { "name": "assertNotAlmostEqual", "type": "function" }, { "name": "assertNotAlmostEquals", "type": "function" }, { "name": "assertNotEqual", "type": "function" }, { "name": "assertNotEquals", "type": "function" }, { "name": "assertNotIn", "type": "function" }, { "name": "assertNotIsInstance", "type": "function" }, { "name": "assertNotRegex", "type": "function" }, { "name": "assertNotRegexpMatches", "type": "function" }, { "name": "assertRaises", "type": "function" }, { "name": "assertRaisesRegex", "type": "function" }, { "name": "assertRaisesRegexp", "type": "function" }, { "name": "assertRegex", "type": "function" }, { "name": "assertRegexpMatches", "type": "function" }, { "name": "assertSequenceEqual", "type": "function" }, { "name": "assertSetEqual", "type": "function" }, { "name": "assertTrue", "type": "function" }, { "name": "assertTupleEqual", "type": "function" }, { "name": "assertWarns", "type": "function" }, { "name": "assertWarnsRegex", "type": "function" }, { "name": "asset_dir", "type": "statement" }, { "name": "countTestCases", "type": "function" }, { "name": "data", "type": "statement" }, { "name": "debug", "type": "function" }, { "name": "defaultTestResult", "type": "function" }, { "name": "doClassCleanups", "type": "function" }, { "name": "doCleanups", "type": "function" }, { "name": "fail", "type": "function" }, { "name": "failIf", "type": "function" }, { "name": "failIfAlmostEqual", "type": "function" }, { "name": "failIfEqual", "type": "function" }, { "name": "failUnless", "type": "function" }, { "name": "failUnlessAlmostEqual", "type": "function" }, { "name": "failUnlessEqual", "type": "function" }, { "name": "failUnlessRaises", "type": "function" }, { "name": "failureException", "type": "statement" }, { "name": "id", "type": "function" }, { "name": "in_pd_df_by_series", "type": "statement" }, { "name": "in_pd_df_by_series_with_duplicated_popularity", "type": "statement" }, { "name": "in_pd_df_by_series_with_index", "type": "statement" }, { "name": "in_pd_df_by_series_with_nan", "type": "statement" }, { "name": "in_pd_series_dimension", "type": "statement" }, { "name": "in_pd_series_dimension_with_index", "type": "statement" }, { "name": "in_pd_series_dimension_with_nan", "type": "statement" }, { "name": "in_pd_series_measure", "type": "statement" }, { "name": "in_pd_series_measure_with_index", "type": "statement" }, { "name": "in_pd_series_measure_with_nan", "type": "statement" }, { "name": "longMessage", "type": "statement" }, { "name": "maxDiff", "type": "statement" }, { "name": "ref_pd_df_by_series", "type": "statement" }, { "name": "ref_pd_df_by_series_max_rows", "type": "statement" }, { "name": "ref_pd_df_by_series_only_index", "type": "statement" }, { "name": "ref_pd_df_by_series_with_duplicated_popularity", "type": "statement" }, { "name": "ref_pd_df_by_series_with_index", "type": "statement" }, { "name": "ref_pd_df_by_series_with_nan", "type": "statement" }, { "name": "ref_pd_series", "type": "statement" }, { "name": "ref_pd_series_only_index", "type": "statement" }, { "name": "ref_pd_series_with_index", "type": "statement" }, { "name": "ref_pd_series_with_nan", "type": "statement" }, { "name": "run", "type": "function" }, { "name": "set_up_pd_df", "type": "function" }, { "name": "set_up_pd_series", "type": "function" }, { "name": "setUp", "type": "function" }, { "name": "setUpClass", "type": "function" }, { "name": "shortDescription", "type": "function" }, { "name": "skipTest", "type": "function" }, { "name": "subTest", "type": "function" }, { "name": "tearDown", "type": "function" }, { "name": "tearDownClass", "type": "function" }, { "name": "test_add_data_frame_with_empty_series", "type": "function" }, { "name": "test_add_data_frame_with_series", "type": "function" }, { "name": "test_add_data_frame_with_series_contains_na", "type": "function" }, { "name": "_addSkip", "type": "function" }, { "name": "_formatMessage", "type": "function" }, { "name": "_getAssertEqualityFunc", "type": "function" }, { "name": "_testMethodDoc", "type": "statement" }, { "name": "_testMethodName", "type": "statement" }, { "name": "__annotations__", "type": "statement" }, { "name": "__call__", "type": "function" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
# pylint: disable=missing-module-docstring,missing-class-docstring,missing-function-docstring import pandas as pd from tests.test_data import DataWithAssets from tests.utils.import_error import RaiseImportError class TestDf(DataWithAssets): def test_add_df_if_pandas_not_installed(self) -> None: with RaiseImportError.module_name("pandas"): with self.assertRaises(ImportError): self.data.add_df(pd.DataFrame()) def test_add_df_with_none(self) -> None: self.data.add_df(None) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_df_with_empty_df(self) -> None: self.data.add_df(pd.DataFrame()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_df_with_df(self) -> None: df = self.in_pd_df_by_series_with_duplicated_popularity self.data.add_df(df) self.assertEqual( self.ref_pd_df_by_series_with_duplicated_popularity, self.data.build(), ) def test_add_df_with_df_contains_na(self) -> None: df = self.in_pd_df_by_series_with_nan self.data.add_df(df) self.assertEqual( self.ref_pd_df_by_series_with_nan, self.data.build(), ) def test_add_df_with_df_and_with_include_index(self) -> None: df = self.in_pd_df_by_series_with_index self.data.add_df(df, include_index="Index") self.assertEqual( self.ref_pd_df_by_series_with_index, self.data.build(), ) def test_add_df_with_df_and_max_rows(self) -> None: df = self.in_pd_df_by_series self.data.add_df(df, max_rows=2) self.assertEqual( self.ref_pd_df_by_series_max_rows, self.data.build(), ) class TestDataFrame(DataWithAssets): def test_add_data_frame_with_none(self) -> None: self.data.add_data_frame(None) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_data_frame_with_empty_df(self) -> None: self.data.add_data_frame(pd.DataFrame()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_data_frame_with_df(self) -> None: df = self.in_pd_df_by_series_with_duplicated_popularity self.data.add_data_frame(df) self.assertEqual( self.ref_pd_df_by_series_with_duplicated_popularity, self.data.build(), ) def test_add_data_frame_with_df_contains_na(self) -> None: df = self.in_pd_df_by_series_with_nan self.data.add_data_frame(df) self.assertEqual( self.ref_pd_df_by_series_with_nan, self.data.build(), ) class TestDfWithSeries(DataWithAssets): def test_add_df_with_empty_series(self) -> None: self.data.add_df(pd.Series()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_df_with_series(self) -> None: self.data.add_df(self.in_pd_series_dimension) self.data.add_df(self.in_pd_series_measure) self.assertEqual( self.ref_pd_series, self.data.build(), ) def test_add_df_with_series_contains_na(self) -> None: self.data.add_df(self.in_pd_series_dimension_with_nan) self.data.add_df(self.in_pd_series_measure_with_nan) self.assertEqual( self.ref_pd_series_with_nan, self.data.build(), ) def test_add_df_with_series_and_with_include_index(self) -> None: self.data.add_df( self.in_pd_series_dimension_with_index, include_index="DimensionIndex", ) self.data.add_df( self.in_pd_series_measure_with_index, include_index="MeasureIndex", ) self.assertEqual( self.ref_pd_series_with_index, self.data.build(), ) class TestDataFrameWithSeries(DataWithAssets): def test_add_data_frame_with_empty_series(self) -> None: self.data.add_data_frame(pd.Series()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_data_frame_with_series(self) -> None: self.data.add_data_frame(self.in_pd_series_dimension) self.data.add_data_frame(self.
[ "data", "ref_pd_series", "test_add_data_frame_with_empty_series", "in_pd_df_by_series", "in_pd_series_dimension", "test_add_data_frame_with_series", "test_add_data_frame_with_series_contains_na", "asset_dir", "in_pd_df_by_series_with_duplicated_popularity", "in_pd_df_by_series_with_index", "in_pd_df_by_series_with_nan", "in_pd_series_dimension_with_index", "in_pd_series_dimension_with_nan", "in_pd_series_measure", "in_pd_series_measure_with_index", "in_pd_series_measure_with_nan", "ref_pd_df_by_series", "ref_pd_df_by_series_max_rows", "ref_pd_df_by_series_only_index", "ref_pd_df_by_series_with_duplicated_popularity", "ref_pd_df_by_series_with_index", "ref_pd_df_by_series_with_nan", "ref_pd_series_only_index", "ref_pd_series_with_index", "ref_pd_series_with_nan", "set_up_pd_df", "set_up_pd_series", "setUp", "setUpClass", "addClassCleanup", "addCleanup", "addTypeEqualityFunc", "assert_", "assertAlmostEqual", "assertAlmostEquals", "assertCountEqual", "assertDictContainsSubset", "assertDictEqual", "assertEqual", "assertEquals", "assertFalse", "assertGreater", "assertGreaterEqual", "assertIn", "assertIs", "assertIsInstance", "assertIsNone", "assertIsNot", "assertIsNotNone", "assertLess", "assertLessEqual", "assertListEqual", "assertLogs", "assertMultiLineEqual", "assertNoLogs", "assertNotAlmostEqual", "assertNotAlmostEquals", "assertNotEqual", "assertNotEquals", "assertNotIn", "assertNotIsInstance", "assertNotRegex", "assertNotRegexpMatches", "assertRaises", "assertRaisesRegex", "assertRaisesRegexp", "assertRegex", "assertRegexpMatches", "assertSequenceEqual", "assertSetEqual", "assertTrue", "assertTupleEqual", "assertWarns", "assertWarnsRegex", "countTestCases", "debug", "defaultTestResult", "doClassCleanups", "doCleanups", "fail", "failIf", "failIfAlmostEqual", "failIfEqual", "failUnless", "failUnlessAlmostEqual", "failUnlessEqual", "failUnlessRaises", "failureException", "id", "longMessage", "maxDiff", "run", "shortDescription", "skipTest", "subTest", "tearDown", "tearDownClass" ]
self.data.build(), ) def test_add_data_frame_with_df_contains_na(self) -> None: df = self.in_pd_df_by_series_with_nan self.data.add_data_frame(df) self.assertEqual( self.ref_pd_df_by_series_with_nan, self.data.build(), ) class TestDfWithSeries(DataWithAssets): def test_add_df_with_empty_series(self) -> None: self.data.add_df(pd.Series()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_df_with_series(self) -> None: self.data.add_df(self.in_pd_series_dimension) self.data.add_df(self.in_pd_series_measure) self.assertEqual( self.ref_pd_series, self.data.build(), ) def test_add_df_with_series_contains_na(self) -> None: self.data.add_df(self.in_pd_series_dimension_with_nan) self.data.add_df(self.in_pd_series_measure_with_nan) self.assertEqual( self.ref_pd_series_with_nan, self.data.build(), ) def test_add_df_with_series_and_with_include_index(self) -> None: self.data.add_df( self.in_pd_series_dimension_with_index, include_index="DimensionIndex", ) self.data.add_df( self.in_pd_series_measure_with_index, include_index="MeasureIndex", ) self.assertEqual( self.ref_pd_series_with_index, self.data.build(), ) class TestDataFrameWithSeries(DataWithAssets): def test_add_data_frame_with_empty_series(self) -> None: self.data.add_data_frame(pd.Series()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_data_frame_with_series(self) -> None: self.data.add_data_frame(self.in_pd_series_dimension) self.data.add_data_frame(self.
5,411
7,681
216
4,644
vizzuhq__ipyvizzu
54b0334aa736a77f9430739c9375b16be145b3fd
tests/test_data/test_pandas.py
inproject
data
true
statement
97
101
false
false
[ "data", "test_add_data_frame_with_series", "ref_pd_series", "in_pd_df_by_series", "assertEqual", "test_add_data_frame_with_empty_series", "test_add_data_frame_with_series_contains_na", "asset_dir", "in_pd_df_by_series_with_duplicated_popularity", "in_pd_df_by_series_with_index", "in_pd_df_by_series_with_nan", "in_pd_series_dimension", "in_pd_series_dimension_with_index", "in_pd_series_dimension_with_nan", "in_pd_series_measure", "in_pd_series_measure_with_index", "in_pd_series_measure_with_nan", "ref_pd_df_by_series", "ref_pd_df_by_series_max_rows", "ref_pd_df_by_series_only_index", "ref_pd_df_by_series_with_duplicated_popularity", "ref_pd_df_by_series_with_index", "ref_pd_df_by_series_with_nan", "ref_pd_series_only_index", "ref_pd_series_with_index", "ref_pd_series_with_nan", "set_up_pd_df", "set_up_pd_series", "setUp", "setUpClass", "addClassCleanup", "addCleanup", "addTypeEqualityFunc", "assert_", "assertAlmostEqual", "assertAlmostEquals", "assertCountEqual", "assertDictContainsSubset", "assertDictEqual", "assertEquals", "assertFalse", "assertGreater", "assertGreaterEqual", "assertIn", "assertIs", "assertIsInstance", "assertIsNone", "assertIsNot", "assertIsNotNone", "assertLess", "assertLessEqual", "assertListEqual", "assertLogs", "assertMultiLineEqual", "assertNoLogs", "assertNotAlmostEqual", "assertNotAlmostEquals", "assertNotEqual", "assertNotEquals", "assertNotIn", "assertNotIsInstance", "assertNotRegex", "assertNotRegexpMatches", "assertRaises", "assertRaisesRegex", "assertRaisesRegexp", "assertRegex", "assertRegexpMatches", "assertSequenceEqual", "assertSetEqual", "assertTrue", "assertTupleEqual", "assertWarns", "assertWarnsRegex", "countTestCases", "debug", "defaultTestResult", "doClassCleanups", "doCleanups", "fail", "failIf", "failIfAlmostEqual", "failIfEqual", "failUnless", "failUnlessAlmostEqual", "failUnlessEqual", "failUnlessRaises", "failureException", "id", "longMessage", "maxDiff", "run", "shortDescription", "skipTest", "subTest", "tearDown", "tearDownClass", "__annotations__", "__call__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "addClassCleanup", "type": "function" }, { "name": "addCleanup", "type": "function" }, { "name": "addTypeEqualityFunc", "type": "function" }, { "name": "assert_", "type": "function" }, { "name": "assertAlmostEqual", "type": "function" }, { "name": "assertAlmostEquals", "type": "function" }, { "name": "assertCountEqual", "type": "function" }, { "name": "assertDictContainsSubset", "type": "function" }, { "name": "assertDictEqual", "type": "function" }, { "name": "assertEqual", "type": "function" }, { "name": "assertEquals", "type": "function" }, { "name": "assertFalse", "type": "function" }, { "name": "assertGreater", "type": "function" }, { "name": "assertGreaterEqual", "type": "function" }, { "name": "assertIn", "type": "function" }, { "name": "assertIs", "type": "function" }, { "name": "assertIsInstance", "type": "function" }, { "name": "assertIsNone", "type": "function" }, { "name": "assertIsNot", "type": "function" }, { "name": "assertIsNotNone", "type": "function" }, { "name": "assertLess", "type": "function" }, { "name": "assertLessEqual", "type": "function" }, { "name": "assertListEqual", "type": "function" }, { "name": "assertLogs", "type": "function" }, { "name": "assertMultiLineEqual", "type": "function" }, { "name": "assertNotAlmostEqual", "type": "function" }, { "name": "assertNotAlmostEquals", "type": "function" }, { "name": "assertNotEqual", "type": "function" }, { "name": "assertNotEquals", "type": "function" }, { "name": "assertNotIn", "type": "function" }, { "name": "assertNotIsInstance", "type": "function" }, { "name": "assertNotRegex", "type": "function" }, { "name": "assertNotRegexpMatches", "type": "function" }, { "name": "assertRaises", "type": "function" }, { "name": "assertRaisesRegex", "type": "function" }, { "name": "assertRaisesRegexp", "type": "function" }, { "name": "assertRegex", "type": "function" }, { "name": "assertRegexpMatches", "type": "function" }, { "name": "assertSequenceEqual", "type": "function" }, { "name": "assertSetEqual", "type": "function" }, { "name": "assertTrue", "type": "function" }, { "name": "assertTupleEqual", "type": "function" }, { "name": "assertWarns", "type": "function" }, { "name": "assertWarnsRegex", "type": "function" }, { "name": "asset_dir", "type": "statement" }, { "name": "countTestCases", "type": "function" }, { "name": "data", "type": "statement" }, { "name": "debug", "type": "function" }, { "name": "defaultTestResult", "type": "function" }, { "name": "doClassCleanups", "type": "function" }, { "name": "doCleanups", "type": "function" }, { "name": "fail", "type": "function" }, { "name": "failIf", "type": "function" }, { "name": "failIfAlmostEqual", "type": "function" }, { "name": "failIfEqual", "type": "function" }, { "name": "failUnless", "type": "function" }, { "name": "failUnlessAlmostEqual", "type": "function" }, { "name": "failUnlessEqual", "type": "function" }, { "name": "failUnlessRaises", "type": "function" }, { "name": "failureException", "type": "statement" }, { "name": "id", "type": "function" }, { "name": "in_pd_df_by_series", "type": "statement" }, { "name": "in_pd_df_by_series_with_duplicated_popularity", "type": "statement" }, { "name": "in_pd_df_by_series_with_index", "type": "statement" }, { "name": "in_pd_df_by_series_with_nan", "type": "statement" }, { "name": "in_pd_series_dimension", "type": "statement" }, { "name": "in_pd_series_dimension_with_index", "type": "statement" }, { "name": "in_pd_series_dimension_with_nan", "type": "statement" }, { "name": "in_pd_series_measure", "type": "statement" }, { "name": "in_pd_series_measure_with_index", "type": "statement" }, { "name": "in_pd_series_measure_with_nan", "type": "statement" }, { "name": "longMessage", "type": "statement" }, { "name": "maxDiff", "type": "statement" }, { "name": "ref_pd_df_by_series", "type": "statement" }, { "name": "ref_pd_df_by_series_max_rows", "type": "statement" }, { "name": "ref_pd_df_by_series_only_index", "type": "statement" }, { "name": "ref_pd_df_by_series_with_duplicated_popularity", "type": "statement" }, { "name": "ref_pd_df_by_series_with_index", "type": "statement" }, { "name": "ref_pd_df_by_series_with_nan", "type": "statement" }, { "name": "ref_pd_series", "type": "statement" }, { "name": "ref_pd_series_only_index", "type": "statement" }, { "name": "ref_pd_series_with_index", "type": "statement" }, { "name": "ref_pd_series_with_nan", "type": "statement" }, { "name": "run", "type": "function" }, { "name": "set_up_pd_df", "type": "function" }, { "name": "set_up_pd_series", "type": "function" }, { "name": "setUp", "type": "function" }, { "name": "setUpClass", "type": "function" }, { "name": "shortDescription", "type": "function" }, { "name": "skipTest", "type": "function" }, { "name": "subTest", "type": "function" }, { "name": "tearDown", "type": "function" }, { "name": "tearDownClass", "type": "function" }, { "name": "test_add_data_frame_with_empty_series", "type": "function" }, { "name": "test_add_data_frame_with_series", "type": "function" }, { "name": "test_add_data_frame_with_series_contains_na", "type": "function" }, { "name": "_addSkip", "type": "function" }, { "name": "_formatMessage", "type": "function" }, { "name": "_getAssertEqualityFunc", "type": "function" }, { "name": "_testMethodDoc", "type": "statement" }, { "name": "_testMethodName", "type": "statement" }, { "name": "__annotations__", "type": "statement" }, { "name": "__call__", "type": "function" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
# pylint: disable=missing-module-docstring,missing-class-docstring,missing-function-docstring import pandas as pd from tests.test_data import DataWithAssets from tests.utils.import_error import RaiseImportError class TestDf(DataWithAssets): def test_add_df_if_pandas_not_installed(self) -> None: with RaiseImportError.module_name("pandas"): with self.assertRaises(ImportError): self.data.add_df(pd.DataFrame()) def test_add_df_with_none(self) -> None: self.data.add_df(None) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_df_with_empty_df(self) -> None: self.data.add_df(pd.DataFrame()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_df_with_df(self) -> None: df = self.in_pd_df_by_series_with_duplicated_popularity self.data.add_df(df) self.assertEqual( self.ref_pd_df_by_series_with_duplicated_popularity, self.data.build(), ) def test_add_df_with_df_contains_na(self) -> None: df = self.in_pd_df_by_series_with_nan self.data.add_df(df) self.assertEqual( self.ref_pd_df_by_series_with_nan, self.data.build(), ) def test_add_df_with_df_and_with_include_index(self) -> None: df = self.in_pd_df_by_series_with_index self.data.add_df(df, include_index="Index") self.assertEqual( self.ref_pd_df_by_series_with_index, self.data.build(), ) def test_add_df_with_df_and_max_rows(self) -> None: df = self.in_pd_df_by_series self.data.add_df(df, max_rows=2) self.assertEqual( self.ref_pd_df_by_series_max_rows, self.data.build(), ) class TestDataFrame(DataWithAssets): def test_add_data_frame_with_none(self) -> None: self.data.add_data_frame(None) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_data_frame_with_empty_df(self) -> None: self.data.add_data_frame(pd.DataFrame()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_data_frame_with_df(self) -> None: df = self.in_pd_df_by_series_with_duplicated_popularity self.data.add_data_frame(df) self.assertEqual( self.ref_pd_df_by_series_with_duplicated_popularity, self.data.build(), ) def test_add_data_frame_with_df_contains_na(self) -> None: df = self.in_pd_df_by_series_with_nan self.data.add_data_frame(df) self.assertEqual( self.ref_pd_df_by_series_with_nan, self.data.build(), ) class TestDfWithSeries(DataWithAssets): def test_add_df_with_empty_series(self) -> None: self.data.add_df(pd.Series()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_df_with_series(self) -> None: self.data.add_df(self.in_pd_series_dimension) self.data.add_df(self.in_pd_series_measure) self.assertEqual( self.ref_pd_series, self.data.build(), ) def test_add_df_with_series_contains_na(self) -> None: self.data.add_df(self.in_pd_series_dimension_with_nan) self.data.add_df(self.in_pd_series_measure_with_nan) self.assertEqual( self.ref_pd_series_with_nan, self.data.build(), ) def test_add_df_with_series_and_with_include_index(self) -> None: self.data.add_df( self.in_pd_series_dimension_with_index, include_index="DimensionIndex", ) self.data.add_df( self.in_pd_series_measure_with_index, include_index="MeasureIndex", ) self.assertEqual( self.ref_pd_series_with_index, self.data.build(), ) class TestDataFrameWithSeries(DataWithAssets): def test_add_data_frame_with_empty_series(self) -> None: self.data.add_data_frame(pd.Series()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_data_frame_with_series(self) -> None: self.data.add_data_frame(self.in_pd_series_dimension) self.data.add_data_frame(self.in_pd_series_measure) self.assertEqual( self.ref_pd_series, self.data.build(), ) def test_add_data_frame_with_series_contains_na(self) -> None: self.
[ "data", "test_add_data_frame_with_series", "ref_pd_series", "in_pd_df_by_series", "assertEqual", "test_add_data_frame_with_empty_series", "test_add_data_frame_with_series_contains_na", "asset_dir", "in_pd_df_by_series_with_duplicated_popularity", "in_pd_df_by_series_with_index", "in_pd_df_by_series_with_nan", "in_pd_series_dimension", "in_pd_series_dimension_with_index", "in_pd_series_dimension_with_nan", "in_pd_series_measure", "in_pd_series_measure_with_index", "in_pd_series_measure_with_nan", "ref_pd_df_by_series", "ref_pd_df_by_series_max_rows", "ref_pd_df_by_series_only_index", "ref_pd_df_by_series_with_duplicated_popularity", "ref_pd_df_by_series_with_index", "ref_pd_df_by_series_with_nan", "ref_pd_series_only_index", "ref_pd_series_with_index", "ref_pd_series_with_nan", "set_up_pd_df", "set_up_pd_series", "setUp", "setUpClass", "addClassCleanup", "addCleanup", "addTypeEqualityFunc", "assert_", "assertAlmostEqual", "assertAlmostEquals", "assertCountEqual", "assertDictContainsSubset", "assertDictEqual", "assertEquals", "assertFalse", "assertGreater", "assertGreaterEqual", "assertIn", "assertIs", "assertIsInstance", "assertIsNone", "assertIsNot", "assertIsNotNone", "assertLess", "assertLessEqual", "assertListEqual", "assertLogs", "assertMultiLineEqual", "assertNoLogs", "assertNotAlmostEqual", "assertNotAlmostEquals", "assertNotEqual", "assertNotEquals", "assertNotIn", "assertNotIsInstance", "assertNotRegex", "assertNotRegexpMatches", "assertRaises", "assertRaisesRegex", "assertRaisesRegexp", "assertRegex", "assertRegexpMatches", "assertSequenceEqual", "assertSetEqual", "assertTrue", "assertTupleEqual", "assertWarns", "assertWarnsRegex", "countTestCases", "debug", "defaultTestResult", "doClassCleanups", "doCleanups", "fail", "failIf", "failIfAlmostEqual", "failIfEqual", "failUnless", "failUnlessAlmostEqual", "failUnlessEqual", "failUnlessRaises", "failureException", "id", "longMessage", "maxDiff", "run", "shortDescription", "skipTest", "subTest", "tearDown", "tearDownClass" ]
assertEqual( self.ref_pd_df_by_series_with_nan, self.data.build(), ) class TestDfWithSeries(DataWithAssets): def test_add_df_with_empty_series(self) -> None: self.data.add_df(pd.Series()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_df_with_series(self) -> None: self.data.add_df(self.in_pd_series_dimension) self.data.add_df(self.in_pd_series_measure) self.assertEqual( self.ref_pd_series, self.data.build(), ) def test_add_df_with_series_contains_na(self) -> None: self.data.add_df(self.in_pd_series_dimension_with_nan) self.data.add_df(self.in_pd_series_measure_with_nan) self.assertEqual( self.ref_pd_series_with_nan, self.data.build(), ) def test_add_df_with_series_and_with_include_index(self) -> None: self.data.add_df( self.in_pd_series_dimension_with_index, include_index="DimensionIndex", ) self.data.add_df( self.in_pd_series_measure_with_index, include_index="MeasureIndex", ) self.assertEqual( self.ref_pd_series_with_index, self.data.build(), ) class TestDataFrameWithSeries(DataWithAssets): def test_add_data_frame_with_empty_series(self) -> None: self.data.add_data_frame(pd.Series()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_data_frame_with_series(self) -> None: self.data.add_data_frame(self.in_pd_series_dimension) self.data.add_data_frame(self.in_pd_series_measure) self.assertEqual( self.ref_pd_series, self.data.build(), ) def test_add_data_frame_with_series_contains_na(self) -> None: self.
5,415
7,682
216
4,649
vizzuhq__ipyvizzu
54b0334aa736a77f9430739c9375b16be145b3fd
tests/test_data/test_pandas.py
inproject
add_data_frame
true
function
28
30
false
false
[ "add_df", "add_data_frame", "build", "add_data_frame_index", "add_df_index", "add_dimension", "add_measure", "add_np_array", "add_record", "add_records", "add_series", "add_series_list", "add_spark_df", "dump", "filter", "from_json", "set_filter", "clear", "copy", "fromkeys", "get", "items", "keys", "pop", "popitem", "setdefault", "update", "values", "__annotations__", "__class__", "__class_getitem__", "__contains__", "__delattr__", "__delitem__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__getitem__", "__hash__", "__init__", "__init_subclass__", "__ior__", "__iter__", "__len__", "__ne__", "__new__", "__or__", "__reduce__", "__reduce_ex__", "__repr__", "__reversed__", "__ror__", "__setattr__", "__setitem__", "__sizeof__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "add_data_frame", "type": "function" }, { "name": "add_data_frame_index", "type": "function" }, { "name": "add_df", "type": "function" }, { "name": "add_df_index", "type": "function" }, { "name": "add_dimension", "type": "function" }, { "name": "add_measure", "type": "function" }, { "name": "add_np_array", "type": "function" }, { "name": "add_record", "type": "function" }, { "name": "add_records", "type": "function" }, { "name": "add_series", "type": "function" }, { "name": "add_series_list", "type": "function" }, { "name": "add_spark_df", "type": "function" }, { "name": "build", "type": "function" }, { "name": "clear", "type": "function" }, { "name": "copy", "type": "function" }, { "name": "dump", "type": "function" }, { "name": "filter", "type": "function" }, { "name": "from_json", "type": "function" }, { "name": "fromkeys", "type": "function" }, { "name": "get", "type": "function" }, { "name": "items", "type": "function" }, { "name": "keys", "type": "function" }, { "name": "pop", "type": "function" }, { "name": "popitem", "type": "function" }, { "name": "set_filter", "type": "function" }, { "name": "setdefault", "type": "function" }, { "name": "update", "type": "function" }, { "name": "values", "type": "function" }, { "name": "_add_named_value", "type": "function" }, { "name": "_add_value", "type": "function" }, { "name": "__annotations__", "type": "statement" }, { "name": "__class__", "type": "property" }, { "name": "__class_getitem__", "type": "function" }, { "name": "__contains__", "type": "function" }, { "name": "__delattr__", "type": "function" }, { "name": "__delitem__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__getitem__", "type": "function" }, { "name": "__hash__", "type": "statement" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__ior__", "type": "function" }, { "name": "__iter__", "type": "function" }, { "name": "__len__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__or__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__reversed__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__setitem__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
# pylint: disable=missing-module-docstring,missing-class-docstring,missing-function-docstring import pandas as pd from tests.test_data import DataWithAssets from tests.utils.import_error import RaiseImportError class TestDf(DataWithAssets): def test_add_df_if_pandas_not_installed(self) -> None: with RaiseImportError.module_name("pandas"): with self.assertRaises(ImportError): self.data.add_df(pd.DataFrame()) def test_add_df_with_none(self) -> None: self.data.add_df(None) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_df_with_empty_df(self) -> None: self.data.add_df(pd.DataFrame()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_df_with_df(self) -> None: df = self.in_pd_df_by_series_with_duplicated_popularity self.data.add_df(df) self.assertEqual( self.ref_pd_df_by_series_with_duplicated_popularity, self.data.build(), ) def test_add_df_with_df_contains_na(self) -> None: df = self.in_pd_df_by_series_with_nan self.data.add_df(df) self.assertEqual( self.ref_pd_df_by_series_with_nan, self.data.build(), ) def test_add_df_with_df_and_with_include_index(self) -> None: df = self.in_pd_df_by_series_with_index self.data.add_df(df, include_index="Index") self.assertEqual( self.ref_pd_df_by_series_with_index, self.data.build(), ) def test_add_df_with_df_and_max_rows(self) -> None: df = self.in_pd_df_by_series self.data.add_df(df, max_rows=2) self.assertEqual( self.ref_pd_df_by_series_max_rows, self.data.build(), ) class TestDataFrame(DataWithAssets): def test_add_data_frame_with_none(self) -> None: self.data.add_data_frame(None) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_data_frame_with_empty_df(self) -> None: self.data.add_data_frame(pd.DataFrame()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_data_frame_with_df(self) -> None: df = self.in_pd_df_by_series_with_duplicated_popularity self.data.add_data_frame(df) self.assertEqual( self.ref_pd_df_by_series_with_duplicated_popularity, self.data.build(), ) def test_add_data_frame_with_df_contains_na(self) -> None: df = self.in_pd_df_by_series_with_nan self.data.add_data_frame(df) self.assertEqual( self.ref_pd_df_by_series_with_nan, self.data.build(), ) class TestDfWithSeries(DataWithAssets): def test_add_df_with_empty_series(self) -> None: self.data.add_df(pd.Series()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_df_with_series(self) -> None: self.data.add_df(self.in_pd_series_dimension) self.data.add_df(self.in_pd_series_measure) self.assertEqual( self.ref_pd_series, self.data.build(), ) def test_add_df_with_series_contains_na(self) -> None: self.data.add_df(self.in_pd_series_dimension_with_nan) self.data.add_df(self.in_pd_series_measure_with_nan) self.assertEqual( self.ref_pd_series_with_nan, self.data.build(), ) def test_add_df_with_series_and_with_include_index(self) -> None: self.data.add_df( self.in_pd_series_dimension_with_index, include_index="DimensionIndex", ) self.data.add_df( self.in_pd_series_measure_with_index, include_index="MeasureIndex", ) self.assertEqual( self.ref_pd_series_with_index, self.data.build(), ) class TestDataFrameWithSeries(DataWithAssets): def test_add_data_frame_with_empty_series(self) -> None: self.data.add_data_frame(pd.Series()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_data_frame_with_series(self) -> None: self.data.add_data_frame(self.in_pd_series_dimension) self.data.add_data_frame(self.in_pd_series_measure) self.assertEqual( self.ref_pd_series, self.data.build(), ) def test_add_data_frame_with_series_contains_na(self) -> None: self.data.
[ "add_df", "add_data_frame", "build", "add_data_frame_index", "add_df_index", "add_dimension", "add_measure", "add_np_array", "add_record", "add_records", "add_series", "add_series_list", "add_spark_df", "dump", "filter", "from_json", "set_filter", "clear", "copy", "fromkeys", "get", "items", "keys", "pop", "popitem", "setdefault", "update", "values" ]
tEqual( self.ref_pd_df_by_series_with_nan, self.data.build(), ) class TestDfWithSeries(DataWithAssets): def test_add_df_with_empty_series(self) -> None: self.data.add_df(pd.Series()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_df_with_series(self) -> None: self.data.add_df(self.in_pd_series_dimension) self.data.add_df(self.in_pd_series_measure) self.assertEqual( self.ref_pd_series, self.data.build(), ) def test_add_df_with_series_contains_na(self) -> None: self.data.add_df(self.in_pd_series_dimension_with_nan) self.data.add_df(self.in_pd_series_measure_with_nan) self.assertEqual( self.ref_pd_series_with_nan, self.data.build(), ) def test_add_df_with_series_and_with_include_index(self) -> None: self.data.add_df( self.in_pd_series_dimension_with_index, include_index="DimensionIndex", ) self.data.add_df( self.in_pd_series_measure_with_index, include_index="MeasureIndex", ) self.assertEqual( self.ref_pd_series_with_index, self.data.build(), ) class TestDataFrameWithSeries(DataWithAssets): def test_add_data_frame_with_empty_series(self) -> None: self.data.add_data_frame(pd.Series()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_data_frame_with_series(self) -> None: self.data.add_data_frame(self.in_pd_series_dimension) self.data.add_data_frame(self.in_pd_series_measure) self.assertEqual( self.ref_pd_series, self.data.build(), ) def test_add_data_frame_with_series_contains_na(self) -> None: self.data.
5,416
7,683
216
4,669
vizzuhq__ipyvizzu
54b0334aa736a77f9430739c9375b16be145b3fd
tests/test_data/test_pandas.py
inproject
in_pd_series_dimension_with_nan
true
statement
97
101
false
false
[ "data", "test_add_data_frame_with_series", "ref_pd_series", "test_add_data_frame_with_empty_series", "in_pd_df_by_series", "test_add_data_frame_with_series_contains_na", "asset_dir", "in_pd_df_by_series_with_duplicated_popularity", "in_pd_df_by_series_with_index", "in_pd_df_by_series_with_nan", "in_pd_series_dimension", "in_pd_series_dimension_with_index", "in_pd_series_dimension_with_nan", "in_pd_series_measure", "in_pd_series_measure_with_index", "in_pd_series_measure_with_nan", "ref_pd_df_by_series", "ref_pd_df_by_series_max_rows", "ref_pd_df_by_series_only_index", "ref_pd_df_by_series_with_duplicated_popularity", "ref_pd_df_by_series_with_index", "ref_pd_df_by_series_with_nan", "ref_pd_series_only_index", "ref_pd_series_with_index", "ref_pd_series_with_nan", "set_up_pd_df", "set_up_pd_series", "setUp", "setUpClass", "addClassCleanup", "addCleanup", "addTypeEqualityFunc", "assert_", "assertAlmostEqual", "assertAlmostEquals", "assertCountEqual", "assertDictContainsSubset", "assertDictEqual", "assertEqual", "assertEquals", "assertFalse", "assertGreater", "assertGreaterEqual", "assertIn", "assertIs", "assertIsInstance", "assertIsNone", "assertIsNot", "assertIsNotNone", "assertLess", "assertLessEqual", "assertListEqual", "assertLogs", "assertMultiLineEqual", "assertNoLogs", "assertNotAlmostEqual", "assertNotAlmostEquals", "assertNotEqual", "assertNotEquals", "assertNotIn", "assertNotIsInstance", "assertNotRegex", "assertNotRegexpMatches", "assertRaises", "assertRaisesRegex", "assertRaisesRegexp", "assertRegex", "assertRegexpMatches", "assertSequenceEqual", "assertSetEqual", "assertTrue", "assertTupleEqual", "assertWarns", "assertWarnsRegex", "countTestCases", "debug", "defaultTestResult", "doClassCleanups", "doCleanups", "fail", "failIf", "failIfAlmostEqual", "failIfEqual", "failUnless", "failUnlessAlmostEqual", "failUnlessEqual", "failUnlessRaises", "failureException", "id", "longMessage", "maxDiff", "run", "shortDescription", "skipTest", "subTest", "tearDown", "tearDownClass", "__annotations__", "__call__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "addClassCleanup", "type": "function" }, { "name": "addCleanup", "type": "function" }, { "name": "addTypeEqualityFunc", "type": "function" }, { "name": "assert_", "type": "function" }, { "name": "assertAlmostEqual", "type": "function" }, { "name": "assertAlmostEquals", "type": "function" }, { "name": "assertCountEqual", "type": "function" }, { "name": "assertDictContainsSubset", "type": "function" }, { "name": "assertDictEqual", "type": "function" }, { "name": "assertEqual", "type": "function" }, { "name": "assertEquals", "type": "function" }, { "name": "assertFalse", "type": "function" }, { "name": "assertGreater", "type": "function" }, { "name": "assertGreaterEqual", "type": "function" }, { "name": "assertIn", "type": "function" }, { "name": "assertIs", "type": "function" }, { "name": "assertIsInstance", "type": "function" }, { "name": "assertIsNone", "type": "function" }, { "name": "assertIsNot", "type": "function" }, { "name": "assertIsNotNone", "type": "function" }, { "name": "assertLess", "type": "function" }, { "name": "assertLessEqual", "type": "function" }, { "name": "assertListEqual", "type": "function" }, { "name": "assertLogs", "type": "function" }, { "name": "assertMultiLineEqual", "type": "function" }, { "name": "assertNotAlmostEqual", "type": "function" }, { "name": "assertNotAlmostEquals", "type": "function" }, { "name": "assertNotEqual", "type": "function" }, { "name": "assertNotEquals", "type": "function" }, { "name": "assertNotIn", "type": "function" }, { "name": "assertNotIsInstance", "type": "function" }, { "name": "assertNotRegex", "type": "function" }, { "name": "assertNotRegexpMatches", "type": "function" }, { "name": "assertRaises", "type": "function" }, { "name": "assertRaisesRegex", "type": "function" }, { "name": "assertRaisesRegexp", "type": "function" }, { "name": "assertRegex", "type": "function" }, { "name": "assertRegexpMatches", "type": "function" }, { "name": "assertSequenceEqual", "type": "function" }, { "name": "assertSetEqual", "type": "function" }, { "name": "assertTrue", "type": "function" }, { "name": "assertTupleEqual", "type": "function" }, { "name": "assertWarns", "type": "function" }, { "name": "assertWarnsRegex", "type": "function" }, { "name": "asset_dir", "type": "statement" }, { "name": "countTestCases", "type": "function" }, { "name": "data", "type": "statement" }, { "name": "debug", "type": "function" }, { "name": "defaultTestResult", "type": "function" }, { "name": "doClassCleanups", "type": "function" }, { "name": "doCleanups", "type": "function" }, { "name": "fail", "type": "function" }, { "name": "failIf", "type": "function" }, { "name": "failIfAlmostEqual", "type": "function" }, { "name": "failIfEqual", "type": "function" }, { "name": "failUnless", "type": "function" }, { "name": "failUnlessAlmostEqual", "type": "function" }, { "name": "failUnlessEqual", "type": "function" }, { "name": "failUnlessRaises", "type": "function" }, { "name": "failureException", "type": "statement" }, { "name": "id", "type": "function" }, { "name": "in_pd_df_by_series", "type": "statement" }, { "name": "in_pd_df_by_series_with_duplicated_popularity", "type": "statement" }, { "name": "in_pd_df_by_series_with_index", "type": "statement" }, { "name": "in_pd_df_by_series_with_nan", "type": "statement" }, { "name": "in_pd_series_dimension", "type": "statement" }, { "name": "in_pd_series_dimension_with_index", "type": "statement" }, { "name": "in_pd_series_dimension_with_nan", "type": "statement" }, { "name": "in_pd_series_measure", "type": "statement" }, { "name": "in_pd_series_measure_with_index", "type": "statement" }, { "name": "in_pd_series_measure_with_nan", "type": "statement" }, { "name": "longMessage", "type": "statement" }, { "name": "maxDiff", "type": "statement" }, { "name": "ref_pd_df_by_series", "type": "statement" }, { "name": "ref_pd_df_by_series_max_rows", "type": "statement" }, { "name": "ref_pd_df_by_series_only_index", "type": "statement" }, { "name": "ref_pd_df_by_series_with_duplicated_popularity", "type": "statement" }, { "name": "ref_pd_df_by_series_with_index", "type": "statement" }, { "name": "ref_pd_df_by_series_with_nan", "type": "statement" }, { "name": "ref_pd_series", "type": "statement" }, { "name": "ref_pd_series_only_index", "type": "statement" }, { "name": "ref_pd_series_with_index", "type": "statement" }, { "name": "ref_pd_series_with_nan", "type": "statement" }, { "name": "run", "type": "function" }, { "name": "set_up_pd_df", "type": "function" }, { "name": "set_up_pd_series", "type": "function" }, { "name": "setUp", "type": "function" }, { "name": "setUpClass", "type": "function" }, { "name": "shortDescription", "type": "function" }, { "name": "skipTest", "type": "function" }, { "name": "subTest", "type": "function" }, { "name": "tearDown", "type": "function" }, { "name": "tearDownClass", "type": "function" }, { "name": "test_add_data_frame_with_empty_series", "type": "function" }, { "name": "test_add_data_frame_with_series", "type": "function" }, { "name": "test_add_data_frame_with_series_contains_na", "type": "function" }, { "name": "_addSkip", "type": "function" }, { "name": "_formatMessage", "type": "function" }, { "name": "_getAssertEqualityFunc", "type": "function" }, { "name": "_testMethodDoc", "type": "statement" }, { "name": "_testMethodName", "type": "statement" }, { "name": "__annotations__", "type": "statement" }, { "name": "__call__", "type": "function" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
# pylint: disable=missing-module-docstring,missing-class-docstring,missing-function-docstring import pandas as pd from tests.test_data import DataWithAssets from tests.utils.import_error import RaiseImportError class TestDf(DataWithAssets): def test_add_df_if_pandas_not_installed(self) -> None: with RaiseImportError.module_name("pandas"): with self.assertRaises(ImportError): self.data.add_df(pd.DataFrame()) def test_add_df_with_none(self) -> None: self.data.add_df(None) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_df_with_empty_df(self) -> None: self.data.add_df(pd.DataFrame()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_df_with_df(self) -> None: df = self.in_pd_df_by_series_with_duplicated_popularity self.data.add_df(df) self.assertEqual( self.ref_pd_df_by_series_with_duplicated_popularity, self.data.build(), ) def test_add_df_with_df_contains_na(self) -> None: df = self.in_pd_df_by_series_with_nan self.data.add_df(df) self.assertEqual( self.ref_pd_df_by_series_with_nan, self.data.build(), ) def test_add_df_with_df_and_with_include_index(self) -> None: df = self.in_pd_df_by_series_with_index self.data.add_df(df, include_index="Index") self.assertEqual( self.ref_pd_df_by_series_with_index, self.data.build(), ) def test_add_df_with_df_and_max_rows(self) -> None: df = self.in_pd_df_by_series self.data.add_df(df, max_rows=2) self.assertEqual( self.ref_pd_df_by_series_max_rows, self.data.build(), ) class TestDataFrame(DataWithAssets): def test_add_data_frame_with_none(self) -> None: self.data.add_data_frame(None) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_data_frame_with_empty_df(self) -> None: self.data.add_data_frame(pd.DataFrame()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_data_frame_with_df(self) -> None: df = self.in_pd_df_by_series_with_duplicated_popularity self.data.add_data_frame(df) self.assertEqual( self.ref_pd_df_by_series_with_duplicated_popularity, self.data.build(), ) def test_add_data_frame_with_df_contains_na(self) -> None: df = self.in_pd_df_by_series_with_nan self.data.add_data_frame(df) self.assertEqual( self.ref_pd_df_by_series_with_nan, self.data.build(), ) class TestDfWithSeries(DataWithAssets): def test_add_df_with_empty_series(self) -> None: self.data.add_df(pd.Series()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_df_with_series(self) -> None: self.data.add_df(self.in_pd_series_dimension) self.data.add_df(self.in_pd_series_measure) self.assertEqual( self.ref_pd_series, self.data.build(), ) def test_add_df_with_series_contains_na(self) -> None: self.data.add_df(self.in_pd_series_dimension_with_nan) self.data.add_df(self.in_pd_series_measure_with_nan) self.assertEqual( self.ref_pd_series_with_nan, self.data.build(), ) def test_add_df_with_series_and_with_include_index(self) -> None: self.data.add_df( self.in_pd_series_dimension_with_index, include_index="DimensionIndex", ) self.data.add_df( self.in_pd_series_measure_with_index, include_index="MeasureIndex", ) self.assertEqual( self.ref_pd_series_with_index, self.data.build(), ) class TestDataFrameWithSeries(DataWithAssets): def test_add_data_frame_with_empty_series(self) -> None: self.data.add_data_frame(pd.Series()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_data_frame_with_series(self) -> None: self.data.add_data_frame(self.in_pd_series_dimension) self.data.add_data_frame(self.in_pd_series_measure) self.assertEqual( self.ref_pd_series, self.data.build(), ) def test_add_data_frame_with_series_contains_na(self) -> None: self.data.add_data_frame(self.
[ "data", "test_add_data_frame_with_series", "ref_pd_series", "test_add_data_frame_with_empty_series", "in_pd_df_by_series", "test_add_data_frame_with_series_contains_na", "asset_dir", "in_pd_df_by_series_with_duplicated_popularity", "in_pd_df_by_series_with_index", "in_pd_df_by_series_with_nan", "in_pd_series_dimension", "in_pd_series_dimension_with_index", "in_pd_series_dimension_with_nan", "in_pd_series_measure", "in_pd_series_measure_with_index", "in_pd_series_measure_with_nan", "ref_pd_df_by_series", "ref_pd_df_by_series_max_rows", "ref_pd_df_by_series_only_index", "ref_pd_df_by_series_with_duplicated_popularity", "ref_pd_df_by_series_with_index", "ref_pd_df_by_series_with_nan", "ref_pd_series_only_index", "ref_pd_series_with_index", "ref_pd_series_with_nan", "set_up_pd_df", "set_up_pd_series", "setUp", "setUpClass", "addClassCleanup", "addCleanup", "addTypeEqualityFunc", "assert_", "assertAlmostEqual", "assertAlmostEquals", "assertCountEqual", "assertDictContainsSubset", "assertDictEqual", "assertEqual", "assertEquals", "assertFalse", "assertGreater", "assertGreaterEqual", "assertIn", "assertIs", "assertIsInstance", "assertIsNone", "assertIsNot", "assertIsNotNone", "assertLess", "assertLessEqual", "assertListEqual", "assertLogs", "assertMultiLineEqual", "assertNoLogs", "assertNotAlmostEqual", "assertNotAlmostEquals", "assertNotEqual", "assertNotEquals", "assertNotIn", "assertNotIsInstance", "assertNotRegex", "assertNotRegexpMatches", "assertRaises", "assertRaisesRegex", "assertRaisesRegexp", "assertRegex", "assertRegexpMatches", "assertSequenceEqual", "assertSetEqual", "assertTrue", "assertTupleEqual", "assertWarns", "assertWarnsRegex", "countTestCases", "debug", "defaultTestResult", "doClassCleanups", "doCleanups", "fail", "failIf", "failIfAlmostEqual", "failIfEqual", "failUnless", "failUnlessAlmostEqual", "failUnlessEqual", "failUnlessRaises", "failureException", "id", "longMessage", "maxDiff", "run", "shortDescription", "skipTest", "subTest", "tearDown", "tearDownClass" ]
self.ref_pd_df_by_series_with_nan, self.data.build(), ) class TestDfWithSeries(DataWithAssets): def test_add_df_with_empty_series(self) -> None: self.data.add_df(pd.Series()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_df_with_series(self) -> None: self.data.add_df(self.in_pd_series_dimension) self.data.add_df(self.in_pd_series_measure) self.assertEqual( self.ref_pd_series, self.data.build(), ) def test_add_df_with_series_contains_na(self) -> None: self.data.add_df(self.in_pd_series_dimension_with_nan) self.data.add_df(self.in_pd_series_measure_with_nan) self.assertEqual( self.ref_pd_series_with_nan, self.data.build(), ) def test_add_df_with_series_and_with_include_index(self) -> None: self.data.add_df( self.in_pd_series_dimension_with_index, include_index="DimensionIndex", ) self.data.add_df( self.in_pd_series_measure_with_index, include_index="MeasureIndex", ) self.assertEqual( self.ref_pd_series_with_index, self.data.build(), ) class TestDataFrameWithSeries(DataWithAssets): def test_add_data_frame_with_empty_series(self) -> None: self.data.add_data_frame(pd.Series()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_data_frame_with_series(self) -> None: self.data.add_data_frame(self.in_pd_series_dimension) self.data.add_data_frame(self.in_pd_series_measure) self.assertEqual( self.ref_pd_series, self.data.build(), ) def test_add_data_frame_with_series_contains_na(self) -> None: self.data.add_data_frame(self.
5,417
7,684
216
4,715
vizzuhq__ipyvizzu
54b0334aa736a77f9430739c9375b16be145b3fd
tests/test_data/test_pandas.py
inproject
data
true
statement
97
101
false
false
[ "data", "test_add_data_frame_with_series", "ref_pd_series", "in_pd_df_by_series", "assertEqual", "test_add_data_frame_with_empty_series", "test_add_data_frame_with_series_contains_na", "asset_dir", "in_pd_df_by_series_with_duplicated_popularity", "in_pd_df_by_series_with_index", "in_pd_df_by_series_with_nan", "in_pd_series_dimension", "in_pd_series_dimension_with_index", "in_pd_series_dimension_with_nan", "in_pd_series_measure", "in_pd_series_measure_with_index", "in_pd_series_measure_with_nan", "ref_pd_df_by_series", "ref_pd_df_by_series_max_rows", "ref_pd_df_by_series_only_index", "ref_pd_df_by_series_with_duplicated_popularity", "ref_pd_df_by_series_with_index", "ref_pd_df_by_series_with_nan", "ref_pd_series_only_index", "ref_pd_series_with_index", "ref_pd_series_with_nan", "set_up_pd_df", "set_up_pd_series", "setUp", "setUpClass", "addClassCleanup", "addCleanup", "addTypeEqualityFunc", "assert_", "assertAlmostEqual", "assertAlmostEquals", "assertCountEqual", "assertDictContainsSubset", "assertDictEqual", "assertEquals", "assertFalse", "assertGreater", "assertGreaterEqual", "assertIn", "assertIs", "assertIsInstance", "assertIsNone", "assertIsNot", "assertIsNotNone", "assertLess", "assertLessEqual", "assertListEqual", "assertLogs", "assertMultiLineEqual", "assertNoLogs", "assertNotAlmostEqual", "assertNotAlmostEquals", "assertNotEqual", "assertNotEquals", "assertNotIn", "assertNotIsInstance", "assertNotRegex", "assertNotRegexpMatches", "assertRaises", "assertRaisesRegex", "assertRaisesRegexp", "assertRegex", "assertRegexpMatches", "assertSequenceEqual", "assertSetEqual", "assertTrue", "assertTupleEqual", "assertWarns", "assertWarnsRegex", "countTestCases", "debug", "defaultTestResult", "doClassCleanups", "doCleanups", "fail", "failIf", "failIfAlmostEqual", "failIfEqual", "failUnless", "failUnlessAlmostEqual", "failUnlessEqual", "failUnlessRaises", "failureException", "id", "longMessage", "maxDiff", "run", "shortDescription", "skipTest", "subTest", "tearDown", "tearDownClass", "__annotations__", "__call__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "addClassCleanup", "type": "function" }, { "name": "addCleanup", "type": "function" }, { "name": "addTypeEqualityFunc", "type": "function" }, { "name": "assert_", "type": "function" }, { "name": "assertAlmostEqual", "type": "function" }, { "name": "assertAlmostEquals", "type": "function" }, { "name": "assertCountEqual", "type": "function" }, { "name": "assertDictContainsSubset", "type": "function" }, { "name": "assertDictEqual", "type": "function" }, { "name": "assertEqual", "type": "function" }, { "name": "assertEquals", "type": "function" }, { "name": "assertFalse", "type": "function" }, { "name": "assertGreater", "type": "function" }, { "name": "assertGreaterEqual", "type": "function" }, { "name": "assertIn", "type": "function" }, { "name": "assertIs", "type": "function" }, { "name": "assertIsInstance", "type": "function" }, { "name": "assertIsNone", "type": "function" }, { "name": "assertIsNot", "type": "function" }, { "name": "assertIsNotNone", "type": "function" }, { "name": "assertLess", "type": "function" }, { "name": "assertLessEqual", "type": "function" }, { "name": "assertListEqual", "type": "function" }, { "name": "assertLogs", "type": "function" }, { "name": "assertMultiLineEqual", "type": "function" }, { "name": "assertNotAlmostEqual", "type": "function" }, { "name": "assertNotAlmostEquals", "type": "function" }, { "name": "assertNotEqual", "type": "function" }, { "name": "assertNotEquals", "type": "function" }, { "name": "assertNotIn", "type": "function" }, { "name": "assertNotIsInstance", "type": "function" }, { "name": "assertNotRegex", "type": "function" }, { "name": "assertNotRegexpMatches", "type": "function" }, { "name": "assertRaises", "type": "function" }, { "name": "assertRaisesRegex", "type": "function" }, { "name": "assertRaisesRegexp", "type": "function" }, { "name": "assertRegex", "type": "function" }, { "name": "assertRegexpMatches", "type": "function" }, { "name": "assertSequenceEqual", "type": "function" }, { "name": "assertSetEqual", "type": "function" }, { "name": "assertTrue", "type": "function" }, { "name": "assertTupleEqual", "type": "function" }, { "name": "assertWarns", "type": "function" }, { "name": "assertWarnsRegex", "type": "function" }, { "name": "asset_dir", "type": "statement" }, { "name": "countTestCases", "type": "function" }, { "name": "data", "type": "statement" }, { "name": "debug", "type": "function" }, { "name": "defaultTestResult", "type": "function" }, { "name": "doClassCleanups", "type": "function" }, { "name": "doCleanups", "type": "function" }, { "name": "fail", "type": "function" }, { "name": "failIf", "type": "function" }, { "name": "failIfAlmostEqual", "type": "function" }, { "name": "failIfEqual", "type": "function" }, { "name": "failUnless", "type": "function" }, { "name": "failUnlessAlmostEqual", "type": "function" }, { "name": "failUnlessEqual", "type": "function" }, { "name": "failUnlessRaises", "type": "function" }, { "name": "failureException", "type": "statement" }, { "name": "id", "type": "function" }, { "name": "in_pd_df_by_series", "type": "statement" }, { "name": "in_pd_df_by_series_with_duplicated_popularity", "type": "statement" }, { "name": "in_pd_df_by_series_with_index", "type": "statement" }, { "name": "in_pd_df_by_series_with_nan", "type": "statement" }, { "name": "in_pd_series_dimension", "type": "statement" }, { "name": "in_pd_series_dimension_with_index", "type": "statement" }, { "name": "in_pd_series_dimension_with_nan", "type": "statement" }, { "name": "in_pd_series_measure", "type": "statement" }, { "name": "in_pd_series_measure_with_index", "type": "statement" }, { "name": "in_pd_series_measure_with_nan", "type": "statement" }, { "name": "longMessage", "type": "statement" }, { "name": "maxDiff", "type": "statement" }, { "name": "ref_pd_df_by_series", "type": "statement" }, { "name": "ref_pd_df_by_series_max_rows", "type": "statement" }, { "name": "ref_pd_df_by_series_only_index", "type": "statement" }, { "name": "ref_pd_df_by_series_with_duplicated_popularity", "type": "statement" }, { "name": "ref_pd_df_by_series_with_index", "type": "statement" }, { "name": "ref_pd_df_by_series_with_nan", "type": "statement" }, { "name": "ref_pd_series", "type": "statement" }, { "name": "ref_pd_series_only_index", "type": "statement" }, { "name": "ref_pd_series_with_index", "type": "statement" }, { "name": "ref_pd_series_with_nan", "type": "statement" }, { "name": "run", "type": "function" }, { "name": "set_up_pd_df", "type": "function" }, { "name": "set_up_pd_series", "type": "function" }, { "name": "setUp", "type": "function" }, { "name": "setUpClass", "type": "function" }, { "name": "shortDescription", "type": "function" }, { "name": "skipTest", "type": "function" }, { "name": "subTest", "type": "function" }, { "name": "tearDown", "type": "function" }, { "name": "tearDownClass", "type": "function" }, { "name": "test_add_data_frame_with_empty_series", "type": "function" }, { "name": "test_add_data_frame_with_series", "type": "function" }, { "name": "test_add_data_frame_with_series_contains_na", "type": "function" }, { "name": "_addSkip", "type": "function" }, { "name": "_formatMessage", "type": "function" }, { "name": "_getAssertEqualityFunc", "type": "function" }, { "name": "_testMethodDoc", "type": "statement" }, { "name": "_testMethodName", "type": "statement" }, { "name": "__annotations__", "type": "statement" }, { "name": "__call__", "type": "function" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
# pylint: disable=missing-module-docstring,missing-class-docstring,missing-function-docstring import pandas as pd from tests.test_data import DataWithAssets from tests.utils.import_error import RaiseImportError class TestDf(DataWithAssets): def test_add_df_if_pandas_not_installed(self) -> None: with RaiseImportError.module_name("pandas"): with self.assertRaises(ImportError): self.data.add_df(pd.DataFrame()) def test_add_df_with_none(self) -> None: self.data.add_df(None) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_df_with_empty_df(self) -> None: self.data.add_df(pd.DataFrame()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_df_with_df(self) -> None: df = self.in_pd_df_by_series_with_duplicated_popularity self.data.add_df(df) self.assertEqual( self.ref_pd_df_by_series_with_duplicated_popularity, self.data.build(), ) def test_add_df_with_df_contains_na(self) -> None: df = self.in_pd_df_by_series_with_nan self.data.add_df(df) self.assertEqual( self.ref_pd_df_by_series_with_nan, self.data.build(), ) def test_add_df_with_df_and_with_include_index(self) -> None: df = self.in_pd_df_by_series_with_index self.data.add_df(df, include_index="Index") self.assertEqual( self.ref_pd_df_by_series_with_index, self.data.build(), ) def test_add_df_with_df_and_max_rows(self) -> None: df = self.in_pd_df_by_series self.data.add_df(df, max_rows=2) self.assertEqual( self.ref_pd_df_by_series_max_rows, self.data.build(), ) class TestDataFrame(DataWithAssets): def test_add_data_frame_with_none(self) -> None: self.data.add_data_frame(None) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_data_frame_with_empty_df(self) -> None: self.data.add_data_frame(pd.DataFrame()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_data_frame_with_df(self) -> None: df = self.in_pd_df_by_series_with_duplicated_popularity self.data.add_data_frame(df) self.assertEqual( self.ref_pd_df_by_series_with_duplicated_popularity, self.data.build(), ) def test_add_data_frame_with_df_contains_na(self) -> None: df = self.in_pd_df_by_series_with_nan self.data.add_data_frame(df) self.assertEqual( self.ref_pd_df_by_series_with_nan, self.data.build(), ) class TestDfWithSeries(DataWithAssets): def test_add_df_with_empty_series(self) -> None: self.data.add_df(pd.Series()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_df_with_series(self) -> None: self.data.add_df(self.in_pd_series_dimension) self.data.add_df(self.in_pd_series_measure) self.assertEqual( self.ref_pd_series, self.data.build(), ) def test_add_df_with_series_contains_na(self) -> None: self.data.add_df(self.in_pd_series_dimension_with_nan) self.data.add_df(self.in_pd_series_measure_with_nan) self.assertEqual( self.ref_pd_series_with_nan, self.data.build(), ) def test_add_df_with_series_and_with_include_index(self) -> None: self.data.add_df( self.in_pd_series_dimension_with_index, include_index="DimensionIndex", ) self.data.add_df( self.in_pd_series_measure_with_index, include_index="MeasureIndex", ) self.assertEqual( self.ref_pd_series_with_index, self.data.build(), ) class TestDataFrameWithSeries(DataWithAssets): def test_add_data_frame_with_empty_series(self) -> None: self.data.add_data_frame(pd.Series()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_data_frame_with_series(self) -> None: self.data.add_data_frame(self.in_pd_series_dimension) self.data.add_data_frame(self.in_pd_series_measure) self.assertEqual( self.ref_pd_series, self.data.build(), ) def test_add_data_frame_with_series_contains_na(self) -> None: self.data.add_data_frame(self.in_pd_series_dimension_with_nan) self.
[ "data", "test_add_data_frame_with_series", "ref_pd_series", "in_pd_df_by_series", "assertEqual", "test_add_data_frame_with_empty_series", "test_add_data_frame_with_series_contains_na", "asset_dir", "in_pd_df_by_series_with_duplicated_popularity", "in_pd_df_by_series_with_index", "in_pd_df_by_series_with_nan", "in_pd_series_dimension", "in_pd_series_dimension_with_index", "in_pd_series_dimension_with_nan", "in_pd_series_measure", "in_pd_series_measure_with_index", "in_pd_series_measure_with_nan", "ref_pd_df_by_series", "ref_pd_df_by_series_max_rows", "ref_pd_df_by_series_only_index", "ref_pd_df_by_series_with_duplicated_popularity", "ref_pd_df_by_series_with_index", "ref_pd_df_by_series_with_nan", "ref_pd_series_only_index", "ref_pd_series_with_index", "ref_pd_series_with_nan", "set_up_pd_df", "set_up_pd_series", "setUp", "setUpClass", "addClassCleanup", "addCleanup", "addTypeEqualityFunc", "assert_", "assertAlmostEqual", "assertAlmostEquals", "assertCountEqual", "assertDictContainsSubset", "assertDictEqual", "assertEquals", "assertFalse", "assertGreater", "assertGreaterEqual", "assertIn", "assertIs", "assertIsInstance", "assertIsNone", "assertIsNot", "assertIsNotNone", "assertLess", "assertLessEqual", "assertListEqual", "assertLogs", "assertMultiLineEqual", "assertNoLogs", "assertNotAlmostEqual", "assertNotAlmostEquals", "assertNotEqual", "assertNotEquals", "assertNotIn", "assertNotIsInstance", "assertNotRegex", "assertNotRegexpMatches", "assertRaises", "assertRaisesRegex", "assertRaisesRegexp", "assertRegex", "assertRegexpMatches", "assertSequenceEqual", "assertSetEqual", "assertTrue", "assertTupleEqual", "assertWarns", "assertWarnsRegex", "countTestCases", "debug", "defaultTestResult", "doClassCleanups", "doCleanups", "fail", "failIf", "failIfAlmostEqual", "failIfEqual", "failUnless", "failUnlessAlmostEqual", "failUnlessEqual", "failUnlessRaises", "failureException", "id", "longMessage", "maxDiff", "run", "shortDescription", "skipTest", "subTest", "tearDown", "tearDownClass" ]
self.data.build(), ) class TestDfWithSeries(DataWithAssets): def test_add_df_with_empty_series(self) -> None: self.data.add_df(pd.Series()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_df_with_series(self) -> None: self.data.add_df(self.in_pd_series_dimension) self.data.add_df(self.in_pd_series_measure) self.assertEqual( self.ref_pd_series, self.data.build(), ) def test_add_df_with_series_contains_na(self) -> None: self.data.add_df(self.in_pd_series_dimension_with_nan) self.data.add_df(self.in_pd_series_measure_with_nan) self.assertEqual( self.ref_pd_series_with_nan, self.data.build(), ) def test_add_df_with_series_and_with_include_index(self) -> None: self.data.add_df( self.in_pd_series_dimension_with_index, include_index="DimensionIndex", ) self.data.add_df( self.in_pd_series_measure_with_index, include_index="MeasureIndex", ) self.assertEqual( self.ref_pd_series_with_index, self.data.build(), ) class TestDataFrameWithSeries(DataWithAssets): def test_add_data_frame_with_empty_series(self) -> None: self.data.add_data_frame(pd.Series()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_data_frame_with_series(self) -> None: self.data.add_data_frame(self.in_pd_series_dimension) self.data.add_data_frame(self.in_pd_series_measure) self.assertEqual( self.ref_pd_series, self.data.build(), ) def test_add_data_frame_with_series_contains_na(self) -> None: self.data.add_data_frame(self.in_pd_series_dimension_with_nan) self.
5,418
7,685
216
4,720
vizzuhq__ipyvizzu
54b0334aa736a77f9430739c9375b16be145b3fd
tests/test_data/test_pandas.py
inproject
add_data_frame
true
function
28
30
false
false
[ "add_df", "add_data_frame", "build", "add_data_frame_index", "add_df_index", "add_dimension", "add_measure", "add_np_array", "add_record", "add_records", "add_series", "add_series_list", "add_spark_df", "dump", "filter", "from_json", "set_filter", "clear", "copy", "fromkeys", "get", "items", "keys", "pop", "popitem", "setdefault", "update", "values", "__annotations__", "__class__", "__class_getitem__", "__contains__", "__delattr__", "__delitem__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__getitem__", "__hash__", "__init__", "__init_subclass__", "__ior__", "__iter__", "__len__", "__ne__", "__new__", "__or__", "__reduce__", "__reduce_ex__", "__repr__", "__reversed__", "__ror__", "__setattr__", "__setitem__", "__sizeof__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "add_data_frame", "type": "function" }, { "name": "add_data_frame_index", "type": "function" }, { "name": "add_df", "type": "function" }, { "name": "add_df_index", "type": "function" }, { "name": "add_dimension", "type": "function" }, { "name": "add_measure", "type": "function" }, { "name": "add_np_array", "type": "function" }, { "name": "add_record", "type": "function" }, { "name": "add_records", "type": "function" }, { "name": "add_series", "type": "function" }, { "name": "add_series_list", "type": "function" }, { "name": "add_spark_df", "type": "function" }, { "name": "build", "type": "function" }, { "name": "clear", "type": "function" }, { "name": "copy", "type": "function" }, { "name": "dump", "type": "function" }, { "name": "filter", "type": "function" }, { "name": "from_json", "type": "function" }, { "name": "fromkeys", "type": "function" }, { "name": "get", "type": "function" }, { "name": "items", "type": "function" }, { "name": "keys", "type": "function" }, { "name": "pop", "type": "function" }, { "name": "popitem", "type": "function" }, { "name": "set_filter", "type": "function" }, { "name": "setdefault", "type": "function" }, { "name": "update", "type": "function" }, { "name": "values", "type": "function" }, { "name": "_add_named_value", "type": "function" }, { "name": "_add_value", "type": "function" }, { "name": "__annotations__", "type": "statement" }, { "name": "__class__", "type": "property" }, { "name": "__class_getitem__", "type": "function" }, { "name": "__contains__", "type": "function" }, { "name": "__delattr__", "type": "function" }, { "name": "__delitem__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__getitem__", "type": "function" }, { "name": "__hash__", "type": "statement" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__ior__", "type": "function" }, { "name": "__iter__", "type": "function" }, { "name": "__len__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__or__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__reversed__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__setitem__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
# pylint: disable=missing-module-docstring,missing-class-docstring,missing-function-docstring import pandas as pd from tests.test_data import DataWithAssets from tests.utils.import_error import RaiseImportError class TestDf(DataWithAssets): def test_add_df_if_pandas_not_installed(self) -> None: with RaiseImportError.module_name("pandas"): with self.assertRaises(ImportError): self.data.add_df(pd.DataFrame()) def test_add_df_with_none(self) -> None: self.data.add_df(None) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_df_with_empty_df(self) -> None: self.data.add_df(pd.DataFrame()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_df_with_df(self) -> None: df = self.in_pd_df_by_series_with_duplicated_popularity self.data.add_df(df) self.assertEqual( self.ref_pd_df_by_series_with_duplicated_popularity, self.data.build(), ) def test_add_df_with_df_contains_na(self) -> None: df = self.in_pd_df_by_series_with_nan self.data.add_df(df) self.assertEqual( self.ref_pd_df_by_series_with_nan, self.data.build(), ) def test_add_df_with_df_and_with_include_index(self) -> None: df = self.in_pd_df_by_series_with_index self.data.add_df(df, include_index="Index") self.assertEqual( self.ref_pd_df_by_series_with_index, self.data.build(), ) def test_add_df_with_df_and_max_rows(self) -> None: df = self.in_pd_df_by_series self.data.add_df(df, max_rows=2) self.assertEqual( self.ref_pd_df_by_series_max_rows, self.data.build(), ) class TestDataFrame(DataWithAssets): def test_add_data_frame_with_none(self) -> None: self.data.add_data_frame(None) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_data_frame_with_empty_df(self) -> None: self.data.add_data_frame(pd.DataFrame()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_data_frame_with_df(self) -> None: df = self.in_pd_df_by_series_with_duplicated_popularity self.data.add_data_frame(df) self.assertEqual( self.ref_pd_df_by_series_with_duplicated_popularity, self.data.build(), ) def test_add_data_frame_with_df_contains_na(self) -> None: df = self.in_pd_df_by_series_with_nan self.data.add_data_frame(df) self.assertEqual( self.ref_pd_df_by_series_with_nan, self.data.build(), ) class TestDfWithSeries(DataWithAssets): def test_add_df_with_empty_series(self) -> None: self.data.add_df(pd.Series()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_df_with_series(self) -> None: self.data.add_df(self.in_pd_series_dimension) self.data.add_df(self.in_pd_series_measure) self.assertEqual( self.ref_pd_series, self.data.build(), ) def test_add_df_with_series_contains_na(self) -> None: self.data.add_df(self.in_pd_series_dimension_with_nan) self.data.add_df(self.in_pd_series_measure_with_nan) self.assertEqual( self.ref_pd_series_with_nan, self.data.build(), ) def test_add_df_with_series_and_with_include_index(self) -> None: self.data.add_df( self.in_pd_series_dimension_with_index, include_index="DimensionIndex", ) self.data.add_df( self.in_pd_series_measure_with_index, include_index="MeasureIndex", ) self.assertEqual( self.ref_pd_series_with_index, self.data.build(), ) class TestDataFrameWithSeries(DataWithAssets): def test_add_data_frame_with_empty_series(self) -> None: self.data.add_data_frame(pd.Series()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_data_frame_with_series(self) -> None: self.data.add_data_frame(self.in_pd_series_dimension) self.data.add_data_frame(self.in_pd_series_measure) self.assertEqual( self.ref_pd_series, self.data.build(), ) def test_add_data_frame_with_series_contains_na(self) -> None: self.data.add_data_frame(self.in_pd_series_dimension_with_nan) self.data.
[ "add_df", "add_data_frame", "build", "add_data_frame_index", "add_df_index", "add_dimension", "add_measure", "add_np_array", "add_record", "add_records", "add_series", "add_series_list", "add_spark_df", "dump", "filter", "from_json", "set_filter", "clear", "copy", "fromkeys", "get", "items", "keys", "pop", "popitem", "setdefault", "update", "values" ]
.data.build(), ) class TestDfWithSeries(DataWithAssets): def test_add_df_with_empty_series(self) -> None: self.data.add_df(pd.Series()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_df_with_series(self) -> None: self.data.add_df(self.in_pd_series_dimension) self.data.add_df(self.in_pd_series_measure) self.assertEqual( self.ref_pd_series, self.data.build(), ) def test_add_df_with_series_contains_na(self) -> None: self.data.add_df(self.in_pd_series_dimension_with_nan) self.data.add_df(self.in_pd_series_measure_with_nan) self.assertEqual( self.ref_pd_series_with_nan, self.data.build(), ) def test_add_df_with_series_and_with_include_index(self) -> None: self.data.add_df( self.in_pd_series_dimension_with_index, include_index="DimensionIndex", ) self.data.add_df( self.in_pd_series_measure_with_index, include_index="MeasureIndex", ) self.assertEqual( self.ref_pd_series_with_index, self.data.build(), ) class TestDataFrameWithSeries(DataWithAssets): def test_add_data_frame_with_empty_series(self) -> None: self.data.add_data_frame(pd.Series()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_data_frame_with_series(self) -> None: self.data.add_data_frame(self.in_pd_series_dimension) self.data.add_data_frame(self.in_pd_series_measure) self.assertEqual( self.ref_pd_series, self.data.build(), ) def test_add_data_frame_with_series_contains_na(self) -> None: self.data.add_data_frame(self.in_pd_series_dimension_with_nan) self.data.
5,419
7,686
216
4,740
vizzuhq__ipyvizzu
54b0334aa736a77f9430739c9375b16be145b3fd
tests/test_data/test_pandas.py
inproject
in_pd_series_measure_with_nan
true
statement
97
101
false
false
[ "data", "test_add_data_frame_with_series", "ref_pd_series", "test_add_data_frame_with_empty_series", "in_pd_df_by_series", "test_add_data_frame_with_series_contains_na", "asset_dir", "in_pd_df_by_series_with_duplicated_popularity", "in_pd_df_by_series_with_index", "in_pd_df_by_series_with_nan", "in_pd_series_dimension", "in_pd_series_dimension_with_index", "in_pd_series_dimension_with_nan", "in_pd_series_measure", "in_pd_series_measure_with_index", "in_pd_series_measure_with_nan", "ref_pd_df_by_series", "ref_pd_df_by_series_max_rows", "ref_pd_df_by_series_only_index", "ref_pd_df_by_series_with_duplicated_popularity", "ref_pd_df_by_series_with_index", "ref_pd_df_by_series_with_nan", "ref_pd_series_only_index", "ref_pd_series_with_index", "ref_pd_series_with_nan", "set_up_pd_df", "set_up_pd_series", "setUp", "setUpClass", "addClassCleanup", "addCleanup", "addTypeEqualityFunc", "assert_", "assertAlmostEqual", "assertAlmostEquals", "assertCountEqual", "assertDictContainsSubset", "assertDictEqual", "assertEqual", "assertEquals", "assertFalse", "assertGreater", "assertGreaterEqual", "assertIn", "assertIs", "assertIsInstance", "assertIsNone", "assertIsNot", "assertIsNotNone", "assertLess", "assertLessEqual", "assertListEqual", "assertLogs", "assertMultiLineEqual", "assertNoLogs", "assertNotAlmostEqual", "assertNotAlmostEquals", "assertNotEqual", "assertNotEquals", "assertNotIn", "assertNotIsInstance", "assertNotRegex", "assertNotRegexpMatches", "assertRaises", "assertRaisesRegex", "assertRaisesRegexp", "assertRegex", "assertRegexpMatches", "assertSequenceEqual", "assertSetEqual", "assertTrue", "assertTupleEqual", "assertWarns", "assertWarnsRegex", "countTestCases", "debug", "defaultTestResult", "doClassCleanups", "doCleanups", "fail", "failIf", "failIfAlmostEqual", "failIfEqual", "failUnless", "failUnlessAlmostEqual", "failUnlessEqual", "failUnlessRaises", "failureException", "id", "longMessage", "maxDiff", "run", "shortDescription", "skipTest", "subTest", "tearDown", "tearDownClass", "__annotations__", "__call__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "addClassCleanup", "type": "function" }, { "name": "addCleanup", "type": "function" }, { "name": "addTypeEqualityFunc", "type": "function" }, { "name": "assert_", "type": "function" }, { "name": "assertAlmostEqual", "type": "function" }, { "name": "assertAlmostEquals", "type": "function" }, { "name": "assertCountEqual", "type": "function" }, { "name": "assertDictContainsSubset", "type": "function" }, { "name": "assertDictEqual", "type": "function" }, { "name": "assertEqual", "type": "function" }, { "name": "assertEquals", "type": "function" }, { "name": "assertFalse", "type": "function" }, { "name": "assertGreater", "type": "function" }, { "name": "assertGreaterEqual", "type": "function" }, { "name": "assertIn", "type": "function" }, { "name": "assertIs", "type": "function" }, { "name": "assertIsInstance", "type": "function" }, { "name": "assertIsNone", "type": "function" }, { "name": "assertIsNot", "type": "function" }, { "name": "assertIsNotNone", "type": "function" }, { "name": "assertLess", "type": "function" }, { "name": "assertLessEqual", "type": "function" }, { "name": "assertListEqual", "type": "function" }, { "name": "assertLogs", "type": "function" }, { "name": "assertMultiLineEqual", "type": "function" }, { "name": "assertNotAlmostEqual", "type": "function" }, { "name": "assertNotAlmostEquals", "type": "function" }, { "name": "assertNotEqual", "type": "function" }, { "name": "assertNotEquals", "type": "function" }, { "name": "assertNotIn", "type": "function" }, { "name": "assertNotIsInstance", "type": "function" }, { "name": "assertNotRegex", "type": "function" }, { "name": "assertNotRegexpMatches", "type": "function" }, { "name": "assertRaises", "type": "function" }, { "name": "assertRaisesRegex", "type": "function" }, { "name": "assertRaisesRegexp", "type": "function" }, { "name": "assertRegex", "type": "function" }, { "name": "assertRegexpMatches", "type": "function" }, { "name": "assertSequenceEqual", "type": "function" }, { "name": "assertSetEqual", "type": "function" }, { "name": "assertTrue", "type": "function" }, { "name": "assertTupleEqual", "type": "function" }, { "name": "assertWarns", "type": "function" }, { "name": "assertWarnsRegex", "type": "function" }, { "name": "asset_dir", "type": "statement" }, { "name": "countTestCases", "type": "function" }, { "name": "data", "type": "statement" }, { "name": "debug", "type": "function" }, { "name": "defaultTestResult", "type": "function" }, { "name": "doClassCleanups", "type": "function" }, { "name": "doCleanups", "type": "function" }, { "name": "fail", "type": "function" }, { "name": "failIf", "type": "function" }, { "name": "failIfAlmostEqual", "type": "function" }, { "name": "failIfEqual", "type": "function" }, { "name": "failUnless", "type": "function" }, { "name": "failUnlessAlmostEqual", "type": "function" }, { "name": "failUnlessEqual", "type": "function" }, { "name": "failUnlessRaises", "type": "function" }, { "name": "failureException", "type": "statement" }, { "name": "id", "type": "function" }, { "name": "in_pd_df_by_series", "type": "statement" }, { "name": "in_pd_df_by_series_with_duplicated_popularity", "type": "statement" }, { "name": "in_pd_df_by_series_with_index", "type": "statement" }, { "name": "in_pd_df_by_series_with_nan", "type": "statement" }, { "name": "in_pd_series_dimension", "type": "statement" }, { "name": "in_pd_series_dimension_with_index", "type": "statement" }, { "name": "in_pd_series_dimension_with_nan", "type": "statement" }, { "name": "in_pd_series_measure", "type": "statement" }, { "name": "in_pd_series_measure_with_index", "type": "statement" }, { "name": "in_pd_series_measure_with_nan", "type": "statement" }, { "name": "longMessage", "type": "statement" }, { "name": "maxDiff", "type": "statement" }, { "name": "ref_pd_df_by_series", "type": "statement" }, { "name": "ref_pd_df_by_series_max_rows", "type": "statement" }, { "name": "ref_pd_df_by_series_only_index", "type": "statement" }, { "name": "ref_pd_df_by_series_with_duplicated_popularity", "type": "statement" }, { "name": "ref_pd_df_by_series_with_index", "type": "statement" }, { "name": "ref_pd_df_by_series_with_nan", "type": "statement" }, { "name": "ref_pd_series", "type": "statement" }, { "name": "ref_pd_series_only_index", "type": "statement" }, { "name": "ref_pd_series_with_index", "type": "statement" }, { "name": "ref_pd_series_with_nan", "type": "statement" }, { "name": "run", "type": "function" }, { "name": "set_up_pd_df", "type": "function" }, { "name": "set_up_pd_series", "type": "function" }, { "name": "setUp", "type": "function" }, { "name": "setUpClass", "type": "function" }, { "name": "shortDescription", "type": "function" }, { "name": "skipTest", "type": "function" }, { "name": "subTest", "type": "function" }, { "name": "tearDown", "type": "function" }, { "name": "tearDownClass", "type": "function" }, { "name": "test_add_data_frame_with_empty_series", "type": "function" }, { "name": "test_add_data_frame_with_series", "type": "function" }, { "name": "test_add_data_frame_with_series_contains_na", "type": "function" }, { "name": "_addSkip", "type": "function" }, { "name": "_formatMessage", "type": "function" }, { "name": "_getAssertEqualityFunc", "type": "function" }, { "name": "_testMethodDoc", "type": "statement" }, { "name": "_testMethodName", "type": "statement" }, { "name": "__annotations__", "type": "statement" }, { "name": "__call__", "type": "function" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
# pylint: disable=missing-module-docstring,missing-class-docstring,missing-function-docstring import pandas as pd from tests.test_data import DataWithAssets from tests.utils.import_error import RaiseImportError class TestDf(DataWithAssets): def test_add_df_if_pandas_not_installed(self) -> None: with RaiseImportError.module_name("pandas"): with self.assertRaises(ImportError): self.data.add_df(pd.DataFrame()) def test_add_df_with_none(self) -> None: self.data.add_df(None) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_df_with_empty_df(self) -> None: self.data.add_df(pd.DataFrame()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_df_with_df(self) -> None: df = self.in_pd_df_by_series_with_duplicated_popularity self.data.add_df(df) self.assertEqual( self.ref_pd_df_by_series_with_duplicated_popularity, self.data.build(), ) def test_add_df_with_df_contains_na(self) -> None: df = self.in_pd_df_by_series_with_nan self.data.add_df(df) self.assertEqual( self.ref_pd_df_by_series_with_nan, self.data.build(), ) def test_add_df_with_df_and_with_include_index(self) -> None: df = self.in_pd_df_by_series_with_index self.data.add_df(df, include_index="Index") self.assertEqual( self.ref_pd_df_by_series_with_index, self.data.build(), ) def test_add_df_with_df_and_max_rows(self) -> None: df = self.in_pd_df_by_series self.data.add_df(df, max_rows=2) self.assertEqual( self.ref_pd_df_by_series_max_rows, self.data.build(), ) class TestDataFrame(DataWithAssets): def test_add_data_frame_with_none(self) -> None: self.data.add_data_frame(None) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_data_frame_with_empty_df(self) -> None: self.data.add_data_frame(pd.DataFrame()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_data_frame_with_df(self) -> None: df = self.in_pd_df_by_series_with_duplicated_popularity self.data.add_data_frame(df) self.assertEqual( self.ref_pd_df_by_series_with_duplicated_popularity, self.data.build(), ) def test_add_data_frame_with_df_contains_na(self) -> None: df = self.in_pd_df_by_series_with_nan self.data.add_data_frame(df) self.assertEqual( self.ref_pd_df_by_series_with_nan, self.data.build(), ) class TestDfWithSeries(DataWithAssets): def test_add_df_with_empty_series(self) -> None: self.data.add_df(pd.Series()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_df_with_series(self) -> None: self.data.add_df(self.in_pd_series_dimension) self.data.add_df(self.in_pd_series_measure) self.assertEqual( self.ref_pd_series, self.data.build(), ) def test_add_df_with_series_contains_na(self) -> None: self.data.add_df(self.in_pd_series_dimension_with_nan) self.data.add_df(self.in_pd_series_measure_with_nan) self.assertEqual( self.ref_pd_series_with_nan, self.data.build(), ) def test_add_df_with_series_and_with_include_index(self) -> None: self.data.add_df( self.in_pd_series_dimension_with_index, include_index="DimensionIndex", ) self.data.add_df( self.in_pd_series_measure_with_index, include_index="MeasureIndex", ) self.assertEqual( self.ref_pd_series_with_index, self.data.build(), ) class TestDataFrameWithSeries(DataWithAssets): def test_add_data_frame_with_empty_series(self) -> None: self.data.add_data_frame(pd.Series()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_data_frame_with_series(self) -> None: self.data.add_data_frame(self.in_pd_series_dimension) self.data.add_data_frame(self.in_pd_series_measure) self.assertEqual( self.ref_pd_series, self.data.build(), ) def test_add_data_frame_with_series_contains_na(self) -> None: self.data.add_data_frame(self.in_pd_series_dimension_with_nan) self.data.add_data_frame(self.
[ "data", "test_add_data_frame_with_series", "ref_pd_series", "test_add_data_frame_with_empty_series", "in_pd_df_by_series", "test_add_data_frame_with_series_contains_na", "asset_dir", "in_pd_df_by_series_with_duplicated_popularity", "in_pd_df_by_series_with_index", "in_pd_df_by_series_with_nan", "in_pd_series_dimension", "in_pd_series_dimension_with_index", "in_pd_series_dimension_with_nan", "in_pd_series_measure", "in_pd_series_measure_with_index", "in_pd_series_measure_with_nan", "ref_pd_df_by_series", "ref_pd_df_by_series_max_rows", "ref_pd_df_by_series_only_index", "ref_pd_df_by_series_with_duplicated_popularity", "ref_pd_df_by_series_with_index", "ref_pd_df_by_series_with_nan", "ref_pd_series_only_index", "ref_pd_series_with_index", "ref_pd_series_with_nan", "set_up_pd_df", "set_up_pd_series", "setUp", "setUpClass", "addClassCleanup", "addCleanup", "addTypeEqualityFunc", "assert_", "assertAlmostEqual", "assertAlmostEquals", "assertCountEqual", "assertDictContainsSubset", "assertDictEqual", "assertEqual", "assertEquals", "assertFalse", "assertGreater", "assertGreaterEqual", "assertIn", "assertIs", "assertIsInstance", "assertIsNone", "assertIsNot", "assertIsNotNone", "assertLess", "assertLessEqual", "assertListEqual", "assertLogs", "assertMultiLineEqual", "assertNoLogs", "assertNotAlmostEqual", "assertNotAlmostEquals", "assertNotEqual", "assertNotEquals", "assertNotIn", "assertNotIsInstance", "assertNotRegex", "assertNotRegexpMatches", "assertRaises", "assertRaisesRegex", "assertRaisesRegexp", "assertRegex", "assertRegexpMatches", "assertSequenceEqual", "assertSetEqual", "assertTrue", "assertTupleEqual", "assertWarns", "assertWarnsRegex", "countTestCases", "debug", "defaultTestResult", "doClassCleanups", "doCleanups", "fail", "failIf", "failIfAlmostEqual", "failIfEqual", "failUnless", "failUnlessAlmostEqual", "failUnlessEqual", "failUnlessRaises", "failureException", "id", "longMessage", "maxDiff", "run", "shortDescription", "skipTest", "subTest", "tearDown", "tearDownClass" ]
) class TestDfWithSeries(DataWithAssets): def test_add_df_with_empty_series(self) -> None: self.data.add_df(pd.Series()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_df_with_series(self) -> None: self.data.add_df(self.in_pd_series_dimension) self.data.add_df(self.in_pd_series_measure) self.assertEqual( self.ref_pd_series, self.data.build(), ) def test_add_df_with_series_contains_na(self) -> None: self.data.add_df(self.in_pd_series_dimension_with_nan) self.data.add_df(self.in_pd_series_measure_with_nan) self.assertEqual( self.ref_pd_series_with_nan, self.data.build(), ) def test_add_df_with_series_and_with_include_index(self) -> None: self.data.add_df( self.in_pd_series_dimension_with_index, include_index="DimensionIndex", ) self.data.add_df( self.in_pd_series_measure_with_index, include_index="MeasureIndex", ) self.assertEqual( self.ref_pd_series_with_index, self.data.build(), ) class TestDataFrameWithSeries(DataWithAssets): def test_add_data_frame_with_empty_series(self) -> None: self.data.add_data_frame(pd.Series()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_data_frame_with_series(self) -> None: self.data.add_data_frame(self.in_pd_series_dimension) self.data.add_data_frame(self.in_pd_series_measure) self.assertEqual( self.ref_pd_series, self.data.build(), ) def test_add_data_frame_with_series_contains_na(self) -> None: self.data.add_data_frame(self.in_pd_series_dimension_with_nan) self.data.add_data_frame(self.
5,420
7,690
216
4,980
vizzuhq__ipyvizzu
54b0334aa736a77f9430739c9375b16be145b3fd
tests/test_data/test_pandas.py
inproject
data
true
statement
96
100
false
false
[ "data", "assertEqual", "test_add_df_index_with_df", "in_pd_series_measure_with_index", "in_pd_series_dimension_with_index", "test_add_df_index_with_none", "asset_dir", "in_pd_df_by_series", "in_pd_df_by_series_with_duplicated_popularity", "in_pd_df_by_series_with_index", "in_pd_df_by_series_with_nan", "in_pd_series_dimension", "in_pd_series_dimension_with_nan", "in_pd_series_measure", "in_pd_series_measure_with_nan", "ref_pd_df_by_series", "ref_pd_df_by_series_max_rows", "ref_pd_df_by_series_only_index", "ref_pd_df_by_series_with_duplicated_popularity", "ref_pd_df_by_series_with_index", "ref_pd_df_by_series_with_nan", "ref_pd_series", "ref_pd_series_only_index", "ref_pd_series_with_index", "ref_pd_series_with_nan", "set_up_pd_df", "set_up_pd_series", "setUp", "setUpClass", "addClassCleanup", "addCleanup", "addTypeEqualityFunc", "assert_", "assertAlmostEqual", "assertAlmostEquals", "assertCountEqual", "assertDictContainsSubset", "assertDictEqual", "assertEquals", "assertFalse", "assertGreater", "assertGreaterEqual", "assertIn", "assertIs", "assertIsInstance", "assertIsNone", "assertIsNot", "assertIsNotNone", "assertLess", "assertLessEqual", "assertListEqual", "assertLogs", "assertMultiLineEqual", "assertNoLogs", "assertNotAlmostEqual", "assertNotAlmostEquals", "assertNotEqual", "assertNotEquals", "assertNotIn", "assertNotIsInstance", "assertNotRegex", "assertNotRegexpMatches", "assertRaises", "assertRaisesRegex", "assertRaisesRegexp", "assertRegex", "assertRegexpMatches", "assertSequenceEqual", "assertSetEqual", "assertTrue", "assertTupleEqual", "assertWarns", "assertWarnsRegex", "countTestCases", "debug", "defaultTestResult", "doClassCleanups", "doCleanups", "fail", "failIf", "failIfAlmostEqual", "failIfEqual", "failUnless", "failUnlessAlmostEqual", "failUnlessEqual", "failUnlessRaises", "failureException", "id", "longMessage", "maxDiff", "run", "shortDescription", "skipTest", "subTest", "tearDown", "tearDownClass", "__annotations__", "__call__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "addClassCleanup", "type": "function" }, { "name": "addCleanup", "type": "function" }, { "name": "addTypeEqualityFunc", "type": "function" }, { "name": "assert_", "type": "function" }, { "name": "assertAlmostEqual", "type": "function" }, { "name": "assertAlmostEquals", "type": "function" }, { "name": "assertCountEqual", "type": "function" }, { "name": "assertDictContainsSubset", "type": "function" }, { "name": "assertDictEqual", "type": "function" }, { "name": "assertEqual", "type": "function" }, { "name": "assertEquals", "type": "function" }, { "name": "assertFalse", "type": "function" }, { "name": "assertGreater", "type": "function" }, { "name": "assertGreaterEqual", "type": "function" }, { "name": "assertIn", "type": "function" }, { "name": "assertIs", "type": "function" }, { "name": "assertIsInstance", "type": "function" }, { "name": "assertIsNone", "type": "function" }, { "name": "assertIsNot", "type": "function" }, { "name": "assertIsNotNone", "type": "function" }, { "name": "assertLess", "type": "function" }, { "name": "assertLessEqual", "type": "function" }, { "name": "assertListEqual", "type": "function" }, { "name": "assertLogs", "type": "function" }, { "name": "assertMultiLineEqual", "type": "function" }, { "name": "assertNotAlmostEqual", "type": "function" }, { "name": "assertNotAlmostEquals", "type": "function" }, { "name": "assertNotEqual", "type": "function" }, { "name": "assertNotEquals", "type": "function" }, { "name": "assertNotIn", "type": "function" }, { "name": "assertNotIsInstance", "type": "function" }, { "name": "assertNotRegex", "type": "function" }, { "name": "assertNotRegexpMatches", "type": "function" }, { "name": "assertRaises", "type": "function" }, { "name": "assertRaisesRegex", "type": "function" }, { "name": "assertRaisesRegexp", "type": "function" }, { "name": "assertRegex", "type": "function" }, { "name": "assertRegexpMatches", "type": "function" }, { "name": "assertSequenceEqual", "type": "function" }, { "name": "assertSetEqual", "type": "function" }, { "name": "assertTrue", "type": "function" }, { "name": "assertTupleEqual", "type": "function" }, { "name": "assertWarns", "type": "function" }, { "name": "assertWarnsRegex", "type": "function" }, { "name": "asset_dir", "type": "statement" }, { "name": "countTestCases", "type": "function" }, { "name": "data", "type": "statement" }, { "name": "debug", "type": "function" }, { "name": "defaultTestResult", "type": "function" }, { "name": "doClassCleanups", "type": "function" }, { "name": "doCleanups", "type": "function" }, { "name": "fail", "type": "function" }, { "name": "failIf", "type": "function" }, { "name": "failIfAlmostEqual", "type": "function" }, { "name": "failIfEqual", "type": "function" }, { "name": "failUnless", "type": "function" }, { "name": "failUnlessAlmostEqual", "type": "function" }, { "name": "failUnlessEqual", "type": "function" }, { "name": "failUnlessRaises", "type": "function" }, { "name": "failureException", "type": "statement" }, { "name": "id", "type": "function" }, { "name": "in_pd_df_by_series", "type": "statement" }, { "name": "in_pd_df_by_series_with_duplicated_popularity", "type": "statement" }, { "name": "in_pd_df_by_series_with_index", "type": "statement" }, { "name": "in_pd_df_by_series_with_nan", "type": "statement" }, { "name": "in_pd_series_dimension", "type": "statement" }, { "name": "in_pd_series_dimension_with_index", "type": "statement" }, { "name": "in_pd_series_dimension_with_nan", "type": "statement" }, { "name": "in_pd_series_measure", "type": "statement" }, { "name": "in_pd_series_measure_with_index", "type": "statement" }, { "name": "in_pd_series_measure_with_nan", "type": "statement" }, { "name": "longMessage", "type": "statement" }, { "name": "maxDiff", "type": "statement" }, { "name": "ref_pd_df_by_series", "type": "statement" }, { "name": "ref_pd_df_by_series_max_rows", "type": "statement" }, { "name": "ref_pd_df_by_series_only_index", "type": "statement" }, { "name": "ref_pd_df_by_series_with_duplicated_popularity", "type": "statement" }, { "name": "ref_pd_df_by_series_with_index", "type": "statement" }, { "name": "ref_pd_df_by_series_with_nan", "type": "statement" }, { "name": "ref_pd_series", "type": "statement" }, { "name": "ref_pd_series_only_index", "type": "statement" }, { "name": "ref_pd_series_with_index", "type": "statement" }, { "name": "ref_pd_series_with_nan", "type": "statement" }, { "name": "run", "type": "function" }, { "name": "set_up_pd_df", "type": "function" }, { "name": "set_up_pd_series", "type": "function" }, { "name": "setUp", "type": "function" }, { "name": "setUpClass", "type": "function" }, { "name": "shortDescription", "type": "function" }, { "name": "skipTest", "type": "function" }, { "name": "subTest", "type": "function" }, { "name": "tearDown", "type": "function" }, { "name": "tearDownClass", "type": "function" }, { "name": "test_add_df_index_with_df", "type": "function" }, { "name": "test_add_df_index_with_none", "type": "function" }, { "name": "_addSkip", "type": "function" }, { "name": "_formatMessage", "type": "function" }, { "name": "_getAssertEqualityFunc", "type": "function" }, { "name": "_testMethodDoc", "type": "statement" }, { "name": "_testMethodName", "type": "statement" }, { "name": "__annotations__", "type": "statement" }, { "name": "__call__", "type": "function" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
# pylint: disable=missing-module-docstring,missing-class-docstring,missing-function-docstring import pandas as pd from tests.test_data import DataWithAssets from tests.utils.import_error import RaiseImportError class TestDf(DataWithAssets): def test_add_df_if_pandas_not_installed(self) -> None: with RaiseImportError.module_name("pandas"): with self.assertRaises(ImportError): self.data.add_df(pd.DataFrame()) def test_add_df_with_none(self) -> None: self.data.add_df(None) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_df_with_empty_df(self) -> None: self.data.add_df(pd.DataFrame()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_df_with_df(self) -> None: df = self.in_pd_df_by_series_with_duplicated_popularity self.data.add_df(df) self.assertEqual( self.ref_pd_df_by_series_with_duplicated_popularity, self.data.build(), ) def test_add_df_with_df_contains_na(self) -> None: df = self.in_pd_df_by_series_with_nan self.data.add_df(df) self.assertEqual( self.ref_pd_df_by_series_with_nan, self.data.build(), ) def test_add_df_with_df_and_with_include_index(self) -> None: df = self.in_pd_df_by_series_with_index self.data.add_df(df, include_index="Index") self.assertEqual( self.ref_pd_df_by_series_with_index, self.data.build(), ) def test_add_df_with_df_and_max_rows(self) -> None: df = self.in_pd_df_by_series self.data.add_df(df, max_rows=2) self.assertEqual( self.ref_pd_df_by_series_max_rows, self.data.build(), ) class TestDataFrame(DataWithAssets): def test_add_data_frame_with_none(self) -> None: self.data.add_data_frame(None) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_data_frame_with_empty_df(self) -> None: self.data.add_data_frame(pd.DataFrame()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_data_frame_with_df(self) -> None: df = self.in_pd_df_by_series_with_duplicated_popularity self.data.add_data_frame(df) self.assertEqual( self.ref_pd_df_by_series_with_duplicated_popularity, self.data.build(), ) def test_add_data_frame_with_df_contains_na(self) -> None: df = self.in_pd_df_by_series_with_nan self.data.add_data_frame(df) self.assertEqual( self.ref_pd_df_by_series_with_nan, self.data.build(), ) class TestDfWithSeries(DataWithAssets): def test_add_df_with_empty_series(self) -> None: self.data.add_df(pd.Series()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_df_with_series(self) -> None: self.data.add_df(self.in_pd_series_dimension) self.data.add_df(self.in_pd_series_measure) self.assertEqual( self.ref_pd_series, self.data.build(), ) def test_add_df_with_series_contains_na(self) -> None: self.data.add_df(self.in_pd_series_dimension_with_nan) self.data.add_df(self.in_pd_series_measure_with_nan) self.assertEqual( self.ref_pd_series_with_nan, self.data.build(), ) def test_add_df_with_series_and_with_include_index(self) -> None: self.data.add_df( self.in_pd_series_dimension_with_index, include_index="DimensionIndex", ) self.data.add_df( self.in_pd_series_measure_with_index, include_index="MeasureIndex", ) self.assertEqual( self.ref_pd_series_with_index, self.data.build(), ) class TestDataFrameWithSeries(DataWithAssets): def test_add_data_frame_with_empty_series(self) -> None: self.data.add_data_frame(pd.Series()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_data_frame_with_series(self) -> None: self.data.add_data_frame(self.in_pd_series_dimension) self.data.add_data_frame(self.in_pd_series_measure) self.assertEqual( self.ref_pd_series, self.data.build(), ) def test_add_data_frame_with_series_contains_na(self) -> None: self.data.add_data_frame(self.in_pd_series_dimension_with_nan) self.data.add_data_frame(self.in_pd_series_measure_with_nan) self.assertEqual( self.ref_pd_series_with_nan, self.data.build(), ) class TestDfIndex(DataWithAssets): def test_add_df_index_with_none(self) -> None: self.
[ "data", "assertEqual", "test_add_df_index_with_df", "in_pd_series_measure_with_index", "in_pd_series_dimension_with_index", "test_add_df_index_with_none", "asset_dir", "in_pd_df_by_series", "in_pd_df_by_series_with_duplicated_popularity", "in_pd_df_by_series_with_index", "in_pd_df_by_series_with_nan", "in_pd_series_dimension", "in_pd_series_dimension_with_nan", "in_pd_series_measure", "in_pd_series_measure_with_nan", "ref_pd_df_by_series", "ref_pd_df_by_series_max_rows", "ref_pd_df_by_series_only_index", "ref_pd_df_by_series_with_duplicated_popularity", "ref_pd_df_by_series_with_index", "ref_pd_df_by_series_with_nan", "ref_pd_series", "ref_pd_series_only_index", "ref_pd_series_with_index", "ref_pd_series_with_nan", "set_up_pd_df", "set_up_pd_series", "setUp", "setUpClass", "addClassCleanup", "addCleanup", "addTypeEqualityFunc", "assert_", "assertAlmostEqual", "assertAlmostEquals", "assertCountEqual", "assertDictContainsSubset", "assertDictEqual", "assertEquals", "assertFalse", "assertGreater", "assertGreaterEqual", "assertIn", "assertIs", "assertIsInstance", "assertIsNone", "assertIsNot", "assertIsNotNone", "assertLess", "assertLessEqual", "assertListEqual", "assertLogs", "assertMultiLineEqual", "assertNoLogs", "assertNotAlmostEqual", "assertNotAlmostEquals", "assertNotEqual", "assertNotEquals", "assertNotIn", "assertNotIsInstance", "assertNotRegex", "assertNotRegexpMatches", "assertRaises", "assertRaisesRegex", "assertRaisesRegexp", "assertRegex", "assertRegexpMatches", "assertSequenceEqual", "assertSetEqual", "assertTrue", "assertTupleEqual", "assertWarns", "assertWarnsRegex", "countTestCases", "debug", "defaultTestResult", "doClassCleanups", "doCleanups", "fail", "failIf", "failIfAlmostEqual", "failIfEqual", "failUnless", "failUnlessAlmostEqual", "failUnlessEqual", "failUnlessRaises", "failureException", "id", "longMessage", "maxDiff", "run", "shortDescription", "skipTest", "subTest", "tearDown", "tearDownClass" ]
test_add_df_with_series(self) -> None: self.data.add_df(self.in_pd_series_dimension) self.data.add_df(self.in_pd_series_measure) self.assertEqual( self.ref_pd_series, self.data.build(), ) def test_add_df_with_series_contains_na(self) -> None: self.data.add_df(self.in_pd_series_dimension_with_nan) self.data.add_df(self.in_pd_series_measure_with_nan) self.assertEqual( self.ref_pd_series_with_nan, self.data.build(), ) def test_add_df_with_series_and_with_include_index(self) -> None: self.data.add_df( self.in_pd_series_dimension_with_index, include_index="DimensionIndex", ) self.data.add_df( self.in_pd_series_measure_with_index, include_index="MeasureIndex", ) self.assertEqual( self.ref_pd_series_with_index, self.data.build(), ) class TestDataFrameWithSeries(DataWithAssets): def test_add_data_frame_with_empty_series(self) -> None: self.data.add_data_frame(pd.Series()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_data_frame_with_series(self) -> None: self.data.add_data_frame(self.in_pd_series_dimension) self.data.add_data_frame(self.in_pd_series_measure) self.assertEqual( self.ref_pd_series, self.data.build(), ) def test_add_data_frame_with_series_contains_na(self) -> None: self.data.add_data_frame(self.in_pd_series_dimension_with_nan) self.data.add_data_frame(self.in_pd_series_measure_with_nan) self.assertEqual( self.ref_pd_series_with_nan, self.data.build(), ) class TestDfIndex(DataWithAssets): def test_add_df_index_with_none(self) -> None: self.
5,424
7,691
216
4,985
vizzuhq__ipyvizzu
54b0334aa736a77f9430739c9375b16be145b3fd
tests/test_data/test_pandas.py
inproject
add_df_index
true
function
28
30
false
true
[ "add_df", "add_data_frame", "build", "add_data_frame_index", "add_df_index", "add_dimension", "add_measure", "add_np_array", "add_record", "add_records", "add_series", "add_series_list", "add_spark_df", "dump", "filter", "from_json", "set_filter", "clear", "copy", "fromkeys", "get", "items", "keys", "pop", "popitem", "setdefault", "update", "values", "__annotations__", "__class__", "__class_getitem__", "__contains__", "__delattr__", "__delitem__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__getitem__", "__hash__", "__init__", "__init_subclass__", "__ior__", "__iter__", "__len__", "__ne__", "__new__", "__or__", "__reduce__", "__reduce_ex__", "__repr__", "__reversed__", "__ror__", "__setattr__", "__setitem__", "__sizeof__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "add_data_frame", "type": "function" }, { "name": "add_data_frame_index", "type": "function" }, { "name": "add_df", "type": "function" }, { "name": "add_df_index", "type": "function" }, { "name": "add_dimension", "type": "function" }, { "name": "add_measure", "type": "function" }, { "name": "add_np_array", "type": "function" }, { "name": "add_record", "type": "function" }, { "name": "add_records", "type": "function" }, { "name": "add_series", "type": "function" }, { "name": "add_series_list", "type": "function" }, { "name": "add_spark_df", "type": "function" }, { "name": "build", "type": "function" }, { "name": "clear", "type": "function" }, { "name": "copy", "type": "function" }, { "name": "dump", "type": "function" }, { "name": "filter", "type": "function" }, { "name": "from_json", "type": "function" }, { "name": "fromkeys", "type": "function" }, { "name": "get", "type": "function" }, { "name": "items", "type": "function" }, { "name": "keys", "type": "function" }, { "name": "pop", "type": "function" }, { "name": "popitem", "type": "function" }, { "name": "set_filter", "type": "function" }, { "name": "setdefault", "type": "function" }, { "name": "update", "type": "function" }, { "name": "values", "type": "function" }, { "name": "_add_named_value", "type": "function" }, { "name": "_add_value", "type": "function" }, { "name": "__annotations__", "type": "statement" }, { "name": "__class__", "type": "property" }, { "name": "__class_getitem__", "type": "function" }, { "name": "__contains__", "type": "function" }, { "name": "__delattr__", "type": "function" }, { "name": "__delitem__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__getitem__", "type": "function" }, { "name": "__hash__", "type": "statement" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__ior__", "type": "function" }, { "name": "__iter__", "type": "function" }, { "name": "__len__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__or__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__reversed__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__setitem__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
# pylint: disable=missing-module-docstring,missing-class-docstring,missing-function-docstring import pandas as pd from tests.test_data import DataWithAssets from tests.utils.import_error import RaiseImportError class TestDf(DataWithAssets): def test_add_df_if_pandas_not_installed(self) -> None: with RaiseImportError.module_name("pandas"): with self.assertRaises(ImportError): self.data.add_df(pd.DataFrame()) def test_add_df_with_none(self) -> None: self.data.add_df(None) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_df_with_empty_df(self) -> None: self.data.add_df(pd.DataFrame()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_df_with_df(self) -> None: df = self.in_pd_df_by_series_with_duplicated_popularity self.data.add_df(df) self.assertEqual( self.ref_pd_df_by_series_with_duplicated_popularity, self.data.build(), ) def test_add_df_with_df_contains_na(self) -> None: df = self.in_pd_df_by_series_with_nan self.data.add_df(df) self.assertEqual( self.ref_pd_df_by_series_with_nan, self.data.build(), ) def test_add_df_with_df_and_with_include_index(self) -> None: df = self.in_pd_df_by_series_with_index self.data.add_df(df, include_index="Index") self.assertEqual( self.ref_pd_df_by_series_with_index, self.data.build(), ) def test_add_df_with_df_and_max_rows(self) -> None: df = self.in_pd_df_by_series self.data.add_df(df, max_rows=2) self.assertEqual( self.ref_pd_df_by_series_max_rows, self.data.build(), ) class TestDataFrame(DataWithAssets): def test_add_data_frame_with_none(self) -> None: self.data.add_data_frame(None) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_data_frame_with_empty_df(self) -> None: self.data.add_data_frame(pd.DataFrame()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_data_frame_with_df(self) -> None: df = self.in_pd_df_by_series_with_duplicated_popularity self.data.add_data_frame(df) self.assertEqual( self.ref_pd_df_by_series_with_duplicated_popularity, self.data.build(), ) def test_add_data_frame_with_df_contains_na(self) -> None: df = self.in_pd_df_by_series_with_nan self.data.add_data_frame(df) self.assertEqual( self.ref_pd_df_by_series_with_nan, self.data.build(), ) class TestDfWithSeries(DataWithAssets): def test_add_df_with_empty_series(self) -> None: self.data.add_df(pd.Series()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_df_with_series(self) -> None: self.data.add_df(self.in_pd_series_dimension) self.data.add_df(self.in_pd_series_measure) self.assertEqual( self.ref_pd_series, self.data.build(), ) def test_add_df_with_series_contains_na(self) -> None: self.data.add_df(self.in_pd_series_dimension_with_nan) self.data.add_df(self.in_pd_series_measure_with_nan) self.assertEqual( self.ref_pd_series_with_nan, self.data.build(), ) def test_add_df_with_series_and_with_include_index(self) -> None: self.data.add_df( self.in_pd_series_dimension_with_index, include_index="DimensionIndex", ) self.data.add_df( self.in_pd_series_measure_with_index, include_index="MeasureIndex", ) self.assertEqual( self.ref_pd_series_with_index, self.data.build(), ) class TestDataFrameWithSeries(DataWithAssets): def test_add_data_frame_with_empty_series(self) -> None: self.data.add_data_frame(pd.Series()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_data_frame_with_series(self) -> None: self.data.add_data_frame(self.in_pd_series_dimension) self.data.add_data_frame(self.in_pd_series_measure) self.assertEqual( self.ref_pd_series, self.data.build(), ) def test_add_data_frame_with_series_contains_na(self) -> None: self.data.add_data_frame(self.in_pd_series_dimension_with_nan) self.data.add_data_frame(self.in_pd_series_measure_with_nan) self.assertEqual( self.ref_pd_series_with_nan, self.data.build(), ) class TestDfIndex(DataWithAssets): def test_add_df_index_with_none(self) -> None: self.data.
[ "add_df", "add_data_frame", "build", "add_data_frame_index", "add_df_index", "add_dimension", "add_measure", "add_np_array", "add_record", "add_records", "add_series", "add_series_list", "add_spark_df", "dump", "filter", "from_json", "set_filter", "clear", "copy", "fromkeys", "get", "items", "keys", "pop", "popitem", "setdefault", "update", "values" ]
add_df_with_series(self) -> None: self.data.add_df(self.in_pd_series_dimension) self.data.add_df(self.in_pd_series_measure) self.assertEqual( self.ref_pd_series, self.data.build(), ) def test_add_df_with_series_contains_na(self) -> None: self.data.add_df(self.in_pd_series_dimension_with_nan) self.data.add_df(self.in_pd_series_measure_with_nan) self.assertEqual( self.ref_pd_series_with_nan, self.data.build(), ) def test_add_df_with_series_and_with_include_index(self) -> None: self.data.add_df( self.in_pd_series_dimension_with_index, include_index="DimensionIndex", ) self.data.add_df( self.in_pd_series_measure_with_index, include_index="MeasureIndex", ) self.assertEqual( self.ref_pd_series_with_index, self.data.build(), ) class TestDataFrameWithSeries(DataWithAssets): def test_add_data_frame_with_empty_series(self) -> None: self.data.add_data_frame(pd.Series()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_data_frame_with_series(self) -> None: self.data.add_data_frame(self.in_pd_series_dimension) self.data.add_data_frame(self.in_pd_series_measure) self.assertEqual( self.ref_pd_series, self.data.build(), ) def test_add_data_frame_with_series_contains_na(self) -> None: self.data.add_data_frame(self.in_pd_series_dimension_with_nan) self.data.add_data_frame(self.in_pd_series_measure_with_nan) self.assertEqual( self.ref_pd_series_with_nan, self.data.build(), ) class TestDfIndex(DataWithAssets): def test_add_df_index_with_none(self) -> None: self.data.
5,425
7,695
216
5,229
vizzuhq__ipyvizzu
54b0334aa736a77f9430739c9375b16be145b3fd
tests/test_data/test_pandas.py
inproject
data
true
statement
96
100
false
false
[ "data", "assertEqual", "test_add_df_index_with_none", "in_pd_series_measure_with_index", "in_pd_series_dimension_with_index", "test_add_df_index_with_df", "asset_dir", "in_pd_df_by_series", "in_pd_df_by_series_with_duplicated_popularity", "in_pd_df_by_series_with_index", "in_pd_df_by_series_with_nan", "in_pd_series_dimension", "in_pd_series_dimension_with_nan", "in_pd_series_measure", "in_pd_series_measure_with_nan", "ref_pd_df_by_series", "ref_pd_df_by_series_max_rows", "ref_pd_df_by_series_only_index", "ref_pd_df_by_series_with_duplicated_popularity", "ref_pd_df_by_series_with_index", "ref_pd_df_by_series_with_nan", "ref_pd_series", "ref_pd_series_only_index", "ref_pd_series_with_index", "ref_pd_series_with_nan", "set_up_pd_df", "set_up_pd_series", "setUp", "setUpClass", "addClassCleanup", "addCleanup", "addTypeEqualityFunc", "assert_", "assertAlmostEqual", "assertAlmostEquals", "assertCountEqual", "assertDictContainsSubset", "assertDictEqual", "assertEquals", "assertFalse", "assertGreater", "assertGreaterEqual", "assertIn", "assertIs", "assertIsInstance", "assertIsNone", "assertIsNot", "assertIsNotNone", "assertLess", "assertLessEqual", "assertListEqual", "assertLogs", "assertMultiLineEqual", "assertNoLogs", "assertNotAlmostEqual", "assertNotAlmostEquals", "assertNotEqual", "assertNotEquals", "assertNotIn", "assertNotIsInstance", "assertNotRegex", "assertNotRegexpMatches", "assertRaises", "assertRaisesRegex", "assertRaisesRegexp", "assertRegex", "assertRegexpMatches", "assertSequenceEqual", "assertSetEqual", "assertTrue", "assertTupleEqual", "assertWarns", "assertWarnsRegex", "countTestCases", "debug", "defaultTestResult", "doClassCleanups", "doCleanups", "fail", "failIf", "failIfAlmostEqual", "failIfEqual", "failUnless", "failUnlessAlmostEqual", "failUnlessEqual", "failUnlessRaises", "failureException", "id", "longMessage", "maxDiff", "run", "shortDescription", "skipTest", "subTest", "tearDown", "tearDownClass", "__annotations__", "__call__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "addClassCleanup", "type": "function" }, { "name": "addCleanup", "type": "function" }, { "name": "addTypeEqualityFunc", "type": "function" }, { "name": "assert_", "type": "function" }, { "name": "assertAlmostEqual", "type": "function" }, { "name": "assertAlmostEquals", "type": "function" }, { "name": "assertCountEqual", "type": "function" }, { "name": "assertDictContainsSubset", "type": "function" }, { "name": "assertDictEqual", "type": "function" }, { "name": "assertEqual", "type": "function" }, { "name": "assertEquals", "type": "function" }, { "name": "assertFalse", "type": "function" }, { "name": "assertGreater", "type": "function" }, { "name": "assertGreaterEqual", "type": "function" }, { "name": "assertIn", "type": "function" }, { "name": "assertIs", "type": "function" }, { "name": "assertIsInstance", "type": "function" }, { "name": "assertIsNone", "type": "function" }, { "name": "assertIsNot", "type": "function" }, { "name": "assertIsNotNone", "type": "function" }, { "name": "assertLess", "type": "function" }, { "name": "assertLessEqual", "type": "function" }, { "name": "assertListEqual", "type": "function" }, { "name": "assertLogs", "type": "function" }, { "name": "assertMultiLineEqual", "type": "function" }, { "name": "assertNotAlmostEqual", "type": "function" }, { "name": "assertNotAlmostEquals", "type": "function" }, { "name": "assertNotEqual", "type": "function" }, { "name": "assertNotEquals", "type": "function" }, { "name": "assertNotIn", "type": "function" }, { "name": "assertNotIsInstance", "type": "function" }, { "name": "assertNotRegex", "type": "function" }, { "name": "assertNotRegexpMatches", "type": "function" }, { "name": "assertRaises", "type": "function" }, { "name": "assertRaisesRegex", "type": "function" }, { "name": "assertRaisesRegexp", "type": "function" }, { "name": "assertRegex", "type": "function" }, { "name": "assertRegexpMatches", "type": "function" }, { "name": "assertSequenceEqual", "type": "function" }, { "name": "assertSetEqual", "type": "function" }, { "name": "assertTrue", "type": "function" }, { "name": "assertTupleEqual", "type": "function" }, { "name": "assertWarns", "type": "function" }, { "name": "assertWarnsRegex", "type": "function" }, { "name": "asset_dir", "type": "statement" }, { "name": "countTestCases", "type": "function" }, { "name": "data", "type": "statement" }, { "name": "debug", "type": "function" }, { "name": "defaultTestResult", "type": "function" }, { "name": "doClassCleanups", "type": "function" }, { "name": "doCleanups", "type": "function" }, { "name": "fail", "type": "function" }, { "name": "failIf", "type": "function" }, { "name": "failIfAlmostEqual", "type": "function" }, { "name": "failIfEqual", "type": "function" }, { "name": "failUnless", "type": "function" }, { "name": "failUnlessAlmostEqual", "type": "function" }, { "name": "failUnlessEqual", "type": "function" }, { "name": "failUnlessRaises", "type": "function" }, { "name": "failureException", "type": "statement" }, { "name": "id", "type": "function" }, { "name": "in_pd_df_by_series", "type": "statement" }, { "name": "in_pd_df_by_series_with_duplicated_popularity", "type": "statement" }, { "name": "in_pd_df_by_series_with_index", "type": "statement" }, { "name": "in_pd_df_by_series_with_nan", "type": "statement" }, { "name": "in_pd_series_dimension", "type": "statement" }, { "name": "in_pd_series_dimension_with_index", "type": "statement" }, { "name": "in_pd_series_dimension_with_nan", "type": "statement" }, { "name": "in_pd_series_measure", "type": "statement" }, { "name": "in_pd_series_measure_with_index", "type": "statement" }, { "name": "in_pd_series_measure_with_nan", "type": "statement" }, { "name": "longMessage", "type": "statement" }, { "name": "maxDiff", "type": "statement" }, { "name": "ref_pd_df_by_series", "type": "statement" }, { "name": "ref_pd_df_by_series_max_rows", "type": "statement" }, { "name": "ref_pd_df_by_series_only_index", "type": "statement" }, { "name": "ref_pd_df_by_series_with_duplicated_popularity", "type": "statement" }, { "name": "ref_pd_df_by_series_with_index", "type": "statement" }, { "name": "ref_pd_df_by_series_with_nan", "type": "statement" }, { "name": "ref_pd_series", "type": "statement" }, { "name": "ref_pd_series_only_index", "type": "statement" }, { "name": "ref_pd_series_with_index", "type": "statement" }, { "name": "ref_pd_series_with_nan", "type": "statement" }, { "name": "run", "type": "function" }, { "name": "set_up_pd_df", "type": "function" }, { "name": "set_up_pd_series", "type": "function" }, { "name": "setUp", "type": "function" }, { "name": "setUpClass", "type": "function" }, { "name": "shortDescription", "type": "function" }, { "name": "skipTest", "type": "function" }, { "name": "subTest", "type": "function" }, { "name": "tearDown", "type": "function" }, { "name": "tearDownClass", "type": "function" }, { "name": "test_add_df_index_with_df", "type": "function" }, { "name": "test_add_df_index_with_none", "type": "function" }, { "name": "_addSkip", "type": "function" }, { "name": "_formatMessage", "type": "function" }, { "name": "_getAssertEqualityFunc", "type": "function" }, { "name": "_testMethodDoc", "type": "statement" }, { "name": "_testMethodName", "type": "statement" }, { "name": "__annotations__", "type": "statement" }, { "name": "__call__", "type": "function" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
# pylint: disable=missing-module-docstring,missing-class-docstring,missing-function-docstring import pandas as pd from tests.test_data import DataWithAssets from tests.utils.import_error import RaiseImportError class TestDf(DataWithAssets): def test_add_df_if_pandas_not_installed(self) -> None: with RaiseImportError.module_name("pandas"): with self.assertRaises(ImportError): self.data.add_df(pd.DataFrame()) def test_add_df_with_none(self) -> None: self.data.add_df(None) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_df_with_empty_df(self) -> None: self.data.add_df(pd.DataFrame()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_df_with_df(self) -> None: df = self.in_pd_df_by_series_with_duplicated_popularity self.data.add_df(df) self.assertEqual( self.ref_pd_df_by_series_with_duplicated_popularity, self.data.build(), ) def test_add_df_with_df_contains_na(self) -> None: df = self.in_pd_df_by_series_with_nan self.data.add_df(df) self.assertEqual( self.ref_pd_df_by_series_with_nan, self.data.build(), ) def test_add_df_with_df_and_with_include_index(self) -> None: df = self.in_pd_df_by_series_with_index self.data.add_df(df, include_index="Index") self.assertEqual( self.ref_pd_df_by_series_with_index, self.data.build(), ) def test_add_df_with_df_and_max_rows(self) -> None: df = self.in_pd_df_by_series self.data.add_df(df, max_rows=2) self.assertEqual( self.ref_pd_df_by_series_max_rows, self.data.build(), ) class TestDataFrame(DataWithAssets): def test_add_data_frame_with_none(self) -> None: self.data.add_data_frame(None) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_data_frame_with_empty_df(self) -> None: self.data.add_data_frame(pd.DataFrame()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_data_frame_with_df(self) -> None: df = self.in_pd_df_by_series_with_duplicated_popularity self.data.add_data_frame(df) self.assertEqual( self.ref_pd_df_by_series_with_duplicated_popularity, self.data.build(), ) def test_add_data_frame_with_df_contains_na(self) -> None: df = self.in_pd_df_by_series_with_nan self.data.add_data_frame(df) self.assertEqual( self.ref_pd_df_by_series_with_nan, self.data.build(), ) class TestDfWithSeries(DataWithAssets): def test_add_df_with_empty_series(self) -> None: self.data.add_df(pd.Series()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_df_with_series(self) -> None: self.data.add_df(self.in_pd_series_dimension) self.data.add_df(self.in_pd_series_measure) self.assertEqual( self.ref_pd_series, self.data.build(), ) def test_add_df_with_series_contains_na(self) -> None: self.data.add_df(self.in_pd_series_dimension_with_nan) self.data.add_df(self.in_pd_series_measure_with_nan) self.assertEqual( self.ref_pd_series_with_nan, self.data.build(), ) def test_add_df_with_series_and_with_include_index(self) -> None: self.data.add_df( self.in_pd_series_dimension_with_index, include_index="DimensionIndex", ) self.data.add_df( self.in_pd_series_measure_with_index, include_index="MeasureIndex", ) self.assertEqual( self.ref_pd_series_with_index, self.data.build(), ) class TestDataFrameWithSeries(DataWithAssets): def test_add_data_frame_with_empty_series(self) -> None: self.data.add_data_frame(pd.Series()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_data_frame_with_series(self) -> None: self.data.add_data_frame(self.in_pd_series_dimension) self.data.add_data_frame(self.in_pd_series_measure) self.assertEqual( self.ref_pd_series, self.data.build(), ) def test_add_data_frame_with_series_contains_na(self) -> None: self.data.add_data_frame(self.in_pd_series_dimension_with_nan) self.data.add_data_frame(self.in_pd_series_measure_with_nan) self.assertEqual( self.ref_pd_series_with_nan, self.data.build(), ) class TestDfIndex(DataWithAssets): def test_add_df_index_with_none(self) -> None: self.data.add_df_index(None, column_name="Index") self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_df_index_with_df(self) -> None: df = self.in_pd_df_by_series_with_index self.
[ "data", "assertEqual", "test_add_df_index_with_none", "in_pd_series_measure_with_index", "in_pd_series_dimension_with_index", "test_add_df_index_with_df", "asset_dir", "in_pd_df_by_series", "in_pd_df_by_series_with_duplicated_popularity", "in_pd_df_by_series_with_index", "in_pd_df_by_series_with_nan", "in_pd_series_dimension", "in_pd_series_dimension_with_nan", "in_pd_series_measure", "in_pd_series_measure_with_nan", "ref_pd_df_by_series", "ref_pd_df_by_series_max_rows", "ref_pd_df_by_series_only_index", "ref_pd_df_by_series_with_duplicated_popularity", "ref_pd_df_by_series_with_index", "ref_pd_df_by_series_with_nan", "ref_pd_series", "ref_pd_series_only_index", "ref_pd_series_with_index", "ref_pd_series_with_nan", "set_up_pd_df", "set_up_pd_series", "setUp", "setUpClass", "addClassCleanup", "addCleanup", "addTypeEqualityFunc", "assert_", "assertAlmostEqual", "assertAlmostEquals", "assertCountEqual", "assertDictContainsSubset", "assertDictEqual", "assertEquals", "assertFalse", "assertGreater", "assertGreaterEqual", "assertIn", "assertIs", "assertIsInstance", "assertIsNone", "assertIsNot", "assertIsNotNone", "assertLess", "assertLessEqual", "assertListEqual", "assertLogs", "assertMultiLineEqual", "assertNoLogs", "assertNotAlmostEqual", "assertNotAlmostEquals", "assertNotEqual", "assertNotEquals", "assertNotIn", "assertNotIsInstance", "assertNotRegex", "assertNotRegexpMatches", "assertRaises", "assertRaisesRegex", "assertRaisesRegexp", "assertRegex", "assertRegexpMatches", "assertSequenceEqual", "assertSetEqual", "assertTrue", "assertTupleEqual", "assertWarns", "assertWarnsRegex", "countTestCases", "debug", "defaultTestResult", "doClassCleanups", "doCleanups", "fail", "failIf", "failIfAlmostEqual", "failIfEqual", "failUnless", "failUnlessAlmostEqual", "failUnlessEqual", "failUnlessRaises", "failureException", "id", "longMessage", "maxDiff", "run", "shortDescription", "skipTest", "subTest", "tearDown", "tearDownClass" ]
def test_add_df_with_series_contains_na(self) -> None: self.data.add_df(self.in_pd_series_dimension_with_nan) self.data.add_df(self.in_pd_series_measure_with_nan) self.assertEqual( self.ref_pd_series_with_nan, self.data.build(), ) def test_add_df_with_series_and_with_include_index(self) -> None: self.data.add_df( self.in_pd_series_dimension_with_index, include_index="DimensionIndex", ) self.data.add_df( self.in_pd_series_measure_with_index, include_index="MeasureIndex", ) self.assertEqual( self.ref_pd_series_with_index, self.data.build(), ) class TestDataFrameWithSeries(DataWithAssets): def test_add_data_frame_with_empty_series(self) -> None: self.data.add_data_frame(pd.Series()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_data_frame_with_series(self) -> None: self.data.add_data_frame(self.in_pd_series_dimension) self.data.add_data_frame(self.in_pd_series_measure) self.assertEqual( self.ref_pd_series, self.data.build(), ) def test_add_data_frame_with_series_contains_na(self) -> None: self.data.add_data_frame(self.in_pd_series_dimension_with_nan) self.data.add_data_frame(self.in_pd_series_measure_with_nan) self.assertEqual( self.ref_pd_series_with_nan, self.data.build(), ) class TestDfIndex(DataWithAssets): def test_add_df_index_with_none(self) -> None: self.data.add_df_index(None, column_name="Index") self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_df_index_with_df(self) -> None: df = self.in_pd_df_by_series_with_index self.
5,429
7,696
216
5,234
vizzuhq__ipyvizzu
54b0334aa736a77f9430739c9375b16be145b3fd
tests/test_data/test_pandas.py
inproject
add_df_index
true
function
28
30
false
false
[ "add_df", "add_data_frame", "build", "add_data_frame_index", "add_df_index", "add_dimension", "add_measure", "add_np_array", "add_record", "add_records", "add_series", "add_series_list", "add_spark_df", "dump", "filter", "from_json", "set_filter", "clear", "copy", "fromkeys", "get", "items", "keys", "pop", "popitem", "setdefault", "update", "values", "__annotations__", "__class__", "__class_getitem__", "__contains__", "__delattr__", "__delitem__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__getitem__", "__hash__", "__init__", "__init_subclass__", "__ior__", "__iter__", "__len__", "__ne__", "__new__", "__or__", "__reduce__", "__reduce_ex__", "__repr__", "__reversed__", "__ror__", "__setattr__", "__setitem__", "__sizeof__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "add_data_frame", "type": "function" }, { "name": "add_data_frame_index", "type": "function" }, { "name": "add_df", "type": "function" }, { "name": "add_df_index", "type": "function" }, { "name": "add_dimension", "type": "function" }, { "name": "add_measure", "type": "function" }, { "name": "add_np_array", "type": "function" }, { "name": "add_record", "type": "function" }, { "name": "add_records", "type": "function" }, { "name": "add_series", "type": "function" }, { "name": "add_series_list", "type": "function" }, { "name": "add_spark_df", "type": "function" }, { "name": "build", "type": "function" }, { "name": "clear", "type": "function" }, { "name": "copy", "type": "function" }, { "name": "dump", "type": "function" }, { "name": "filter", "type": "function" }, { "name": "from_json", "type": "function" }, { "name": "fromkeys", "type": "function" }, { "name": "get", "type": "function" }, { "name": "items", "type": "function" }, { "name": "keys", "type": "function" }, { "name": "pop", "type": "function" }, { "name": "popitem", "type": "function" }, { "name": "set_filter", "type": "function" }, { "name": "setdefault", "type": "function" }, { "name": "update", "type": "function" }, { "name": "values", "type": "function" }, { "name": "_add_named_value", "type": "function" }, { "name": "_add_value", "type": "function" }, { "name": "__annotations__", "type": "statement" }, { "name": "__class__", "type": "property" }, { "name": "__class_getitem__", "type": "function" }, { "name": "__contains__", "type": "function" }, { "name": "__delattr__", "type": "function" }, { "name": "__delitem__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__getitem__", "type": "function" }, { "name": "__hash__", "type": "statement" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__ior__", "type": "function" }, { "name": "__iter__", "type": "function" }, { "name": "__len__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__or__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__reversed__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__setitem__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
# pylint: disable=missing-module-docstring,missing-class-docstring,missing-function-docstring import pandas as pd from tests.test_data import DataWithAssets from tests.utils.import_error import RaiseImportError class TestDf(DataWithAssets): def test_add_df_if_pandas_not_installed(self) -> None: with RaiseImportError.module_name("pandas"): with self.assertRaises(ImportError): self.data.add_df(pd.DataFrame()) def test_add_df_with_none(self) -> None: self.data.add_df(None) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_df_with_empty_df(self) -> None: self.data.add_df(pd.DataFrame()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_df_with_df(self) -> None: df = self.in_pd_df_by_series_with_duplicated_popularity self.data.add_df(df) self.assertEqual( self.ref_pd_df_by_series_with_duplicated_popularity, self.data.build(), ) def test_add_df_with_df_contains_na(self) -> None: df = self.in_pd_df_by_series_with_nan self.data.add_df(df) self.assertEqual( self.ref_pd_df_by_series_with_nan, self.data.build(), ) def test_add_df_with_df_and_with_include_index(self) -> None: df = self.in_pd_df_by_series_with_index self.data.add_df(df, include_index="Index") self.assertEqual( self.ref_pd_df_by_series_with_index, self.data.build(), ) def test_add_df_with_df_and_max_rows(self) -> None: df = self.in_pd_df_by_series self.data.add_df(df, max_rows=2) self.assertEqual( self.ref_pd_df_by_series_max_rows, self.data.build(), ) class TestDataFrame(DataWithAssets): def test_add_data_frame_with_none(self) -> None: self.data.add_data_frame(None) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_data_frame_with_empty_df(self) -> None: self.data.add_data_frame(pd.DataFrame()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_data_frame_with_df(self) -> None: df = self.in_pd_df_by_series_with_duplicated_popularity self.data.add_data_frame(df) self.assertEqual( self.ref_pd_df_by_series_with_duplicated_popularity, self.data.build(), ) def test_add_data_frame_with_df_contains_na(self) -> None: df = self.in_pd_df_by_series_with_nan self.data.add_data_frame(df) self.assertEqual( self.ref_pd_df_by_series_with_nan, self.data.build(), ) class TestDfWithSeries(DataWithAssets): def test_add_df_with_empty_series(self) -> None: self.data.add_df(pd.Series()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_df_with_series(self) -> None: self.data.add_df(self.in_pd_series_dimension) self.data.add_df(self.in_pd_series_measure) self.assertEqual( self.ref_pd_series, self.data.build(), ) def test_add_df_with_series_contains_na(self) -> None: self.data.add_df(self.in_pd_series_dimension_with_nan) self.data.add_df(self.in_pd_series_measure_with_nan) self.assertEqual( self.ref_pd_series_with_nan, self.data.build(), ) def test_add_df_with_series_and_with_include_index(self) -> None: self.data.add_df( self.in_pd_series_dimension_with_index, include_index="DimensionIndex", ) self.data.add_df( self.in_pd_series_measure_with_index, include_index="MeasureIndex", ) self.assertEqual( self.ref_pd_series_with_index, self.data.build(), ) class TestDataFrameWithSeries(DataWithAssets): def test_add_data_frame_with_empty_series(self) -> None: self.data.add_data_frame(pd.Series()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_data_frame_with_series(self) -> None: self.data.add_data_frame(self.in_pd_series_dimension) self.data.add_data_frame(self.in_pd_series_measure) self.assertEqual( self.ref_pd_series, self.data.build(), ) def test_add_data_frame_with_series_contains_na(self) -> None: self.data.add_data_frame(self.in_pd_series_dimension_with_nan) self.data.add_data_frame(self.in_pd_series_measure_with_nan) self.assertEqual( self.ref_pd_series_with_nan, self.data.build(), ) class TestDfIndex(DataWithAssets): def test_add_df_index_with_none(self) -> None: self.data.add_df_index(None, column_name="Index") self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_df_index_with_df(self) -> None: df = self.in_pd_df_by_series_with_index self.data.
[ "add_df", "add_data_frame", "build", "add_data_frame_index", "add_df_index", "add_dimension", "add_measure", "add_np_array", "add_record", "add_records", "add_series", "add_series_list", "add_spark_df", "dump", "filter", "from_json", "set_filter", "clear", "copy", "fromkeys", "get", "items", "keys", "pop", "popitem", "setdefault", "update", "values" ]
est_add_df_with_series_contains_na(self) -> None: self.data.add_df(self.in_pd_series_dimension_with_nan) self.data.add_df(self.in_pd_series_measure_with_nan) self.assertEqual( self.ref_pd_series_with_nan, self.data.build(), ) def test_add_df_with_series_and_with_include_index(self) -> None: self.data.add_df( self.in_pd_series_dimension_with_index, include_index="DimensionIndex", ) self.data.add_df( self.in_pd_series_measure_with_index, include_index="MeasureIndex", ) self.assertEqual( self.ref_pd_series_with_index, self.data.build(), ) class TestDataFrameWithSeries(DataWithAssets): def test_add_data_frame_with_empty_series(self) -> None: self.data.add_data_frame(pd.Series()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_data_frame_with_series(self) -> None: self.data.add_data_frame(self.in_pd_series_dimension) self.data.add_data_frame(self.in_pd_series_measure) self.assertEqual( self.ref_pd_series, self.data.build(), ) def test_add_data_frame_with_series_contains_na(self) -> None: self.data.add_data_frame(self.in_pd_series_dimension_with_nan) self.data.add_data_frame(self.in_pd_series_measure_with_nan) self.assertEqual( self.ref_pd_series_with_nan, self.data.build(), ) class TestDfIndex(DataWithAssets): def test_add_df_index_with_none(self) -> None: self.data.add_df_index(None, column_name="Index") self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_df_index_with_df(self) -> None: df = self.in_pd_df_by_series_with_index self.data.
5,430
7,697
216
5,315
vizzuhq__ipyvizzu
54b0334aa736a77f9430739c9375b16be145b3fd
tests/test_data/test_pandas.py
random
ref_pd_df_by_series_only_index
true
statement
96
100
false
true
[ "data", "in_pd_series_measure_with_index", "in_pd_series_dimension_with_index", "in_pd_df_by_series_with_index", "ref_pd_series_only_index", "test_add_df_index_with_df", "test_add_df_index_with_none", "asset_dir", "in_pd_df_by_series", "in_pd_df_by_series_with_duplicated_popularity", "in_pd_df_by_series_with_nan", "in_pd_series_dimension", "in_pd_series_dimension_with_nan", "in_pd_series_measure", "in_pd_series_measure_with_nan", "ref_pd_df_by_series", "ref_pd_df_by_series_max_rows", "ref_pd_df_by_series_only_index", "ref_pd_df_by_series_with_duplicated_popularity", "ref_pd_df_by_series_with_index", "ref_pd_df_by_series_with_nan", "ref_pd_series", "ref_pd_series_with_index", "ref_pd_series_with_nan", "set_up_pd_df", "set_up_pd_series", "setUp", "setUpClass", "addClassCleanup", "addCleanup", "addTypeEqualityFunc", "assert_", "assertAlmostEqual", "assertAlmostEquals", "assertCountEqual", "assertDictContainsSubset", "assertDictEqual", "assertEqual", "assertEquals", "assertFalse", "assertGreater", "assertGreaterEqual", "assertIn", "assertIs", "assertIsInstance", "assertIsNone", "assertIsNot", "assertIsNotNone", "assertLess", "assertLessEqual", "assertListEqual", "assertLogs", "assertMultiLineEqual", "assertNoLogs", "assertNotAlmostEqual", "assertNotAlmostEquals", "assertNotEqual", "assertNotEquals", "assertNotIn", "assertNotIsInstance", "assertNotRegex", "assertNotRegexpMatches", "assertRaises", "assertRaisesRegex", "assertRaisesRegexp", "assertRegex", "assertRegexpMatches", "assertSequenceEqual", "assertSetEqual", "assertTrue", "assertTupleEqual", "assertWarns", "assertWarnsRegex", "countTestCases", "debug", "defaultTestResult", "doClassCleanups", "doCleanups", "fail", "failIf", "failIfAlmostEqual", "failIfEqual", "failUnless", "failUnlessAlmostEqual", "failUnlessEqual", "failUnlessRaises", "failureException", "id", "longMessage", "maxDiff", "run", "shortDescription", "skipTest", "subTest", "tearDown", "tearDownClass", "__annotations__", "__call__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "addClassCleanup", "type": "function" }, { "name": "addCleanup", "type": "function" }, { "name": "addTypeEqualityFunc", "type": "function" }, { "name": "assert_", "type": "function" }, { "name": "assertAlmostEqual", "type": "function" }, { "name": "assertAlmostEquals", "type": "function" }, { "name": "assertCountEqual", "type": "function" }, { "name": "assertDictContainsSubset", "type": "function" }, { "name": "assertDictEqual", "type": "function" }, { "name": "assertEqual", "type": "function" }, { "name": "assertEquals", "type": "function" }, { "name": "assertFalse", "type": "function" }, { "name": "assertGreater", "type": "function" }, { "name": "assertGreaterEqual", "type": "function" }, { "name": "assertIn", "type": "function" }, { "name": "assertIs", "type": "function" }, { "name": "assertIsInstance", "type": "function" }, { "name": "assertIsNone", "type": "function" }, { "name": "assertIsNot", "type": "function" }, { "name": "assertIsNotNone", "type": "function" }, { "name": "assertLess", "type": "function" }, { "name": "assertLessEqual", "type": "function" }, { "name": "assertListEqual", "type": "function" }, { "name": "assertLogs", "type": "function" }, { "name": "assertMultiLineEqual", "type": "function" }, { "name": "assertNotAlmostEqual", "type": "function" }, { "name": "assertNotAlmostEquals", "type": "function" }, { "name": "assertNotEqual", "type": "function" }, { "name": "assertNotEquals", "type": "function" }, { "name": "assertNotIn", "type": "function" }, { "name": "assertNotIsInstance", "type": "function" }, { "name": "assertNotRegex", "type": "function" }, { "name": "assertNotRegexpMatches", "type": "function" }, { "name": "assertRaises", "type": "function" }, { "name": "assertRaisesRegex", "type": "function" }, { "name": "assertRaisesRegexp", "type": "function" }, { "name": "assertRegex", "type": "function" }, { "name": "assertRegexpMatches", "type": "function" }, { "name": "assertSequenceEqual", "type": "function" }, { "name": "assertSetEqual", "type": "function" }, { "name": "assertTrue", "type": "function" }, { "name": "assertTupleEqual", "type": "function" }, { "name": "assertWarns", "type": "function" }, { "name": "assertWarnsRegex", "type": "function" }, { "name": "asset_dir", "type": "statement" }, { "name": "countTestCases", "type": "function" }, { "name": "data", "type": "statement" }, { "name": "debug", "type": "function" }, { "name": "defaultTestResult", "type": "function" }, { "name": "doClassCleanups", "type": "function" }, { "name": "doCleanups", "type": "function" }, { "name": "fail", "type": "function" }, { "name": "failIf", "type": "function" }, { "name": "failIfAlmostEqual", "type": "function" }, { "name": "failIfEqual", "type": "function" }, { "name": "failUnless", "type": "function" }, { "name": "failUnlessAlmostEqual", "type": "function" }, { "name": "failUnlessEqual", "type": "function" }, { "name": "failUnlessRaises", "type": "function" }, { "name": "failureException", "type": "statement" }, { "name": "id", "type": "function" }, { "name": "in_pd_df_by_series", "type": "statement" }, { "name": "in_pd_df_by_series_with_duplicated_popularity", "type": "statement" }, { "name": "in_pd_df_by_series_with_index", "type": "statement" }, { "name": "in_pd_df_by_series_with_nan", "type": "statement" }, { "name": "in_pd_series_dimension", "type": "statement" }, { "name": "in_pd_series_dimension_with_index", "type": "statement" }, { "name": "in_pd_series_dimension_with_nan", "type": "statement" }, { "name": "in_pd_series_measure", "type": "statement" }, { "name": "in_pd_series_measure_with_index", "type": "statement" }, { "name": "in_pd_series_measure_with_nan", "type": "statement" }, { "name": "longMessage", "type": "statement" }, { "name": "maxDiff", "type": "statement" }, { "name": "ref_pd_df_by_series", "type": "statement" }, { "name": "ref_pd_df_by_series_max_rows", "type": "statement" }, { "name": "ref_pd_df_by_series_only_index", "type": "statement" }, { "name": "ref_pd_df_by_series_with_duplicated_popularity", "type": "statement" }, { "name": "ref_pd_df_by_series_with_index", "type": "statement" }, { "name": "ref_pd_df_by_series_with_nan", "type": "statement" }, { "name": "ref_pd_series", "type": "statement" }, { "name": "ref_pd_series_only_index", "type": "statement" }, { "name": "ref_pd_series_with_index", "type": "statement" }, { "name": "ref_pd_series_with_nan", "type": "statement" }, { "name": "run", "type": "function" }, { "name": "set_up_pd_df", "type": "function" }, { "name": "set_up_pd_series", "type": "function" }, { "name": "setUp", "type": "function" }, { "name": "setUpClass", "type": "function" }, { "name": "shortDescription", "type": "function" }, { "name": "skipTest", "type": "function" }, { "name": "subTest", "type": "function" }, { "name": "tearDown", "type": "function" }, { "name": "tearDownClass", "type": "function" }, { "name": "test_add_df_index_with_df", "type": "function" }, { "name": "test_add_df_index_with_none", "type": "function" }, { "name": "_addSkip", "type": "function" }, { "name": "_formatMessage", "type": "function" }, { "name": "_getAssertEqualityFunc", "type": "function" }, { "name": "_testMethodDoc", "type": "statement" }, { "name": "_testMethodName", "type": "statement" }, { "name": "__annotations__", "type": "statement" }, { "name": "__call__", "type": "function" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
# pylint: disable=missing-module-docstring,missing-class-docstring,missing-function-docstring import pandas as pd from tests.test_data import DataWithAssets from tests.utils.import_error import RaiseImportError class TestDf(DataWithAssets): def test_add_df_if_pandas_not_installed(self) -> None: with RaiseImportError.module_name("pandas"): with self.assertRaises(ImportError): self.data.add_df(pd.DataFrame()) def test_add_df_with_none(self) -> None: self.data.add_df(None) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_df_with_empty_df(self) -> None: self.data.add_df(pd.DataFrame()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_df_with_df(self) -> None: df = self.in_pd_df_by_series_with_duplicated_popularity self.data.add_df(df) self.assertEqual( self.ref_pd_df_by_series_with_duplicated_popularity, self.data.build(), ) def test_add_df_with_df_contains_na(self) -> None: df = self.in_pd_df_by_series_with_nan self.data.add_df(df) self.assertEqual( self.ref_pd_df_by_series_with_nan, self.data.build(), ) def test_add_df_with_df_and_with_include_index(self) -> None: df = self.in_pd_df_by_series_with_index self.data.add_df(df, include_index="Index") self.assertEqual( self.ref_pd_df_by_series_with_index, self.data.build(), ) def test_add_df_with_df_and_max_rows(self) -> None: df = self.in_pd_df_by_series self.data.add_df(df, max_rows=2) self.assertEqual( self.ref_pd_df_by_series_max_rows, self.data.build(), ) class TestDataFrame(DataWithAssets): def test_add_data_frame_with_none(self) -> None: self.data.add_data_frame(None) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_data_frame_with_empty_df(self) -> None: self.data.add_data_frame(pd.DataFrame()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_data_frame_with_df(self) -> None: df = self.in_pd_df_by_series_with_duplicated_popularity self.data.add_data_frame(df) self.assertEqual( self.ref_pd_df_by_series_with_duplicated_popularity, self.data.build(), ) def test_add_data_frame_with_df_contains_na(self) -> None: df = self.in_pd_df_by_series_with_nan self.data.add_data_frame(df) self.assertEqual( self.ref_pd_df_by_series_with_nan, self.data.build(), ) class TestDfWithSeries(DataWithAssets): def test_add_df_with_empty_series(self) -> None: self.data.add_df(pd.Series()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_df_with_series(self) -> None: self.data.add_df(self.in_pd_series_dimension) self.data.add_df(self.in_pd_series_measure) self.assertEqual( self.ref_pd_series, self.data.build(), ) def test_add_df_with_series_contains_na(self) -> None: self.data.add_df(self.in_pd_series_dimension_with_nan) self.data.add_df(self.in_pd_series_measure_with_nan) self.assertEqual( self.ref_pd_series_with_nan, self.data.build(), ) def test_add_df_with_series_and_with_include_index(self) -> None: self.data.add_df( self.in_pd_series_dimension_with_index, include_index="DimensionIndex", ) self.data.add_df( self.in_pd_series_measure_with_index, include_index="MeasureIndex", ) self.assertEqual( self.ref_pd_series_with_index, self.data.build(), ) class TestDataFrameWithSeries(DataWithAssets): def test_add_data_frame_with_empty_series(self) -> None: self.data.add_data_frame(pd.Series()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_data_frame_with_series(self) -> None: self.data.add_data_frame(self.in_pd_series_dimension) self.data.add_data_frame(self.in_pd_series_measure) self.assertEqual( self.ref_pd_series, self.data.build(), ) def test_add_data_frame_with_series_contains_na(self) -> None: self.data.add_data_frame(self.in_pd_series_dimension_with_nan) self.data.add_data_frame(self.in_pd_series_measure_with_nan) self.assertEqual( self.ref_pd_series_with_nan, self.data.build(), ) class TestDfIndex(DataWithAssets): def test_add_df_index_with_none(self) -> None: self.data.add_df_index(None, column_name="Index") self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_df_index_with_df(self) -> None: df = self.in_pd_df_by_series_with_index self.data.add_df_index(df, column_name="Index") self.assertEqual( self.
[ "data", "in_pd_series_measure_with_index", "in_pd_series_dimension_with_index", "in_pd_df_by_series_with_index", "ref_pd_series_only_index", "test_add_df_index_with_df", "test_add_df_index_with_none", "asset_dir", "in_pd_df_by_series", "in_pd_df_by_series_with_duplicated_popularity", "in_pd_df_by_series_with_nan", "in_pd_series_dimension", "in_pd_series_dimension_with_nan", "in_pd_series_measure", "in_pd_series_measure_with_nan", "ref_pd_df_by_series", "ref_pd_df_by_series_max_rows", "ref_pd_df_by_series_only_index", "ref_pd_df_by_series_with_duplicated_popularity", "ref_pd_df_by_series_with_index", "ref_pd_df_by_series_with_nan", "ref_pd_series", "ref_pd_series_with_index", "ref_pd_series_with_nan", "set_up_pd_df", "set_up_pd_series", "setUp", "setUpClass", "addClassCleanup", "addCleanup", "addTypeEqualityFunc", "assert_", "assertAlmostEqual", "assertAlmostEquals", "assertCountEqual", "assertDictContainsSubset", "assertDictEqual", "assertEqual", "assertEquals", "assertFalse", "assertGreater", "assertGreaterEqual", "assertIn", "assertIs", "assertIsInstance", "assertIsNone", "assertIsNot", "assertIsNotNone", "assertLess", "assertLessEqual", "assertListEqual", "assertLogs", "assertMultiLineEqual", "assertNoLogs", "assertNotAlmostEqual", "assertNotAlmostEquals", "assertNotEqual", "assertNotEquals", "assertNotIn", "assertNotIsInstance", "assertNotRegex", "assertNotRegexpMatches", "assertRaises", "assertRaisesRegex", "assertRaisesRegexp", "assertRegex", "assertRegexpMatches", "assertSequenceEqual", "assertSetEqual", "assertTrue", "assertTupleEqual", "assertWarns", "assertWarnsRegex", "countTestCases", "debug", "defaultTestResult", "doClassCleanups", "doCleanups", "fail", "failIf", "failIfAlmostEqual", "failIfEqual", "failUnless", "failUnlessAlmostEqual", "failUnlessEqual", "failUnlessRaises", "failureException", "id", "longMessage", "maxDiff", "run", "shortDescription", "skipTest", "subTest", "tearDown", "tearDownClass" ]
n_pd_series_dimension_with_nan) self.data.add_df(self.in_pd_series_measure_with_nan) self.assertEqual( self.ref_pd_series_with_nan, self.data.build(), ) def test_add_df_with_series_and_with_include_index(self) -> None: self.data.add_df( self.in_pd_series_dimension_with_index, include_index="DimensionIndex", ) self.data.add_df( self.in_pd_series_measure_with_index, include_index="MeasureIndex", ) self.assertEqual( self.ref_pd_series_with_index, self.data.build(), ) class TestDataFrameWithSeries(DataWithAssets): def test_add_data_frame_with_empty_series(self) -> None: self.data.add_data_frame(pd.Series()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_data_frame_with_series(self) -> None: self.data.add_data_frame(self.in_pd_series_dimension) self.data.add_data_frame(self.in_pd_series_measure) self.assertEqual( self.ref_pd_series, self.data.build(), ) def test_add_data_frame_with_series_contains_na(self) -> None: self.data.add_data_frame(self.in_pd_series_dimension_with_nan) self.data.add_data_frame(self.in_pd_series_measure_with_nan) self.assertEqual( self.ref_pd_series_with_nan, self.data.build(), ) class TestDfIndex(DataWithAssets): def test_add_df_index_with_none(self) -> None: self.data.add_df_index(None, column_name="Index") self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_df_index_with_df(self) -> None: df = self.in_pd_df_by_series_with_index self.data.add_df_index(df, column_name="Index") self.assertEqual( self.
5,431
7,700
216
5,504
vizzuhq__ipyvizzu
54b0334aa736a77f9430739c9375b16be145b3fd
tests/test_data/test_pandas.py
inproject
data
true
statement
96
100
false
false
[ "data", "assertEqual", "test_add_data_frame_index_with_df", "in_pd_series_measure_with_index", "in_pd_series_dimension_with_index", "test_add_data_frame_index_with_none", "asset_dir", "in_pd_df_by_series", "in_pd_df_by_series_with_duplicated_popularity", "in_pd_df_by_series_with_index", "in_pd_df_by_series_with_nan", "in_pd_series_dimension", "in_pd_series_dimension_with_nan", "in_pd_series_measure", "in_pd_series_measure_with_nan", "ref_pd_df_by_series", "ref_pd_df_by_series_max_rows", "ref_pd_df_by_series_only_index", "ref_pd_df_by_series_with_duplicated_popularity", "ref_pd_df_by_series_with_index", "ref_pd_df_by_series_with_nan", "ref_pd_series", "ref_pd_series_only_index", "ref_pd_series_with_index", "ref_pd_series_with_nan", "set_up_pd_df", "set_up_pd_series", "setUp", "setUpClass", "addClassCleanup", "addCleanup", "addTypeEqualityFunc", "assert_", "assertAlmostEqual", "assertAlmostEquals", "assertCountEqual", "assertDictContainsSubset", "assertDictEqual", "assertEquals", "assertFalse", "assertGreater", "assertGreaterEqual", "assertIn", "assertIs", "assertIsInstance", "assertIsNone", "assertIsNot", "assertIsNotNone", "assertLess", "assertLessEqual", "assertListEqual", "assertLogs", "assertMultiLineEqual", "assertNoLogs", "assertNotAlmostEqual", "assertNotAlmostEquals", "assertNotEqual", "assertNotEquals", "assertNotIn", "assertNotIsInstance", "assertNotRegex", "assertNotRegexpMatches", "assertRaises", "assertRaisesRegex", "assertRaisesRegexp", "assertRegex", "assertRegexpMatches", "assertSequenceEqual", "assertSetEqual", "assertTrue", "assertTupleEqual", "assertWarns", "assertWarnsRegex", "countTestCases", "debug", "defaultTestResult", "doClassCleanups", "doCleanups", "fail", "failIf", "failIfAlmostEqual", "failIfEqual", "failUnless", "failUnlessAlmostEqual", "failUnlessEqual", "failUnlessRaises", "failureException", "id", "longMessage", "maxDiff", "run", "shortDescription", "skipTest", "subTest", "tearDown", "tearDownClass", "__annotations__", "__call__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "addClassCleanup", "type": "function" }, { "name": "addCleanup", "type": "function" }, { "name": "addTypeEqualityFunc", "type": "function" }, { "name": "assert_", "type": "function" }, { "name": "assertAlmostEqual", "type": "function" }, { "name": "assertAlmostEquals", "type": "function" }, { "name": "assertCountEqual", "type": "function" }, { "name": "assertDictContainsSubset", "type": "function" }, { "name": "assertDictEqual", "type": "function" }, { "name": "assertEqual", "type": "function" }, { "name": "assertEquals", "type": "function" }, { "name": "assertFalse", "type": "function" }, { "name": "assertGreater", "type": "function" }, { "name": "assertGreaterEqual", "type": "function" }, { "name": "assertIn", "type": "function" }, { "name": "assertIs", "type": "function" }, { "name": "assertIsInstance", "type": "function" }, { "name": "assertIsNone", "type": "function" }, { "name": "assertIsNot", "type": "function" }, { "name": "assertIsNotNone", "type": "function" }, { "name": "assertLess", "type": "function" }, { "name": "assertLessEqual", "type": "function" }, { "name": "assertListEqual", "type": "function" }, { "name": "assertLogs", "type": "function" }, { "name": "assertMultiLineEqual", "type": "function" }, { "name": "assertNotAlmostEqual", "type": "function" }, { "name": "assertNotAlmostEquals", "type": "function" }, { "name": "assertNotEqual", "type": "function" }, { "name": "assertNotEquals", "type": "function" }, { "name": "assertNotIn", "type": "function" }, { "name": "assertNotIsInstance", "type": "function" }, { "name": "assertNotRegex", "type": "function" }, { "name": "assertNotRegexpMatches", "type": "function" }, { "name": "assertRaises", "type": "function" }, { "name": "assertRaisesRegex", "type": "function" }, { "name": "assertRaisesRegexp", "type": "function" }, { "name": "assertRegex", "type": "function" }, { "name": "assertRegexpMatches", "type": "function" }, { "name": "assertSequenceEqual", "type": "function" }, { "name": "assertSetEqual", "type": "function" }, { "name": "assertTrue", "type": "function" }, { "name": "assertTupleEqual", "type": "function" }, { "name": "assertWarns", "type": "function" }, { "name": "assertWarnsRegex", "type": "function" }, { "name": "asset_dir", "type": "statement" }, { "name": "countTestCases", "type": "function" }, { "name": "data", "type": "statement" }, { "name": "debug", "type": "function" }, { "name": "defaultTestResult", "type": "function" }, { "name": "doClassCleanups", "type": "function" }, { "name": "doCleanups", "type": "function" }, { "name": "fail", "type": "function" }, { "name": "failIf", "type": "function" }, { "name": "failIfAlmostEqual", "type": "function" }, { "name": "failIfEqual", "type": "function" }, { "name": "failUnless", "type": "function" }, { "name": "failUnlessAlmostEqual", "type": "function" }, { "name": "failUnlessEqual", "type": "function" }, { "name": "failUnlessRaises", "type": "function" }, { "name": "failureException", "type": "statement" }, { "name": "id", "type": "function" }, { "name": "in_pd_df_by_series", "type": "statement" }, { "name": "in_pd_df_by_series_with_duplicated_popularity", "type": "statement" }, { "name": "in_pd_df_by_series_with_index", "type": "statement" }, { "name": "in_pd_df_by_series_with_nan", "type": "statement" }, { "name": "in_pd_series_dimension", "type": "statement" }, { "name": "in_pd_series_dimension_with_index", "type": "statement" }, { "name": "in_pd_series_dimension_with_nan", "type": "statement" }, { "name": "in_pd_series_measure", "type": "statement" }, { "name": "in_pd_series_measure_with_index", "type": "statement" }, { "name": "in_pd_series_measure_with_nan", "type": "statement" }, { "name": "longMessage", "type": "statement" }, { "name": "maxDiff", "type": "statement" }, { "name": "ref_pd_df_by_series", "type": "statement" }, { "name": "ref_pd_df_by_series_max_rows", "type": "statement" }, { "name": "ref_pd_df_by_series_only_index", "type": "statement" }, { "name": "ref_pd_df_by_series_with_duplicated_popularity", "type": "statement" }, { "name": "ref_pd_df_by_series_with_index", "type": "statement" }, { "name": "ref_pd_df_by_series_with_nan", "type": "statement" }, { "name": "ref_pd_series", "type": "statement" }, { "name": "ref_pd_series_only_index", "type": "statement" }, { "name": "ref_pd_series_with_index", "type": "statement" }, { "name": "ref_pd_series_with_nan", "type": "statement" }, { "name": "run", "type": "function" }, { "name": "set_up_pd_df", "type": "function" }, { "name": "set_up_pd_series", "type": "function" }, { "name": "setUp", "type": "function" }, { "name": "setUpClass", "type": "function" }, { "name": "shortDescription", "type": "function" }, { "name": "skipTest", "type": "function" }, { "name": "subTest", "type": "function" }, { "name": "tearDown", "type": "function" }, { "name": "tearDownClass", "type": "function" }, { "name": "test_add_data_frame_index_with_df", "type": "function" }, { "name": "test_add_data_frame_index_with_none", "type": "function" }, { "name": "_addSkip", "type": "function" }, { "name": "_formatMessage", "type": "function" }, { "name": "_getAssertEqualityFunc", "type": "function" }, { "name": "_testMethodDoc", "type": "statement" }, { "name": "_testMethodName", "type": "statement" }, { "name": "__annotations__", "type": "statement" }, { "name": "__call__", "type": "function" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
# pylint: disable=missing-module-docstring,missing-class-docstring,missing-function-docstring import pandas as pd from tests.test_data import DataWithAssets from tests.utils.import_error import RaiseImportError class TestDf(DataWithAssets): def test_add_df_if_pandas_not_installed(self) -> None: with RaiseImportError.module_name("pandas"): with self.assertRaises(ImportError): self.data.add_df(pd.DataFrame()) def test_add_df_with_none(self) -> None: self.data.add_df(None) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_df_with_empty_df(self) -> None: self.data.add_df(pd.DataFrame()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_df_with_df(self) -> None: df = self.in_pd_df_by_series_with_duplicated_popularity self.data.add_df(df) self.assertEqual( self.ref_pd_df_by_series_with_duplicated_popularity, self.data.build(), ) def test_add_df_with_df_contains_na(self) -> None: df = self.in_pd_df_by_series_with_nan self.data.add_df(df) self.assertEqual( self.ref_pd_df_by_series_with_nan, self.data.build(), ) def test_add_df_with_df_and_with_include_index(self) -> None: df = self.in_pd_df_by_series_with_index self.data.add_df(df, include_index="Index") self.assertEqual( self.ref_pd_df_by_series_with_index, self.data.build(), ) def test_add_df_with_df_and_max_rows(self) -> None: df = self.in_pd_df_by_series self.data.add_df(df, max_rows=2) self.assertEqual( self.ref_pd_df_by_series_max_rows, self.data.build(), ) class TestDataFrame(DataWithAssets): def test_add_data_frame_with_none(self) -> None: self.data.add_data_frame(None) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_data_frame_with_empty_df(self) -> None: self.data.add_data_frame(pd.DataFrame()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_data_frame_with_df(self) -> None: df = self.in_pd_df_by_series_with_duplicated_popularity self.data.add_data_frame(df) self.assertEqual( self.ref_pd_df_by_series_with_duplicated_popularity, self.data.build(), ) def test_add_data_frame_with_df_contains_na(self) -> None: df = self.in_pd_df_by_series_with_nan self.data.add_data_frame(df) self.assertEqual( self.ref_pd_df_by_series_with_nan, self.data.build(), ) class TestDfWithSeries(DataWithAssets): def test_add_df_with_empty_series(self) -> None: self.data.add_df(pd.Series()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_df_with_series(self) -> None: self.data.add_df(self.in_pd_series_dimension) self.data.add_df(self.in_pd_series_measure) self.assertEqual( self.ref_pd_series, self.data.build(), ) def test_add_df_with_series_contains_na(self) -> None: self.data.add_df(self.in_pd_series_dimension_with_nan) self.data.add_df(self.in_pd_series_measure_with_nan) self.assertEqual( self.ref_pd_series_with_nan, self.data.build(), ) def test_add_df_with_series_and_with_include_index(self) -> None: self.data.add_df( self.in_pd_series_dimension_with_index, include_index="DimensionIndex", ) self.data.add_df( self.in_pd_series_measure_with_index, include_index="MeasureIndex", ) self.assertEqual( self.ref_pd_series_with_index, self.data.build(), ) class TestDataFrameWithSeries(DataWithAssets): def test_add_data_frame_with_empty_series(self) -> None: self.data.add_data_frame(pd.Series()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_data_frame_with_series(self) -> None: self.data.add_data_frame(self.in_pd_series_dimension) self.data.add_data_frame(self.in_pd_series_measure) self.assertEqual( self.ref_pd_series, self.data.build(), ) def test_add_data_frame_with_series_contains_na(self) -> None: self.data.add_data_frame(self.in_pd_series_dimension_with_nan) self.data.add_data_frame(self.in_pd_series_measure_with_nan) self.assertEqual( self.ref_pd_series_with_nan, self.data.build(), ) class TestDfIndex(DataWithAssets): def test_add_df_index_with_none(self) -> None: self.data.add_df_index(None, column_name="Index") self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_df_index_with_df(self) -> None: df = self.in_pd_df_by_series_with_index self.data.add_df_index(df, column_name="Index") self.assertEqual( self.ref_pd_df_by_series_only_index, self.data.build(), ) class TestDataFrameIndex(DataWithAssets): def test_add_data_frame_index_with_none(self) -> None: self.
[ "data", "assertEqual", "test_add_data_frame_index_with_df", "in_pd_series_measure_with_index", "in_pd_series_dimension_with_index", "test_add_data_frame_index_with_none", "asset_dir", "in_pd_df_by_series", "in_pd_df_by_series_with_duplicated_popularity", "in_pd_df_by_series_with_index", "in_pd_df_by_series_with_nan", "in_pd_series_dimension", "in_pd_series_dimension_with_nan", "in_pd_series_measure", "in_pd_series_measure_with_nan", "ref_pd_df_by_series", "ref_pd_df_by_series_max_rows", "ref_pd_df_by_series_only_index", "ref_pd_df_by_series_with_duplicated_popularity", "ref_pd_df_by_series_with_index", "ref_pd_df_by_series_with_nan", "ref_pd_series", "ref_pd_series_only_index", "ref_pd_series_with_index", "ref_pd_series_with_nan", "set_up_pd_df", "set_up_pd_series", "setUp", "setUpClass", "addClassCleanup", "addCleanup", "addTypeEqualityFunc", "assert_", "assertAlmostEqual", "assertAlmostEquals", "assertCountEqual", "assertDictContainsSubset", "assertDictEqual", "assertEquals", "assertFalse", "assertGreater", "assertGreaterEqual", "assertIn", "assertIs", "assertIsInstance", "assertIsNone", "assertIsNot", "assertIsNotNone", "assertLess", "assertLessEqual", "assertListEqual", "assertLogs", "assertMultiLineEqual", "assertNoLogs", "assertNotAlmostEqual", "assertNotAlmostEquals", "assertNotEqual", "assertNotEquals", "assertNotIn", "assertNotIsInstance", "assertNotRegex", "assertNotRegexpMatches", "assertRaises", "assertRaisesRegex", "assertRaisesRegexp", "assertRegex", "assertRegexpMatches", "assertSequenceEqual", "assertSetEqual", "assertTrue", "assertTupleEqual", "assertWarns", "assertWarnsRegex", "countTestCases", "debug", "defaultTestResult", "doClassCleanups", "doCleanups", "fail", "failIf", "failIfAlmostEqual", "failIfEqual", "failUnless", "failUnlessAlmostEqual", "failUnlessEqual", "failUnlessRaises", "failureException", "id", "longMessage", "maxDiff", "run", "shortDescription", "skipTest", "subTest", "tearDown", "tearDownClass" ]
, ) def test_add_df_with_series_and_with_include_index(self) -> None: self.data.add_df( self.in_pd_series_dimension_with_index, include_index="DimensionIndex", ) self.data.add_df( self.in_pd_series_measure_with_index, include_index="MeasureIndex", ) self.assertEqual( self.ref_pd_series_with_index, self.data.build(), ) class TestDataFrameWithSeries(DataWithAssets): def test_add_data_frame_with_empty_series(self) -> None: self.data.add_data_frame(pd.Series()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_data_frame_with_series(self) -> None: self.data.add_data_frame(self.in_pd_series_dimension) self.data.add_data_frame(self.in_pd_series_measure) self.assertEqual( self.ref_pd_series, self.data.build(), ) def test_add_data_frame_with_series_contains_na(self) -> None: self.data.add_data_frame(self.in_pd_series_dimension_with_nan) self.data.add_data_frame(self.in_pd_series_measure_with_nan) self.assertEqual( self.ref_pd_series_with_nan, self.data.build(), ) class TestDfIndex(DataWithAssets): def test_add_df_index_with_none(self) -> None: self.data.add_df_index(None, column_name="Index") self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_df_index_with_df(self) -> None: df = self.in_pd_df_by_series_with_index self.data.add_df_index(df, column_name="Index") self.assertEqual( self.ref_pd_df_by_series_only_index, self.data.build(), ) class TestDataFrameIndex(DataWithAssets): def test_add_data_frame_index_with_none(self) -> None: self.
5,434
7,701
216
5,509
vizzuhq__ipyvizzu
54b0334aa736a77f9430739c9375b16be145b3fd
tests/test_data/test_pandas.py
inproject
add_data_frame_index
true
function
28
30
false
true
[ "add_data_frame", "add_df", "build", "add_data_frame_index", "add_df_index", "add_dimension", "add_measure", "add_np_array", "add_record", "add_records", "add_series", "add_series_list", "add_spark_df", "dump", "filter", "from_json", "set_filter", "clear", "copy", "fromkeys", "get", "items", "keys", "pop", "popitem", "setdefault", "update", "values", "__annotations__", "__class__", "__class_getitem__", "__contains__", "__delattr__", "__delitem__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__getitem__", "__hash__", "__init__", "__init_subclass__", "__ior__", "__iter__", "__len__", "__ne__", "__new__", "__or__", "__reduce__", "__reduce_ex__", "__repr__", "__reversed__", "__ror__", "__setattr__", "__setitem__", "__sizeof__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "add_data_frame", "type": "function" }, { "name": "add_data_frame_index", "type": "function" }, { "name": "add_df", "type": "function" }, { "name": "add_df_index", "type": "function" }, { "name": "add_dimension", "type": "function" }, { "name": "add_measure", "type": "function" }, { "name": "add_np_array", "type": "function" }, { "name": "add_record", "type": "function" }, { "name": "add_records", "type": "function" }, { "name": "add_series", "type": "function" }, { "name": "add_series_list", "type": "function" }, { "name": "add_spark_df", "type": "function" }, { "name": "build", "type": "function" }, { "name": "clear", "type": "function" }, { "name": "copy", "type": "function" }, { "name": "dump", "type": "function" }, { "name": "filter", "type": "function" }, { "name": "from_json", "type": "function" }, { "name": "fromkeys", "type": "function" }, { "name": "get", "type": "function" }, { "name": "items", "type": "function" }, { "name": "keys", "type": "function" }, { "name": "pop", "type": "function" }, { "name": "popitem", "type": "function" }, { "name": "set_filter", "type": "function" }, { "name": "setdefault", "type": "function" }, { "name": "update", "type": "function" }, { "name": "values", "type": "function" }, { "name": "_add_named_value", "type": "function" }, { "name": "_add_value", "type": "function" }, { "name": "__annotations__", "type": "statement" }, { "name": "__class__", "type": "property" }, { "name": "__class_getitem__", "type": "function" }, { "name": "__contains__", "type": "function" }, { "name": "__delattr__", "type": "function" }, { "name": "__delitem__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__getitem__", "type": "function" }, { "name": "__hash__", "type": "statement" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__ior__", "type": "function" }, { "name": "__iter__", "type": "function" }, { "name": "__len__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__or__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__reversed__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__setitem__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
# pylint: disable=missing-module-docstring,missing-class-docstring,missing-function-docstring import pandas as pd from tests.test_data import DataWithAssets from tests.utils.import_error import RaiseImportError class TestDf(DataWithAssets): def test_add_df_if_pandas_not_installed(self) -> None: with RaiseImportError.module_name("pandas"): with self.assertRaises(ImportError): self.data.add_df(pd.DataFrame()) def test_add_df_with_none(self) -> None: self.data.add_df(None) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_df_with_empty_df(self) -> None: self.data.add_df(pd.DataFrame()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_df_with_df(self) -> None: df = self.in_pd_df_by_series_with_duplicated_popularity self.data.add_df(df) self.assertEqual( self.ref_pd_df_by_series_with_duplicated_popularity, self.data.build(), ) def test_add_df_with_df_contains_na(self) -> None: df = self.in_pd_df_by_series_with_nan self.data.add_df(df) self.assertEqual( self.ref_pd_df_by_series_with_nan, self.data.build(), ) def test_add_df_with_df_and_with_include_index(self) -> None: df = self.in_pd_df_by_series_with_index self.data.add_df(df, include_index="Index") self.assertEqual( self.ref_pd_df_by_series_with_index, self.data.build(), ) def test_add_df_with_df_and_max_rows(self) -> None: df = self.in_pd_df_by_series self.data.add_df(df, max_rows=2) self.assertEqual( self.ref_pd_df_by_series_max_rows, self.data.build(), ) class TestDataFrame(DataWithAssets): def test_add_data_frame_with_none(self) -> None: self.data.add_data_frame(None) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_data_frame_with_empty_df(self) -> None: self.data.add_data_frame(pd.DataFrame()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_data_frame_with_df(self) -> None: df = self.in_pd_df_by_series_with_duplicated_popularity self.data.add_data_frame(df) self.assertEqual( self.ref_pd_df_by_series_with_duplicated_popularity, self.data.build(), ) def test_add_data_frame_with_df_contains_na(self) -> None: df = self.in_pd_df_by_series_with_nan self.data.add_data_frame(df) self.assertEqual( self.ref_pd_df_by_series_with_nan, self.data.build(), ) class TestDfWithSeries(DataWithAssets): def test_add_df_with_empty_series(self) -> None: self.data.add_df(pd.Series()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_df_with_series(self) -> None: self.data.add_df(self.in_pd_series_dimension) self.data.add_df(self.in_pd_series_measure) self.assertEqual( self.ref_pd_series, self.data.build(), ) def test_add_df_with_series_contains_na(self) -> None: self.data.add_df(self.in_pd_series_dimension_with_nan) self.data.add_df(self.in_pd_series_measure_with_nan) self.assertEqual( self.ref_pd_series_with_nan, self.data.build(), ) def test_add_df_with_series_and_with_include_index(self) -> None: self.data.add_df( self.in_pd_series_dimension_with_index, include_index="DimensionIndex", ) self.data.add_df( self.in_pd_series_measure_with_index, include_index="MeasureIndex", ) self.assertEqual( self.ref_pd_series_with_index, self.data.build(), ) class TestDataFrameWithSeries(DataWithAssets): def test_add_data_frame_with_empty_series(self) -> None: self.data.add_data_frame(pd.Series()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_data_frame_with_series(self) -> None: self.data.add_data_frame(self.in_pd_series_dimension) self.data.add_data_frame(self.in_pd_series_measure) self.assertEqual( self.ref_pd_series, self.data.build(), ) def test_add_data_frame_with_series_contains_na(self) -> None: self.data.add_data_frame(self.in_pd_series_dimension_with_nan) self.data.add_data_frame(self.in_pd_series_measure_with_nan) self.assertEqual( self.ref_pd_series_with_nan, self.data.build(), ) class TestDfIndex(DataWithAssets): def test_add_df_index_with_none(self) -> None: self.data.add_df_index(None, column_name="Index") self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_df_index_with_df(self) -> None: df = self.in_pd_df_by_series_with_index self.data.add_df_index(df, column_name="Index") self.assertEqual( self.ref_pd_df_by_series_only_index, self.data.build(), ) class TestDataFrameIndex(DataWithAssets): def test_add_data_frame_index_with_none(self) -> None: self.data.
[ "add_data_frame", "add_df", "build", "add_data_frame_index", "add_df_index", "add_dimension", "add_measure", "add_np_array", "add_record", "add_records", "add_series", "add_series_list", "add_spark_df", "dump", "filter", "from_json", "set_filter", "clear", "copy", "fromkeys", "get", "items", "keys", "pop", "popitem", "setdefault", "update", "values" ]
) def test_add_df_with_series_and_with_include_index(self) -> None: self.data.add_df( self.in_pd_series_dimension_with_index, include_index="DimensionIndex", ) self.data.add_df( self.in_pd_series_measure_with_index, include_index="MeasureIndex", ) self.assertEqual( self.ref_pd_series_with_index, self.data.build(), ) class TestDataFrameWithSeries(DataWithAssets): def test_add_data_frame_with_empty_series(self) -> None: self.data.add_data_frame(pd.Series()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_data_frame_with_series(self) -> None: self.data.add_data_frame(self.in_pd_series_dimension) self.data.add_data_frame(self.in_pd_series_measure) self.assertEqual( self.ref_pd_series, self.data.build(), ) def test_add_data_frame_with_series_contains_na(self) -> None: self.data.add_data_frame(self.in_pd_series_dimension_with_nan) self.data.add_data_frame(self.in_pd_series_measure_with_nan) self.assertEqual( self.ref_pd_series_with_nan, self.data.build(), ) class TestDfIndex(DataWithAssets): def test_add_df_index_with_none(self) -> None: self.data.add_df_index(None, column_name="Index") self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_df_index_with_df(self) -> None: df = self.in_pd_df_by_series_with_index self.data.add_df_index(df, column_name="Index") self.assertEqual( self.ref_pd_df_by_series_only_index, self.data.build(), ) class TestDataFrameIndex(DataWithAssets): def test_add_data_frame_index_with_none(self) -> None: self.data.
5,435
7,705
216
5,762
vizzuhq__ipyvizzu
54b0334aa736a77f9430739c9375b16be145b3fd
tests/test_data/test_pandas.py
inproject
data
true
statement
96
100
false
false
[ "data", "assertEqual", "test_add_data_frame_index_with_none", "in_pd_series_measure_with_index", "in_pd_series_dimension_with_index", "test_add_data_frame_index_with_df", "asset_dir", "in_pd_df_by_series", "in_pd_df_by_series_with_duplicated_popularity", "in_pd_df_by_series_with_index", "in_pd_df_by_series_with_nan", "in_pd_series_dimension", "in_pd_series_dimension_with_nan", "in_pd_series_measure", "in_pd_series_measure_with_nan", "ref_pd_df_by_series", "ref_pd_df_by_series_max_rows", "ref_pd_df_by_series_only_index", "ref_pd_df_by_series_with_duplicated_popularity", "ref_pd_df_by_series_with_index", "ref_pd_df_by_series_with_nan", "ref_pd_series", "ref_pd_series_only_index", "ref_pd_series_with_index", "ref_pd_series_with_nan", "set_up_pd_df", "set_up_pd_series", "setUp", "setUpClass", "addClassCleanup", "addCleanup", "addTypeEqualityFunc", "assert_", "assertAlmostEqual", "assertAlmostEquals", "assertCountEqual", "assertDictContainsSubset", "assertDictEqual", "assertEquals", "assertFalse", "assertGreater", "assertGreaterEqual", "assertIn", "assertIs", "assertIsInstance", "assertIsNone", "assertIsNot", "assertIsNotNone", "assertLess", "assertLessEqual", "assertListEqual", "assertLogs", "assertMultiLineEqual", "assertNoLogs", "assertNotAlmostEqual", "assertNotAlmostEquals", "assertNotEqual", "assertNotEquals", "assertNotIn", "assertNotIsInstance", "assertNotRegex", "assertNotRegexpMatches", "assertRaises", "assertRaisesRegex", "assertRaisesRegexp", "assertRegex", "assertRegexpMatches", "assertSequenceEqual", "assertSetEqual", "assertTrue", "assertTupleEqual", "assertWarns", "assertWarnsRegex", "countTestCases", "debug", "defaultTestResult", "doClassCleanups", "doCleanups", "fail", "failIf", "failIfAlmostEqual", "failIfEqual", "failUnless", "failUnlessAlmostEqual", "failUnlessEqual", "failUnlessRaises", "failureException", "id", "longMessage", "maxDiff", "run", "shortDescription", "skipTest", "subTest", "tearDown", "tearDownClass", "__annotations__", "__call__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "addClassCleanup", "type": "function" }, { "name": "addCleanup", "type": "function" }, { "name": "addTypeEqualityFunc", "type": "function" }, { "name": "assert_", "type": "function" }, { "name": "assertAlmostEqual", "type": "function" }, { "name": "assertAlmostEquals", "type": "function" }, { "name": "assertCountEqual", "type": "function" }, { "name": "assertDictContainsSubset", "type": "function" }, { "name": "assertDictEqual", "type": "function" }, { "name": "assertEqual", "type": "function" }, { "name": "assertEquals", "type": "function" }, { "name": "assertFalse", "type": "function" }, { "name": "assertGreater", "type": "function" }, { "name": "assertGreaterEqual", "type": "function" }, { "name": "assertIn", "type": "function" }, { "name": "assertIs", "type": "function" }, { "name": "assertIsInstance", "type": "function" }, { "name": "assertIsNone", "type": "function" }, { "name": "assertIsNot", "type": "function" }, { "name": "assertIsNotNone", "type": "function" }, { "name": "assertLess", "type": "function" }, { "name": "assertLessEqual", "type": "function" }, { "name": "assertListEqual", "type": "function" }, { "name": "assertLogs", "type": "function" }, { "name": "assertMultiLineEqual", "type": "function" }, { "name": "assertNotAlmostEqual", "type": "function" }, { "name": "assertNotAlmostEquals", "type": "function" }, { "name": "assertNotEqual", "type": "function" }, { "name": "assertNotEquals", "type": "function" }, { "name": "assertNotIn", "type": "function" }, { "name": "assertNotIsInstance", "type": "function" }, { "name": "assertNotRegex", "type": "function" }, { "name": "assertNotRegexpMatches", "type": "function" }, { "name": "assertRaises", "type": "function" }, { "name": "assertRaisesRegex", "type": "function" }, { "name": "assertRaisesRegexp", "type": "function" }, { "name": "assertRegex", "type": "function" }, { "name": "assertRegexpMatches", "type": "function" }, { "name": "assertSequenceEqual", "type": "function" }, { "name": "assertSetEqual", "type": "function" }, { "name": "assertTrue", "type": "function" }, { "name": "assertTupleEqual", "type": "function" }, { "name": "assertWarns", "type": "function" }, { "name": "assertWarnsRegex", "type": "function" }, { "name": "asset_dir", "type": "statement" }, { "name": "countTestCases", "type": "function" }, { "name": "data", "type": "statement" }, { "name": "debug", "type": "function" }, { "name": "defaultTestResult", "type": "function" }, { "name": "doClassCleanups", "type": "function" }, { "name": "doCleanups", "type": "function" }, { "name": "fail", "type": "function" }, { "name": "failIf", "type": "function" }, { "name": "failIfAlmostEqual", "type": "function" }, { "name": "failIfEqual", "type": "function" }, { "name": "failUnless", "type": "function" }, { "name": "failUnlessAlmostEqual", "type": "function" }, { "name": "failUnlessEqual", "type": "function" }, { "name": "failUnlessRaises", "type": "function" }, { "name": "failureException", "type": "statement" }, { "name": "id", "type": "function" }, { "name": "in_pd_df_by_series", "type": "statement" }, { "name": "in_pd_df_by_series_with_duplicated_popularity", "type": "statement" }, { "name": "in_pd_df_by_series_with_index", "type": "statement" }, { "name": "in_pd_df_by_series_with_nan", "type": "statement" }, { "name": "in_pd_series_dimension", "type": "statement" }, { "name": "in_pd_series_dimension_with_index", "type": "statement" }, { "name": "in_pd_series_dimension_with_nan", "type": "statement" }, { "name": "in_pd_series_measure", "type": "statement" }, { "name": "in_pd_series_measure_with_index", "type": "statement" }, { "name": "in_pd_series_measure_with_nan", "type": "statement" }, { "name": "longMessage", "type": "statement" }, { "name": "maxDiff", "type": "statement" }, { "name": "ref_pd_df_by_series", "type": "statement" }, { "name": "ref_pd_df_by_series_max_rows", "type": "statement" }, { "name": "ref_pd_df_by_series_only_index", "type": "statement" }, { "name": "ref_pd_df_by_series_with_duplicated_popularity", "type": "statement" }, { "name": "ref_pd_df_by_series_with_index", "type": "statement" }, { "name": "ref_pd_df_by_series_with_nan", "type": "statement" }, { "name": "ref_pd_series", "type": "statement" }, { "name": "ref_pd_series_only_index", "type": "statement" }, { "name": "ref_pd_series_with_index", "type": "statement" }, { "name": "ref_pd_series_with_nan", "type": "statement" }, { "name": "run", "type": "function" }, { "name": "set_up_pd_df", "type": "function" }, { "name": "set_up_pd_series", "type": "function" }, { "name": "setUp", "type": "function" }, { "name": "setUpClass", "type": "function" }, { "name": "shortDescription", "type": "function" }, { "name": "skipTest", "type": "function" }, { "name": "subTest", "type": "function" }, { "name": "tearDown", "type": "function" }, { "name": "tearDownClass", "type": "function" }, { "name": "test_add_data_frame_index_with_df", "type": "function" }, { "name": "test_add_data_frame_index_with_none", "type": "function" }, { "name": "_addSkip", "type": "function" }, { "name": "_formatMessage", "type": "function" }, { "name": "_getAssertEqualityFunc", "type": "function" }, { "name": "_testMethodDoc", "type": "statement" }, { "name": "_testMethodName", "type": "statement" }, { "name": "__annotations__", "type": "statement" }, { "name": "__call__", "type": "function" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
# pylint: disable=missing-module-docstring,missing-class-docstring,missing-function-docstring import pandas as pd from tests.test_data import DataWithAssets from tests.utils.import_error import RaiseImportError class TestDf(DataWithAssets): def test_add_df_if_pandas_not_installed(self) -> None: with RaiseImportError.module_name("pandas"): with self.assertRaises(ImportError): self.data.add_df(pd.DataFrame()) def test_add_df_with_none(self) -> None: self.data.add_df(None) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_df_with_empty_df(self) -> None: self.data.add_df(pd.DataFrame()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_df_with_df(self) -> None: df = self.in_pd_df_by_series_with_duplicated_popularity self.data.add_df(df) self.assertEqual( self.ref_pd_df_by_series_with_duplicated_popularity, self.data.build(), ) def test_add_df_with_df_contains_na(self) -> None: df = self.in_pd_df_by_series_with_nan self.data.add_df(df) self.assertEqual( self.ref_pd_df_by_series_with_nan, self.data.build(), ) def test_add_df_with_df_and_with_include_index(self) -> None: df = self.in_pd_df_by_series_with_index self.data.add_df(df, include_index="Index") self.assertEqual( self.ref_pd_df_by_series_with_index, self.data.build(), ) def test_add_df_with_df_and_max_rows(self) -> None: df = self.in_pd_df_by_series self.data.add_df(df, max_rows=2) self.assertEqual( self.ref_pd_df_by_series_max_rows, self.data.build(), ) class TestDataFrame(DataWithAssets): def test_add_data_frame_with_none(self) -> None: self.data.add_data_frame(None) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_data_frame_with_empty_df(self) -> None: self.data.add_data_frame(pd.DataFrame()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_data_frame_with_df(self) -> None: df = self.in_pd_df_by_series_with_duplicated_popularity self.data.add_data_frame(df) self.assertEqual( self.ref_pd_df_by_series_with_duplicated_popularity, self.data.build(), ) def test_add_data_frame_with_df_contains_na(self) -> None: df = self.in_pd_df_by_series_with_nan self.data.add_data_frame(df) self.assertEqual( self.ref_pd_df_by_series_with_nan, self.data.build(), ) class TestDfWithSeries(DataWithAssets): def test_add_df_with_empty_series(self) -> None: self.data.add_df(pd.Series()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_df_with_series(self) -> None: self.data.add_df(self.in_pd_series_dimension) self.data.add_df(self.in_pd_series_measure) self.assertEqual( self.ref_pd_series, self.data.build(), ) def test_add_df_with_series_contains_na(self) -> None: self.data.add_df(self.in_pd_series_dimension_with_nan) self.data.add_df(self.in_pd_series_measure_with_nan) self.assertEqual( self.ref_pd_series_with_nan, self.data.build(), ) def test_add_df_with_series_and_with_include_index(self) -> None: self.data.add_df( self.in_pd_series_dimension_with_index, include_index="DimensionIndex", ) self.data.add_df( self.in_pd_series_measure_with_index, include_index="MeasureIndex", ) self.assertEqual( self.ref_pd_series_with_index, self.data.build(), ) class TestDataFrameWithSeries(DataWithAssets): def test_add_data_frame_with_empty_series(self) -> None: self.data.add_data_frame(pd.Series()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_data_frame_with_series(self) -> None: self.data.add_data_frame(self.in_pd_series_dimension) self.data.add_data_frame(self.in_pd_series_measure) self.assertEqual( self.ref_pd_series, self.data.build(), ) def test_add_data_frame_with_series_contains_na(self) -> None: self.data.add_data_frame(self.in_pd_series_dimension_with_nan) self.data.add_data_frame(self.in_pd_series_measure_with_nan) self.assertEqual( self.ref_pd_series_with_nan, self.data.build(), ) class TestDfIndex(DataWithAssets): def test_add_df_index_with_none(self) -> None: self.data.add_df_index(None, column_name="Index") self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_df_index_with_df(self) -> None: df = self.in_pd_df_by_series_with_index self.data.add_df_index(df, column_name="Index") self.assertEqual( self.ref_pd_df_by_series_only_index, self.data.build(), ) class TestDataFrameIndex(DataWithAssets): def test_add_data_frame_index_with_none(self) -> None: self.data.add_data_frame_index(None, name="Index") self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_data_frame_index_with_df(self) -> None: df = self.in_pd_df_by_series_with_index self.
[ "data", "assertEqual", "test_add_data_frame_index_with_none", "in_pd_series_measure_with_index", "in_pd_series_dimension_with_index", "test_add_data_frame_index_with_df", "asset_dir", "in_pd_df_by_series", "in_pd_df_by_series_with_duplicated_popularity", "in_pd_df_by_series_with_index", "in_pd_df_by_series_with_nan", "in_pd_series_dimension", "in_pd_series_dimension_with_nan", "in_pd_series_measure", "in_pd_series_measure_with_nan", "ref_pd_df_by_series", "ref_pd_df_by_series_max_rows", "ref_pd_df_by_series_only_index", "ref_pd_df_by_series_with_duplicated_popularity", "ref_pd_df_by_series_with_index", "ref_pd_df_by_series_with_nan", "ref_pd_series", "ref_pd_series_only_index", "ref_pd_series_with_index", "ref_pd_series_with_nan", "set_up_pd_df", "set_up_pd_series", "setUp", "setUpClass", "addClassCleanup", "addCleanup", "addTypeEqualityFunc", "assert_", "assertAlmostEqual", "assertAlmostEquals", "assertCountEqual", "assertDictContainsSubset", "assertDictEqual", "assertEquals", "assertFalse", "assertGreater", "assertGreaterEqual", "assertIn", "assertIs", "assertIsInstance", "assertIsNone", "assertIsNot", "assertIsNotNone", "assertLess", "assertLessEqual", "assertListEqual", "assertLogs", "assertMultiLineEqual", "assertNoLogs", "assertNotAlmostEqual", "assertNotAlmostEquals", "assertNotEqual", "assertNotEquals", "assertNotIn", "assertNotIsInstance", "assertNotRegex", "assertNotRegexpMatches", "assertRaises", "assertRaisesRegex", "assertRaisesRegexp", "assertRegex", "assertRegexpMatches", "assertSequenceEqual", "assertSetEqual", "assertTrue", "assertTupleEqual", "assertWarns", "assertWarnsRegex", "countTestCases", "debug", "defaultTestResult", "doClassCleanups", "doCleanups", "fail", "failIf", "failIfAlmostEqual", "failIfEqual", "failUnless", "failUnlessAlmostEqual", "failUnlessEqual", "failUnlessRaises", "failureException", "id", "longMessage", "maxDiff", "run", "shortDescription", "skipTest", "subTest", "tearDown", "tearDownClass" ]
in_pd_series_measure_with_index, include_index="MeasureIndex", ) self.assertEqual( self.ref_pd_series_with_index, self.data.build(), ) class TestDataFrameWithSeries(DataWithAssets): def test_add_data_frame_with_empty_series(self) -> None: self.data.add_data_frame(pd.Series()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_data_frame_with_series(self) -> None: self.data.add_data_frame(self.in_pd_series_dimension) self.data.add_data_frame(self.in_pd_series_measure) self.assertEqual( self.ref_pd_series, self.data.build(), ) def test_add_data_frame_with_series_contains_na(self) -> None: self.data.add_data_frame(self.in_pd_series_dimension_with_nan) self.data.add_data_frame(self.in_pd_series_measure_with_nan) self.assertEqual( self.ref_pd_series_with_nan, self.data.build(), ) class TestDfIndex(DataWithAssets): def test_add_df_index_with_none(self) -> None: self.data.add_df_index(None, column_name="Index") self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_df_index_with_df(self) -> None: df = self.in_pd_df_by_series_with_index self.data.add_df_index(df, column_name="Index") self.assertEqual( self.ref_pd_df_by_series_only_index, self.data.build(), ) class TestDataFrameIndex(DataWithAssets): def test_add_data_frame_index_with_none(self) -> None: self.data.add_data_frame_index(None, name="Index") self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_data_frame_index_with_df(self) -> None: df = self.in_pd_df_by_series_with_index self.
5,439
7,706
216
5,767
vizzuhq__ipyvizzu
54b0334aa736a77f9430739c9375b16be145b3fd
tests/test_data/test_pandas.py
inproject
add_data_frame_index
true
function
28
30
false
false
[ "add_data_frame", "add_df", "build", "add_data_frame_index", "add_df_index", "add_dimension", "add_measure", "add_np_array", "add_record", "add_records", "add_series", "add_series_list", "add_spark_df", "dump", "filter", "from_json", "set_filter", "clear", "copy", "fromkeys", "get", "items", "keys", "pop", "popitem", "setdefault", "update", "values", "__annotations__", "__class__", "__class_getitem__", "__contains__", "__delattr__", "__delitem__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__getitem__", "__hash__", "__init__", "__init_subclass__", "__ior__", "__iter__", "__len__", "__ne__", "__new__", "__or__", "__reduce__", "__reduce_ex__", "__repr__", "__reversed__", "__ror__", "__setattr__", "__setitem__", "__sizeof__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "add_data_frame", "type": "function" }, { "name": "add_data_frame_index", "type": "function" }, { "name": "add_df", "type": "function" }, { "name": "add_df_index", "type": "function" }, { "name": "add_dimension", "type": "function" }, { "name": "add_measure", "type": "function" }, { "name": "add_np_array", "type": "function" }, { "name": "add_record", "type": "function" }, { "name": "add_records", "type": "function" }, { "name": "add_series", "type": "function" }, { "name": "add_series_list", "type": "function" }, { "name": "add_spark_df", "type": "function" }, { "name": "build", "type": "function" }, { "name": "clear", "type": "function" }, { "name": "copy", "type": "function" }, { "name": "dump", "type": "function" }, { "name": "filter", "type": "function" }, { "name": "from_json", "type": "function" }, { "name": "fromkeys", "type": "function" }, { "name": "get", "type": "function" }, { "name": "items", "type": "function" }, { "name": "keys", "type": "function" }, { "name": "pop", "type": "function" }, { "name": "popitem", "type": "function" }, { "name": "set_filter", "type": "function" }, { "name": "setdefault", "type": "function" }, { "name": "update", "type": "function" }, { "name": "values", "type": "function" }, { "name": "_add_named_value", "type": "function" }, { "name": "_add_value", "type": "function" }, { "name": "__annotations__", "type": "statement" }, { "name": "__class__", "type": "property" }, { "name": "__class_getitem__", "type": "function" }, { "name": "__contains__", "type": "function" }, { "name": "__delattr__", "type": "function" }, { "name": "__delitem__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__getitem__", "type": "function" }, { "name": "__hash__", "type": "statement" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__ior__", "type": "function" }, { "name": "__iter__", "type": "function" }, { "name": "__len__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__or__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__reversed__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__setitem__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
# pylint: disable=missing-module-docstring,missing-class-docstring,missing-function-docstring import pandas as pd from tests.test_data import DataWithAssets from tests.utils.import_error import RaiseImportError class TestDf(DataWithAssets): def test_add_df_if_pandas_not_installed(self) -> None: with RaiseImportError.module_name("pandas"): with self.assertRaises(ImportError): self.data.add_df(pd.DataFrame()) def test_add_df_with_none(self) -> None: self.data.add_df(None) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_df_with_empty_df(self) -> None: self.data.add_df(pd.DataFrame()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_df_with_df(self) -> None: df = self.in_pd_df_by_series_with_duplicated_popularity self.data.add_df(df) self.assertEqual( self.ref_pd_df_by_series_with_duplicated_popularity, self.data.build(), ) def test_add_df_with_df_contains_na(self) -> None: df = self.in_pd_df_by_series_with_nan self.data.add_df(df) self.assertEqual( self.ref_pd_df_by_series_with_nan, self.data.build(), ) def test_add_df_with_df_and_with_include_index(self) -> None: df = self.in_pd_df_by_series_with_index self.data.add_df(df, include_index="Index") self.assertEqual( self.ref_pd_df_by_series_with_index, self.data.build(), ) def test_add_df_with_df_and_max_rows(self) -> None: df = self.in_pd_df_by_series self.data.add_df(df, max_rows=2) self.assertEqual( self.ref_pd_df_by_series_max_rows, self.data.build(), ) class TestDataFrame(DataWithAssets): def test_add_data_frame_with_none(self) -> None: self.data.add_data_frame(None) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_data_frame_with_empty_df(self) -> None: self.data.add_data_frame(pd.DataFrame()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_data_frame_with_df(self) -> None: df = self.in_pd_df_by_series_with_duplicated_popularity self.data.add_data_frame(df) self.assertEqual( self.ref_pd_df_by_series_with_duplicated_popularity, self.data.build(), ) def test_add_data_frame_with_df_contains_na(self) -> None: df = self.in_pd_df_by_series_with_nan self.data.add_data_frame(df) self.assertEqual( self.ref_pd_df_by_series_with_nan, self.data.build(), ) class TestDfWithSeries(DataWithAssets): def test_add_df_with_empty_series(self) -> None: self.data.add_df(pd.Series()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_df_with_series(self) -> None: self.data.add_df(self.in_pd_series_dimension) self.data.add_df(self.in_pd_series_measure) self.assertEqual( self.ref_pd_series, self.data.build(), ) def test_add_df_with_series_contains_na(self) -> None: self.data.add_df(self.in_pd_series_dimension_with_nan) self.data.add_df(self.in_pd_series_measure_with_nan) self.assertEqual( self.ref_pd_series_with_nan, self.data.build(), ) def test_add_df_with_series_and_with_include_index(self) -> None: self.data.add_df( self.in_pd_series_dimension_with_index, include_index="DimensionIndex", ) self.data.add_df( self.in_pd_series_measure_with_index, include_index="MeasureIndex", ) self.assertEqual( self.ref_pd_series_with_index, self.data.build(), ) class TestDataFrameWithSeries(DataWithAssets): def test_add_data_frame_with_empty_series(self) -> None: self.data.add_data_frame(pd.Series()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_data_frame_with_series(self) -> None: self.data.add_data_frame(self.in_pd_series_dimension) self.data.add_data_frame(self.in_pd_series_measure) self.assertEqual( self.ref_pd_series, self.data.build(), ) def test_add_data_frame_with_series_contains_na(self) -> None: self.data.add_data_frame(self.in_pd_series_dimension_with_nan) self.data.add_data_frame(self.in_pd_series_measure_with_nan) self.assertEqual( self.ref_pd_series_with_nan, self.data.build(), ) class TestDfIndex(DataWithAssets): def test_add_df_index_with_none(self) -> None: self.data.add_df_index(None, column_name="Index") self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_df_index_with_df(self) -> None: df = self.in_pd_df_by_series_with_index self.data.add_df_index(df, column_name="Index") self.assertEqual( self.ref_pd_df_by_series_only_index, self.data.build(), ) class TestDataFrameIndex(DataWithAssets): def test_add_data_frame_index_with_none(self) -> None: self.data.add_data_frame_index(None, name="Index") self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_data_frame_index_with_df(self) -> None: df = self.in_pd_df_by_series_with_index self.data.
[ "add_data_frame", "add_df", "build", "add_data_frame_index", "add_df_index", "add_dimension", "add_measure", "add_np_array", "add_record", "add_records", "add_series", "add_series_list", "add_spark_df", "dump", "filter", "from_json", "set_filter", "clear", "copy", "fromkeys", "get", "items", "keys", "pop", "popitem", "setdefault", "update", "values" ]
_series_measure_with_index, include_index="MeasureIndex", ) self.assertEqual( self.ref_pd_series_with_index, self.data.build(), ) class TestDataFrameWithSeries(DataWithAssets): def test_add_data_frame_with_empty_series(self) -> None: self.data.add_data_frame(pd.Series()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_data_frame_with_series(self) -> None: self.data.add_data_frame(self.in_pd_series_dimension) self.data.add_data_frame(self.in_pd_series_measure) self.assertEqual( self.ref_pd_series, self.data.build(), ) def test_add_data_frame_with_series_contains_na(self) -> None: self.data.add_data_frame(self.in_pd_series_dimension_with_nan) self.data.add_data_frame(self.in_pd_series_measure_with_nan) self.assertEqual( self.ref_pd_series_with_nan, self.data.build(), ) class TestDfIndex(DataWithAssets): def test_add_df_index_with_none(self) -> None: self.data.add_df_index(None, column_name="Index") self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_df_index_with_df(self) -> None: df = self.in_pd_df_by_series_with_index self.data.add_df_index(df, column_name="Index") self.assertEqual( self.ref_pd_df_by_series_only_index, self.data.build(), ) class TestDataFrameIndex(DataWithAssets): def test_add_data_frame_index_with_none(self) -> None: self.data.add_data_frame_index(None, name="Index") self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_data_frame_index_with_df(self) -> None: df = self.in_pd_df_by_series_with_index self.data.
5,440
7,710
216
6,035
vizzuhq__ipyvizzu
54b0334aa736a77f9430739c9375b16be145b3fd
tests/test_data/test_pandas.py
inproject
data
true
statement
95
99
false
false
[ "data", "in_pd_df_by_series", "ref_pd_series", "assertEqual", "in_pd_series_dimension", "test_add_df_index_with_series", "asset_dir", "in_pd_df_by_series_with_duplicated_popularity", "in_pd_df_by_series_with_index", "in_pd_df_by_series_with_nan", "in_pd_series_dimension_with_index", "in_pd_series_dimension_with_nan", "in_pd_series_measure", "in_pd_series_measure_with_index", "in_pd_series_measure_with_nan", "ref_pd_df_by_series", "ref_pd_df_by_series_max_rows", "ref_pd_df_by_series_only_index", "ref_pd_df_by_series_with_duplicated_popularity", "ref_pd_df_by_series_with_index", "ref_pd_df_by_series_with_nan", "ref_pd_series_only_index", "ref_pd_series_with_index", "ref_pd_series_with_nan", "set_up_pd_df", "set_up_pd_series", "setUp", "setUpClass", "addClassCleanup", "addCleanup", "addTypeEqualityFunc", "assert_", "assertAlmostEqual", "assertAlmostEquals", "assertCountEqual", "assertDictContainsSubset", "assertDictEqual", "assertEquals", "assertFalse", "assertGreater", "assertGreaterEqual", "assertIn", "assertIs", "assertIsInstance", "assertIsNone", "assertIsNot", "assertIsNotNone", "assertLess", "assertLessEqual", "assertListEqual", "assertLogs", "assertMultiLineEqual", "assertNoLogs", "assertNotAlmostEqual", "assertNotAlmostEquals", "assertNotEqual", "assertNotEquals", "assertNotIn", "assertNotIsInstance", "assertNotRegex", "assertNotRegexpMatches", "assertRaises", "assertRaisesRegex", "assertRaisesRegexp", "assertRegex", "assertRegexpMatches", "assertSequenceEqual", "assertSetEqual", "assertTrue", "assertTupleEqual", "assertWarns", "assertWarnsRegex", "countTestCases", "debug", "defaultTestResult", "doClassCleanups", "doCleanups", "fail", "failIf", "failIfAlmostEqual", "failIfEqual", "failUnless", "failUnlessAlmostEqual", "failUnlessEqual", "failUnlessRaises", "failureException", "id", "longMessage", "maxDiff", "run", "shortDescription", "skipTest", "subTest", "tearDown", "tearDownClass", "__annotations__", "__call__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "addClassCleanup", "type": "function" }, { "name": "addCleanup", "type": "function" }, { "name": "addTypeEqualityFunc", "type": "function" }, { "name": "assert_", "type": "function" }, { "name": "assertAlmostEqual", "type": "function" }, { "name": "assertAlmostEquals", "type": "function" }, { "name": "assertCountEqual", "type": "function" }, { "name": "assertDictContainsSubset", "type": "function" }, { "name": "assertDictEqual", "type": "function" }, { "name": "assertEqual", "type": "function" }, { "name": "assertEquals", "type": "function" }, { "name": "assertFalse", "type": "function" }, { "name": "assertGreater", "type": "function" }, { "name": "assertGreaterEqual", "type": "function" }, { "name": "assertIn", "type": "function" }, { "name": "assertIs", "type": "function" }, { "name": "assertIsInstance", "type": "function" }, { "name": "assertIsNone", "type": "function" }, { "name": "assertIsNot", "type": "function" }, { "name": "assertIsNotNone", "type": "function" }, { "name": "assertLess", "type": "function" }, { "name": "assertLessEqual", "type": "function" }, { "name": "assertListEqual", "type": "function" }, { "name": "assertLogs", "type": "function" }, { "name": "assertMultiLineEqual", "type": "function" }, { "name": "assertNotAlmostEqual", "type": "function" }, { "name": "assertNotAlmostEquals", "type": "function" }, { "name": "assertNotEqual", "type": "function" }, { "name": "assertNotEquals", "type": "function" }, { "name": "assertNotIn", "type": "function" }, { "name": "assertNotIsInstance", "type": "function" }, { "name": "assertNotRegex", "type": "function" }, { "name": "assertNotRegexpMatches", "type": "function" }, { "name": "assertRaises", "type": "function" }, { "name": "assertRaisesRegex", "type": "function" }, { "name": "assertRaisesRegexp", "type": "function" }, { "name": "assertRegex", "type": "function" }, { "name": "assertRegexpMatches", "type": "function" }, { "name": "assertSequenceEqual", "type": "function" }, { "name": "assertSetEqual", "type": "function" }, { "name": "assertTrue", "type": "function" }, { "name": "assertTupleEqual", "type": "function" }, { "name": "assertWarns", "type": "function" }, { "name": "assertWarnsRegex", "type": "function" }, { "name": "asset_dir", "type": "statement" }, { "name": "countTestCases", "type": "function" }, { "name": "data", "type": "statement" }, { "name": "debug", "type": "function" }, { "name": "defaultTestResult", "type": "function" }, { "name": "doClassCleanups", "type": "function" }, { "name": "doCleanups", "type": "function" }, { "name": "fail", "type": "function" }, { "name": "failIf", "type": "function" }, { "name": "failIfAlmostEqual", "type": "function" }, { "name": "failIfEqual", "type": "function" }, { "name": "failUnless", "type": "function" }, { "name": "failUnlessAlmostEqual", "type": "function" }, { "name": "failUnlessEqual", "type": "function" }, { "name": "failUnlessRaises", "type": "function" }, { "name": "failureException", "type": "statement" }, { "name": "id", "type": "function" }, { "name": "in_pd_df_by_series", "type": "statement" }, { "name": "in_pd_df_by_series_with_duplicated_popularity", "type": "statement" }, { "name": "in_pd_df_by_series_with_index", "type": "statement" }, { "name": "in_pd_df_by_series_with_nan", "type": "statement" }, { "name": "in_pd_series_dimension", "type": "statement" }, { "name": "in_pd_series_dimension_with_index", "type": "statement" }, { "name": "in_pd_series_dimension_with_nan", "type": "statement" }, { "name": "in_pd_series_measure", "type": "statement" }, { "name": "in_pd_series_measure_with_index", "type": "statement" }, { "name": "in_pd_series_measure_with_nan", "type": "statement" }, { "name": "longMessage", "type": "statement" }, { "name": "maxDiff", "type": "statement" }, { "name": "ref_pd_df_by_series", "type": "statement" }, { "name": "ref_pd_df_by_series_max_rows", "type": "statement" }, { "name": "ref_pd_df_by_series_only_index", "type": "statement" }, { "name": "ref_pd_df_by_series_with_duplicated_popularity", "type": "statement" }, { "name": "ref_pd_df_by_series_with_index", "type": "statement" }, { "name": "ref_pd_df_by_series_with_nan", "type": "statement" }, { "name": "ref_pd_series", "type": "statement" }, { "name": "ref_pd_series_only_index", "type": "statement" }, { "name": "ref_pd_series_with_index", "type": "statement" }, { "name": "ref_pd_series_with_nan", "type": "statement" }, { "name": "run", "type": "function" }, { "name": "set_up_pd_df", "type": "function" }, { "name": "set_up_pd_series", "type": "function" }, { "name": "setUp", "type": "function" }, { "name": "setUpClass", "type": "function" }, { "name": "shortDescription", "type": "function" }, { "name": "skipTest", "type": "function" }, { "name": "subTest", "type": "function" }, { "name": "tearDown", "type": "function" }, { "name": "tearDownClass", "type": "function" }, { "name": "test_add_df_index_with_series", "type": "function" }, { "name": "_addSkip", "type": "function" }, { "name": "_formatMessage", "type": "function" }, { "name": "_getAssertEqualityFunc", "type": "function" }, { "name": "_testMethodDoc", "type": "statement" }, { "name": "_testMethodName", "type": "statement" }, { "name": "__annotations__", "type": "statement" }, { "name": "__call__", "type": "function" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
# pylint: disable=missing-module-docstring,missing-class-docstring,missing-function-docstring import pandas as pd from tests.test_data import DataWithAssets from tests.utils.import_error import RaiseImportError class TestDf(DataWithAssets): def test_add_df_if_pandas_not_installed(self) -> None: with RaiseImportError.module_name("pandas"): with self.assertRaises(ImportError): self.data.add_df(pd.DataFrame()) def test_add_df_with_none(self) -> None: self.data.add_df(None) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_df_with_empty_df(self) -> None: self.data.add_df(pd.DataFrame()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_df_with_df(self) -> None: df = self.in_pd_df_by_series_with_duplicated_popularity self.data.add_df(df) self.assertEqual( self.ref_pd_df_by_series_with_duplicated_popularity, self.data.build(), ) def test_add_df_with_df_contains_na(self) -> None: df = self.in_pd_df_by_series_with_nan self.data.add_df(df) self.assertEqual( self.ref_pd_df_by_series_with_nan, self.data.build(), ) def test_add_df_with_df_and_with_include_index(self) -> None: df = self.in_pd_df_by_series_with_index self.data.add_df(df, include_index="Index") self.assertEqual( self.ref_pd_df_by_series_with_index, self.data.build(), ) def test_add_df_with_df_and_max_rows(self) -> None: df = self.in_pd_df_by_series self.data.add_df(df, max_rows=2) self.assertEqual( self.ref_pd_df_by_series_max_rows, self.data.build(), ) class TestDataFrame(DataWithAssets): def test_add_data_frame_with_none(self) -> None: self.data.add_data_frame(None) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_data_frame_with_empty_df(self) -> None: self.data.add_data_frame(pd.DataFrame()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_data_frame_with_df(self) -> None: df = self.in_pd_df_by_series_with_duplicated_popularity self.data.add_data_frame(df) self.assertEqual( self.ref_pd_df_by_series_with_duplicated_popularity, self.data.build(), ) def test_add_data_frame_with_df_contains_na(self) -> None: df = self.in_pd_df_by_series_with_nan self.data.add_data_frame(df) self.assertEqual( self.ref_pd_df_by_series_with_nan, self.data.build(), ) class TestDfWithSeries(DataWithAssets): def test_add_df_with_empty_series(self) -> None: self.data.add_df(pd.Series()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_df_with_series(self) -> None: self.data.add_df(self.in_pd_series_dimension) self.data.add_df(self.in_pd_series_measure) self.assertEqual( self.ref_pd_series, self.data.build(), ) def test_add_df_with_series_contains_na(self) -> None: self.data.add_df(self.in_pd_series_dimension_with_nan) self.data.add_df(self.in_pd_series_measure_with_nan) self.assertEqual( self.ref_pd_series_with_nan, self.data.build(), ) def test_add_df_with_series_and_with_include_index(self) -> None: self.data.add_df( self.in_pd_series_dimension_with_index, include_index="DimensionIndex", ) self.data.add_df( self.in_pd_series_measure_with_index, include_index="MeasureIndex", ) self.assertEqual( self.ref_pd_series_with_index, self.data.build(), ) class TestDataFrameWithSeries(DataWithAssets): def test_add_data_frame_with_empty_series(self) -> None: self.data.add_data_frame(pd.Series()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_data_frame_with_series(self) -> None: self.data.add_data_frame(self.in_pd_series_dimension) self.data.add_data_frame(self.in_pd_series_measure) self.assertEqual( self.ref_pd_series, self.data.build(), ) def test_add_data_frame_with_series_contains_na(self) -> None: self.data.add_data_frame(self.in_pd_series_dimension_with_nan) self.data.add_data_frame(self.in_pd_series_measure_with_nan) self.assertEqual( self.ref_pd_series_with_nan, self.data.build(), ) class TestDfIndex(DataWithAssets): def test_add_df_index_with_none(self) -> None: self.data.add_df_index(None, column_name="Index") self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_df_index_with_df(self) -> None: df = self.in_pd_df_by_series_with_index self.data.add_df_index(df, column_name="Index") self.assertEqual( self.ref_pd_df_by_series_only_index, self.data.build(), ) class TestDataFrameIndex(DataWithAssets): def test_add_data_frame_index_with_none(self) -> None: self.data.add_data_frame_index(None, name="Index") self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_data_frame_index_with_df(self) -> None: df = self.in_pd_df_by_series_with_index self.data.add_data_frame_index(df, name="Index") self.assertEqual( self.ref_pd_df_by_series_only_index, self.data.build(), ) class TestDfIndexWithSeries(DataWithAssets): def test_add_df_index_with_series(self) -> None: self.
[ "data", "in_pd_df_by_series", "ref_pd_series", "assertEqual", "in_pd_series_dimension", "test_add_df_index_with_series", "asset_dir", "in_pd_df_by_series_with_duplicated_popularity", "in_pd_df_by_series_with_index", "in_pd_df_by_series_with_nan", "in_pd_series_dimension_with_index", "in_pd_series_dimension_with_nan", "in_pd_series_measure", "in_pd_series_measure_with_index", "in_pd_series_measure_with_nan", "ref_pd_df_by_series", "ref_pd_df_by_series_max_rows", "ref_pd_df_by_series_only_index", "ref_pd_df_by_series_with_duplicated_popularity", "ref_pd_df_by_series_with_index", "ref_pd_df_by_series_with_nan", "ref_pd_series_only_index", "ref_pd_series_with_index", "ref_pd_series_with_nan", "set_up_pd_df", "set_up_pd_series", "setUp", "setUpClass", "addClassCleanup", "addCleanup", "addTypeEqualityFunc", "assert_", "assertAlmostEqual", "assertAlmostEquals", "assertCountEqual", "assertDictContainsSubset", "assertDictEqual", "assertEquals", "assertFalse", "assertGreater", "assertGreaterEqual", "assertIn", "assertIs", "assertIsInstance", "assertIsNone", "assertIsNot", "assertIsNotNone", "assertLess", "assertLessEqual", "assertListEqual", "assertLogs", "assertMultiLineEqual", "assertNoLogs", "assertNotAlmostEqual", "assertNotAlmostEquals", "assertNotEqual", "assertNotEquals", "assertNotIn", "assertNotIsInstance", "assertNotRegex", "assertNotRegexpMatches", "assertRaises", "assertRaisesRegex", "assertRaisesRegexp", "assertRegex", "assertRegexpMatches", "assertSequenceEqual", "assertSetEqual", "assertTrue", "assertTupleEqual", "assertWarns", "assertWarnsRegex", "countTestCases", "debug", "defaultTestResult", "doClassCleanups", "doCleanups", "fail", "failIf", "failIfAlmostEqual", "failIfEqual", "failUnless", "failUnlessAlmostEqual", "failUnlessEqual", "failUnlessRaises", "failureException", "id", "longMessage", "maxDiff", "run", "shortDescription", "skipTest", "subTest", "tearDown", "tearDownClass" ]
ith_empty_series(self) -> None: self.data.add_data_frame(pd.Series()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_data_frame_with_series(self) -> None: self.data.add_data_frame(self.in_pd_series_dimension) self.data.add_data_frame(self.in_pd_series_measure) self.assertEqual( self.ref_pd_series, self.data.build(), ) def test_add_data_frame_with_series_contains_na(self) -> None: self.data.add_data_frame(self.in_pd_series_dimension_with_nan) self.data.add_data_frame(self.in_pd_series_measure_with_nan) self.assertEqual( self.ref_pd_series_with_nan, self.data.build(), ) class TestDfIndex(DataWithAssets): def test_add_df_index_with_none(self) -> None: self.data.add_df_index(None, column_name="Index") self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_df_index_with_df(self) -> None: df = self.in_pd_df_by_series_with_index self.data.add_df_index(df, column_name="Index") self.assertEqual( self.ref_pd_df_by_series_only_index, self.data.build(), ) class TestDataFrameIndex(DataWithAssets): def test_add_data_frame_index_with_none(self) -> None: self.data.add_data_frame_index(None, name="Index") self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_data_frame_index_with_df(self) -> None: df = self.in_pd_df_by_series_with_index self.data.add_data_frame_index(df, name="Index") self.assertEqual( self.ref_pd_df_by_series_only_index, self.data.build(), ) class TestDfIndexWithSeries(DataWithAssets): def test_add_df_index_with_series(self) -> None: self.
5,444
7,711
216
6,040
vizzuhq__ipyvizzu
54b0334aa736a77f9430739c9375b16be145b3fd
tests/test_data/test_pandas.py
inproject
add_df_index
true
function
28
30
false
false
[ "add_df", "add_data_frame", "build", "add_data_frame_index", "add_df_index", "add_dimension", "add_measure", "add_np_array", "add_record", "add_records", "add_series", "add_series_list", "add_spark_df", "dump", "filter", "from_json", "set_filter", "clear", "copy", "fromkeys", "get", "items", "keys", "pop", "popitem", "setdefault", "update", "values", "__annotations__", "__class__", "__class_getitem__", "__contains__", "__delattr__", "__delitem__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__getitem__", "__hash__", "__init__", "__init_subclass__", "__ior__", "__iter__", "__len__", "__ne__", "__new__", "__or__", "__reduce__", "__reduce_ex__", "__repr__", "__reversed__", "__ror__", "__setattr__", "__setitem__", "__sizeof__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "add_data_frame", "type": "function" }, { "name": "add_data_frame_index", "type": "function" }, { "name": "add_df", "type": "function" }, { "name": "add_df_index", "type": "function" }, { "name": "add_dimension", "type": "function" }, { "name": "add_measure", "type": "function" }, { "name": "add_np_array", "type": "function" }, { "name": "add_record", "type": "function" }, { "name": "add_records", "type": "function" }, { "name": "add_series", "type": "function" }, { "name": "add_series_list", "type": "function" }, { "name": "add_spark_df", "type": "function" }, { "name": "build", "type": "function" }, { "name": "clear", "type": "function" }, { "name": "copy", "type": "function" }, { "name": "dump", "type": "function" }, { "name": "filter", "type": "function" }, { "name": "from_json", "type": "function" }, { "name": "fromkeys", "type": "function" }, { "name": "get", "type": "function" }, { "name": "items", "type": "function" }, { "name": "keys", "type": "function" }, { "name": "pop", "type": "function" }, { "name": "popitem", "type": "function" }, { "name": "set_filter", "type": "function" }, { "name": "setdefault", "type": "function" }, { "name": "update", "type": "function" }, { "name": "values", "type": "function" }, { "name": "_add_named_value", "type": "function" }, { "name": "_add_value", "type": "function" }, { "name": "__annotations__", "type": "statement" }, { "name": "__class__", "type": "property" }, { "name": "__class_getitem__", "type": "function" }, { "name": "__contains__", "type": "function" }, { "name": "__delattr__", "type": "function" }, { "name": "__delitem__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__getitem__", "type": "function" }, { "name": "__hash__", "type": "statement" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__ior__", "type": "function" }, { "name": "__iter__", "type": "function" }, { "name": "__len__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__or__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__reversed__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__setitem__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
# pylint: disable=missing-module-docstring,missing-class-docstring,missing-function-docstring import pandas as pd from tests.test_data import DataWithAssets from tests.utils.import_error import RaiseImportError class TestDf(DataWithAssets): def test_add_df_if_pandas_not_installed(self) -> None: with RaiseImportError.module_name("pandas"): with self.assertRaises(ImportError): self.data.add_df(pd.DataFrame()) def test_add_df_with_none(self) -> None: self.data.add_df(None) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_df_with_empty_df(self) -> None: self.data.add_df(pd.DataFrame()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_df_with_df(self) -> None: df = self.in_pd_df_by_series_with_duplicated_popularity self.data.add_df(df) self.assertEqual( self.ref_pd_df_by_series_with_duplicated_popularity, self.data.build(), ) def test_add_df_with_df_contains_na(self) -> None: df = self.in_pd_df_by_series_with_nan self.data.add_df(df) self.assertEqual( self.ref_pd_df_by_series_with_nan, self.data.build(), ) def test_add_df_with_df_and_with_include_index(self) -> None: df = self.in_pd_df_by_series_with_index self.data.add_df(df, include_index="Index") self.assertEqual( self.ref_pd_df_by_series_with_index, self.data.build(), ) def test_add_df_with_df_and_max_rows(self) -> None: df = self.in_pd_df_by_series self.data.add_df(df, max_rows=2) self.assertEqual( self.ref_pd_df_by_series_max_rows, self.data.build(), ) class TestDataFrame(DataWithAssets): def test_add_data_frame_with_none(self) -> None: self.data.add_data_frame(None) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_data_frame_with_empty_df(self) -> None: self.data.add_data_frame(pd.DataFrame()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_data_frame_with_df(self) -> None: df = self.in_pd_df_by_series_with_duplicated_popularity self.data.add_data_frame(df) self.assertEqual( self.ref_pd_df_by_series_with_duplicated_popularity, self.data.build(), ) def test_add_data_frame_with_df_contains_na(self) -> None: df = self.in_pd_df_by_series_with_nan self.data.add_data_frame(df) self.assertEqual( self.ref_pd_df_by_series_with_nan, self.data.build(), ) class TestDfWithSeries(DataWithAssets): def test_add_df_with_empty_series(self) -> None: self.data.add_df(pd.Series()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_df_with_series(self) -> None: self.data.add_df(self.in_pd_series_dimension) self.data.add_df(self.in_pd_series_measure) self.assertEqual( self.ref_pd_series, self.data.build(), ) def test_add_df_with_series_contains_na(self) -> None: self.data.add_df(self.in_pd_series_dimension_with_nan) self.data.add_df(self.in_pd_series_measure_with_nan) self.assertEqual( self.ref_pd_series_with_nan, self.data.build(), ) def test_add_df_with_series_and_with_include_index(self) -> None: self.data.add_df( self.in_pd_series_dimension_with_index, include_index="DimensionIndex", ) self.data.add_df( self.in_pd_series_measure_with_index, include_index="MeasureIndex", ) self.assertEqual( self.ref_pd_series_with_index, self.data.build(), ) class TestDataFrameWithSeries(DataWithAssets): def test_add_data_frame_with_empty_series(self) -> None: self.data.add_data_frame(pd.Series()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_data_frame_with_series(self) -> None: self.data.add_data_frame(self.in_pd_series_dimension) self.data.add_data_frame(self.in_pd_series_measure) self.assertEqual( self.ref_pd_series, self.data.build(), ) def test_add_data_frame_with_series_contains_na(self) -> None: self.data.add_data_frame(self.in_pd_series_dimension_with_nan) self.data.add_data_frame(self.in_pd_series_measure_with_nan) self.assertEqual( self.ref_pd_series_with_nan, self.data.build(), ) class TestDfIndex(DataWithAssets): def test_add_df_index_with_none(self) -> None: self.data.add_df_index(None, column_name="Index") self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_df_index_with_df(self) -> None: df = self.in_pd_df_by_series_with_index self.data.add_df_index(df, column_name="Index") self.assertEqual( self.ref_pd_df_by_series_only_index, self.data.build(), ) class TestDataFrameIndex(DataWithAssets): def test_add_data_frame_index_with_none(self) -> None: self.data.add_data_frame_index(None, name="Index") self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_data_frame_index_with_df(self) -> None: df = self.in_pd_df_by_series_with_index self.data.add_data_frame_index(df, name="Index") self.assertEqual( self.ref_pd_df_by_series_only_index, self.data.build(), ) class TestDfIndexWithSeries(DataWithAssets): def test_add_df_index_with_series(self) -> None: self.data.
[ "add_df", "add_data_frame", "build", "add_data_frame_index", "add_df_index", "add_dimension", "add_measure", "add_np_array", "add_record", "add_records", "add_series", "add_series_list", "add_spark_df", "dump", "filter", "from_json", "set_filter", "clear", "copy", "fromkeys", "get", "items", "keys", "pop", "popitem", "setdefault", "update", "values" ]
mpty_series(self) -> None: self.data.add_data_frame(pd.Series()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_data_frame_with_series(self) -> None: self.data.add_data_frame(self.in_pd_series_dimension) self.data.add_data_frame(self.in_pd_series_measure) self.assertEqual( self.ref_pd_series, self.data.build(), ) def test_add_data_frame_with_series_contains_na(self) -> None: self.data.add_data_frame(self.in_pd_series_dimension_with_nan) self.data.add_data_frame(self.in_pd_series_measure_with_nan) self.assertEqual( self.ref_pd_series_with_nan, self.data.build(), ) class TestDfIndex(DataWithAssets): def test_add_df_index_with_none(self) -> None: self.data.add_df_index(None, column_name="Index") self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_df_index_with_df(self) -> None: df = self.in_pd_df_by_series_with_index self.data.add_df_index(df, column_name="Index") self.assertEqual( self.ref_pd_df_by_series_only_index, self.data.build(), ) class TestDataFrameIndex(DataWithAssets): def test_add_data_frame_index_with_none(self) -> None: self.data.add_data_frame_index(None, name="Index") self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_data_frame_index_with_df(self) -> None: df = self.in_pd_df_by_series_with_index self.data.add_data_frame_index(df, name="Index") self.assertEqual( self.ref_pd_df_by_series_only_index, self.data.build(), ) class TestDfIndexWithSeries(DataWithAssets): def test_add_df_index_with_series(self) -> None: self.data.
5,445
7,712
216
6,071
vizzuhq__ipyvizzu
54b0334aa736a77f9430739c9375b16be145b3fd
tests/test_data/test_pandas.py
random
in_pd_series_dimension_with_index
true
statement
95
99
false
false
[ "data", "ref_pd_series", "in_pd_series_dimension", "ref_pd_series_with_nan", "ref_pd_df_by_series_with_duplicated_popularity", "test_add_df_index_with_series", "asset_dir", "in_pd_df_by_series", "in_pd_df_by_series_with_duplicated_popularity", "in_pd_df_by_series_with_index", "in_pd_df_by_series_with_nan", "in_pd_series_dimension_with_index", "in_pd_series_dimension_with_nan", "in_pd_series_measure", "in_pd_series_measure_with_index", "in_pd_series_measure_with_nan", "ref_pd_df_by_series", "ref_pd_df_by_series_max_rows", "ref_pd_df_by_series_only_index", "ref_pd_df_by_series_with_index", "ref_pd_df_by_series_with_nan", "ref_pd_series_only_index", "ref_pd_series_with_index", "set_up_pd_df", "set_up_pd_series", "setUp", "setUpClass", "addClassCleanup", "addCleanup", "addTypeEqualityFunc", "assert_", "assertAlmostEqual", "assertAlmostEquals", "assertCountEqual", "assertDictContainsSubset", "assertDictEqual", "assertEqual", "assertEquals", "assertFalse", "assertGreater", "assertGreaterEqual", "assertIn", "assertIs", "assertIsInstance", "assertIsNone", "assertIsNot", "assertIsNotNone", "assertLess", "assertLessEqual", "assertListEqual", "assertLogs", "assertMultiLineEqual", "assertNoLogs", "assertNotAlmostEqual", "assertNotAlmostEquals", "assertNotEqual", "assertNotEquals", "assertNotIn", "assertNotIsInstance", "assertNotRegex", "assertNotRegexpMatches", "assertRaises", "assertRaisesRegex", "assertRaisesRegexp", "assertRegex", "assertRegexpMatches", "assertSequenceEqual", "assertSetEqual", "assertTrue", "assertTupleEqual", "assertWarns", "assertWarnsRegex", "countTestCases", "debug", "defaultTestResult", "doClassCleanups", "doCleanups", "fail", "failIf", "failIfAlmostEqual", "failIfEqual", "failUnless", "failUnlessAlmostEqual", "failUnlessEqual", "failUnlessRaises", "failureException", "id", "longMessage", "maxDiff", "run", "shortDescription", "skipTest", "subTest", "tearDown", "tearDownClass", "__annotations__", "__call__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "addClassCleanup", "type": "function" }, { "name": "addCleanup", "type": "function" }, { "name": "addTypeEqualityFunc", "type": "function" }, { "name": "assert_", "type": "function" }, { "name": "assertAlmostEqual", "type": "function" }, { "name": "assertAlmostEquals", "type": "function" }, { "name": "assertCountEqual", "type": "function" }, { "name": "assertDictContainsSubset", "type": "function" }, { "name": "assertDictEqual", "type": "function" }, { "name": "assertEqual", "type": "function" }, { "name": "assertEquals", "type": "function" }, { "name": "assertFalse", "type": "function" }, { "name": "assertGreater", "type": "function" }, { "name": "assertGreaterEqual", "type": "function" }, { "name": "assertIn", "type": "function" }, { "name": "assertIs", "type": "function" }, { "name": "assertIsInstance", "type": "function" }, { "name": "assertIsNone", "type": "function" }, { "name": "assertIsNot", "type": "function" }, { "name": "assertIsNotNone", "type": "function" }, { "name": "assertLess", "type": "function" }, { "name": "assertLessEqual", "type": "function" }, { "name": "assertListEqual", "type": "function" }, { "name": "assertLogs", "type": "function" }, { "name": "assertMultiLineEqual", "type": "function" }, { "name": "assertNotAlmostEqual", "type": "function" }, { "name": "assertNotAlmostEquals", "type": "function" }, { "name": "assertNotEqual", "type": "function" }, { "name": "assertNotEquals", "type": "function" }, { "name": "assertNotIn", "type": "function" }, { "name": "assertNotIsInstance", "type": "function" }, { "name": "assertNotRegex", "type": "function" }, { "name": "assertNotRegexpMatches", "type": "function" }, { "name": "assertRaises", "type": "function" }, { "name": "assertRaisesRegex", "type": "function" }, { "name": "assertRaisesRegexp", "type": "function" }, { "name": "assertRegex", "type": "function" }, { "name": "assertRegexpMatches", "type": "function" }, { "name": "assertSequenceEqual", "type": "function" }, { "name": "assertSetEqual", "type": "function" }, { "name": "assertTrue", "type": "function" }, { "name": "assertTupleEqual", "type": "function" }, { "name": "assertWarns", "type": "function" }, { "name": "assertWarnsRegex", "type": "function" }, { "name": "asset_dir", "type": "statement" }, { "name": "countTestCases", "type": "function" }, { "name": "data", "type": "statement" }, { "name": "debug", "type": "function" }, { "name": "defaultTestResult", "type": "function" }, { "name": "doClassCleanups", "type": "function" }, { "name": "doCleanups", "type": "function" }, { "name": "fail", "type": "function" }, { "name": "failIf", "type": "function" }, { "name": "failIfAlmostEqual", "type": "function" }, { "name": "failIfEqual", "type": "function" }, { "name": "failUnless", "type": "function" }, { "name": "failUnlessAlmostEqual", "type": "function" }, { "name": "failUnlessEqual", "type": "function" }, { "name": "failUnlessRaises", "type": "function" }, { "name": "failureException", "type": "statement" }, { "name": "id", "type": "function" }, { "name": "in_pd_df_by_series", "type": "statement" }, { "name": "in_pd_df_by_series_with_duplicated_popularity", "type": "statement" }, { "name": "in_pd_df_by_series_with_index", "type": "statement" }, { "name": "in_pd_df_by_series_with_nan", "type": "statement" }, { "name": "in_pd_series_dimension", "type": "statement" }, { "name": "in_pd_series_dimension_with_index", "type": "statement" }, { "name": "in_pd_series_dimension_with_nan", "type": "statement" }, { "name": "in_pd_series_measure", "type": "statement" }, { "name": "in_pd_series_measure_with_index", "type": "statement" }, { "name": "in_pd_series_measure_with_nan", "type": "statement" }, { "name": "longMessage", "type": "statement" }, { "name": "maxDiff", "type": "statement" }, { "name": "ref_pd_df_by_series", "type": "statement" }, { "name": "ref_pd_df_by_series_max_rows", "type": "statement" }, { "name": "ref_pd_df_by_series_only_index", "type": "statement" }, { "name": "ref_pd_df_by_series_with_duplicated_popularity", "type": "statement" }, { "name": "ref_pd_df_by_series_with_index", "type": "statement" }, { "name": "ref_pd_df_by_series_with_nan", "type": "statement" }, { "name": "ref_pd_series", "type": "statement" }, { "name": "ref_pd_series_only_index", "type": "statement" }, { "name": "ref_pd_series_with_index", "type": "statement" }, { "name": "ref_pd_series_with_nan", "type": "statement" }, { "name": "run", "type": "function" }, { "name": "set_up_pd_df", "type": "function" }, { "name": "set_up_pd_series", "type": "function" }, { "name": "setUp", "type": "function" }, { "name": "setUpClass", "type": "function" }, { "name": "shortDescription", "type": "function" }, { "name": "skipTest", "type": "function" }, { "name": "subTest", "type": "function" }, { "name": "tearDown", "type": "function" }, { "name": "tearDownClass", "type": "function" }, { "name": "test_add_df_index_with_series", "type": "function" }, { "name": "_addSkip", "type": "function" }, { "name": "_formatMessage", "type": "function" }, { "name": "_getAssertEqualityFunc", "type": "function" }, { "name": "_testMethodDoc", "type": "statement" }, { "name": "_testMethodName", "type": "statement" }, { "name": "__annotations__", "type": "statement" }, { "name": "__call__", "type": "function" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
# pylint: disable=missing-module-docstring,missing-class-docstring,missing-function-docstring import pandas as pd from tests.test_data import DataWithAssets from tests.utils.import_error import RaiseImportError class TestDf(DataWithAssets): def test_add_df_if_pandas_not_installed(self) -> None: with RaiseImportError.module_name("pandas"): with self.assertRaises(ImportError): self.data.add_df(pd.DataFrame()) def test_add_df_with_none(self) -> None: self.data.add_df(None) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_df_with_empty_df(self) -> None: self.data.add_df(pd.DataFrame()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_df_with_df(self) -> None: df = self.in_pd_df_by_series_with_duplicated_popularity self.data.add_df(df) self.assertEqual( self.ref_pd_df_by_series_with_duplicated_popularity, self.data.build(), ) def test_add_df_with_df_contains_na(self) -> None: df = self.in_pd_df_by_series_with_nan self.data.add_df(df) self.assertEqual( self.ref_pd_df_by_series_with_nan, self.data.build(), ) def test_add_df_with_df_and_with_include_index(self) -> None: df = self.in_pd_df_by_series_with_index self.data.add_df(df, include_index="Index") self.assertEqual( self.ref_pd_df_by_series_with_index, self.data.build(), ) def test_add_df_with_df_and_max_rows(self) -> None: df = self.in_pd_df_by_series self.data.add_df(df, max_rows=2) self.assertEqual( self.ref_pd_df_by_series_max_rows, self.data.build(), ) class TestDataFrame(DataWithAssets): def test_add_data_frame_with_none(self) -> None: self.data.add_data_frame(None) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_data_frame_with_empty_df(self) -> None: self.data.add_data_frame(pd.DataFrame()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_data_frame_with_df(self) -> None: df = self.in_pd_df_by_series_with_duplicated_popularity self.data.add_data_frame(df) self.assertEqual( self.ref_pd_df_by_series_with_duplicated_popularity, self.data.build(), ) def test_add_data_frame_with_df_contains_na(self) -> None: df = self.in_pd_df_by_series_with_nan self.data.add_data_frame(df) self.assertEqual( self.ref_pd_df_by_series_with_nan, self.data.build(), ) class TestDfWithSeries(DataWithAssets): def test_add_df_with_empty_series(self) -> None: self.data.add_df(pd.Series()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_df_with_series(self) -> None: self.data.add_df(self.in_pd_series_dimension) self.data.add_df(self.in_pd_series_measure) self.assertEqual( self.ref_pd_series, self.data.build(), ) def test_add_df_with_series_contains_na(self) -> None: self.data.add_df(self.in_pd_series_dimension_with_nan) self.data.add_df(self.in_pd_series_measure_with_nan) self.assertEqual( self.ref_pd_series_with_nan, self.data.build(), ) def test_add_df_with_series_and_with_include_index(self) -> None: self.data.add_df( self.in_pd_series_dimension_with_index, include_index="DimensionIndex", ) self.data.add_df( self.in_pd_series_measure_with_index, include_index="MeasureIndex", ) self.assertEqual( self.ref_pd_series_with_index, self.data.build(), ) class TestDataFrameWithSeries(DataWithAssets): def test_add_data_frame_with_empty_series(self) -> None: self.data.add_data_frame(pd.Series()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_data_frame_with_series(self) -> None: self.data.add_data_frame(self.in_pd_series_dimension) self.data.add_data_frame(self.in_pd_series_measure) self.assertEqual( self.ref_pd_series, self.data.build(), ) def test_add_data_frame_with_series_contains_na(self) -> None: self.data.add_data_frame(self.in_pd_series_dimension_with_nan) self.data.add_data_frame(self.in_pd_series_measure_with_nan) self.assertEqual( self.ref_pd_series_with_nan, self.data.build(), ) class TestDfIndex(DataWithAssets): def test_add_df_index_with_none(self) -> None: self.data.add_df_index(None, column_name="Index") self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_df_index_with_df(self) -> None: df = self.in_pd_df_by_series_with_index self.data.add_df_index(df, column_name="Index") self.assertEqual( self.ref_pd_df_by_series_only_index, self.data.build(), ) class TestDataFrameIndex(DataWithAssets): def test_add_data_frame_index_with_none(self) -> None: self.data.add_data_frame_index(None, name="Index") self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_data_frame_index_with_df(self) -> None: df = self.in_pd_df_by_series_with_index self.data.add_data_frame_index(df, name="Index") self.assertEqual( self.ref_pd_df_by_series_only_index, self.data.build(), ) class TestDfIndexWithSeries(DataWithAssets): def test_add_df_index_with_series(self) -> None: self.data.add_df_index( self.
[ "data", "ref_pd_series", "in_pd_series_dimension", "ref_pd_series_with_nan", "ref_pd_df_by_series_with_duplicated_popularity", "test_add_df_index_with_series", "asset_dir", "in_pd_df_by_series", "in_pd_df_by_series_with_duplicated_popularity", "in_pd_df_by_series_with_index", "in_pd_df_by_series_with_nan", "in_pd_series_dimension_with_index", "in_pd_series_dimension_with_nan", "in_pd_series_measure", "in_pd_series_measure_with_index", "in_pd_series_measure_with_nan", "ref_pd_df_by_series", "ref_pd_df_by_series_max_rows", "ref_pd_df_by_series_only_index", "ref_pd_df_by_series_with_index", "ref_pd_df_by_series_with_nan", "ref_pd_series_only_index", "ref_pd_series_with_index", "set_up_pd_df", "set_up_pd_series", "setUp", "setUpClass", "addClassCleanup", "addCleanup", "addTypeEqualityFunc", "assert_", "assertAlmostEqual", "assertAlmostEquals", "assertCountEqual", "assertDictContainsSubset", "assertDictEqual", "assertEqual", "assertEquals", "assertFalse", "assertGreater", "assertGreaterEqual", "assertIn", "assertIs", "assertIsInstance", "assertIsNone", "assertIsNot", "assertIsNotNone", "assertLess", "assertLessEqual", "assertListEqual", "assertLogs", "assertMultiLineEqual", "assertNoLogs", "assertNotAlmostEqual", "assertNotAlmostEquals", "assertNotEqual", "assertNotEquals", "assertNotIn", "assertNotIsInstance", "assertNotRegex", "assertNotRegexpMatches", "assertRaises", "assertRaisesRegex", "assertRaisesRegexp", "assertRegex", "assertRegexpMatches", "assertSequenceEqual", "assertSetEqual", "assertTrue", "assertTupleEqual", "assertWarns", "assertWarnsRegex", "countTestCases", "debug", "defaultTestResult", "doClassCleanups", "doCleanups", "fail", "failIf", "failIfAlmostEqual", "failIfEqual", "failUnless", "failUnlessAlmostEqual", "failUnlessEqual", "failUnlessRaises", "failureException", "id", "longMessage", "maxDiff", "run", "shortDescription", "skipTest", "subTest", "tearDown", "tearDownClass" ]
self.data.add_data_frame(pd.Series()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_data_frame_with_series(self) -> None: self.data.add_data_frame(self.in_pd_series_dimension) self.data.add_data_frame(self.in_pd_series_measure) self.assertEqual( self.ref_pd_series, self.data.build(), ) def test_add_data_frame_with_series_contains_na(self) -> None: self.data.add_data_frame(self.in_pd_series_dimension_with_nan) self.data.add_data_frame(self.in_pd_series_measure_with_nan) self.assertEqual( self.ref_pd_series_with_nan, self.data.build(), ) class TestDfIndex(DataWithAssets): def test_add_df_index_with_none(self) -> None: self.data.add_df_index(None, column_name="Index") self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_df_index_with_df(self) -> None: df = self.in_pd_df_by_series_with_index self.data.add_df_index(df, column_name="Index") self.assertEqual( self.ref_pd_df_by_series_only_index, self.data.build(), ) class TestDataFrameIndex(DataWithAssets): def test_add_data_frame_index_with_none(self) -> None: self.data.add_data_frame_index(None, name="Index") self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_data_frame_index_with_df(self) -> None: df = self.in_pd_df_by_series_with_index self.data.add_data_frame_index(df, name="Index") self.assertEqual( self.ref_pd_df_by_series_only_index, self.data.build(), ) class TestDfIndexWithSeries(DataWithAssets): def test_add_df_index_with_series(self) -> None: self.data.add_df_index( self.
5,446
7,717
216
6,376
vizzuhq__ipyvizzu
54b0334aa736a77f9430739c9375b16be145b3fd
tests/test_data/test_pandas.py
inproject
data
true
statement
95
99
false
false
[ "data", "in_pd_df_by_series", "ref_pd_series", "assertEqual", "in_pd_series_dimension", "test_add_df_index_with_series", "asset_dir", "in_pd_df_by_series_with_duplicated_popularity", "in_pd_df_by_series_with_index", "in_pd_df_by_series_with_nan", "in_pd_series_dimension_with_index", "in_pd_series_dimension_with_nan", "in_pd_series_measure", "in_pd_series_measure_with_index", "in_pd_series_measure_with_nan", "ref_pd_df_by_series", "ref_pd_df_by_series_max_rows", "ref_pd_df_by_series_only_index", "ref_pd_df_by_series_with_duplicated_popularity", "ref_pd_df_by_series_with_index", "ref_pd_df_by_series_with_nan", "ref_pd_series_only_index", "ref_pd_series_with_index", "ref_pd_series_with_nan", "set_up_pd_df", "set_up_pd_series", "setUp", "setUpClass", "addClassCleanup", "addCleanup", "addTypeEqualityFunc", "assert_", "assertAlmostEqual", "assertAlmostEquals", "assertCountEqual", "assertDictContainsSubset", "assertDictEqual", "assertEquals", "assertFalse", "assertGreater", "assertGreaterEqual", "assertIn", "assertIs", "assertIsInstance", "assertIsNone", "assertIsNot", "assertIsNotNone", "assertLess", "assertLessEqual", "assertListEqual", "assertLogs", "assertMultiLineEqual", "assertNoLogs", "assertNotAlmostEqual", "assertNotAlmostEquals", "assertNotEqual", "assertNotEquals", "assertNotIn", "assertNotIsInstance", "assertNotRegex", "assertNotRegexpMatches", "assertRaises", "assertRaisesRegex", "assertRaisesRegexp", "assertRegex", "assertRegexpMatches", "assertSequenceEqual", "assertSetEqual", "assertTrue", "assertTupleEqual", "assertWarns", "assertWarnsRegex", "countTestCases", "debug", "defaultTestResult", "doClassCleanups", "doCleanups", "fail", "failIf", "failIfAlmostEqual", "failIfEqual", "failUnless", "failUnlessAlmostEqual", "failUnlessEqual", "failUnlessRaises", "failureException", "id", "longMessage", "maxDiff", "run", "shortDescription", "skipTest", "subTest", "tearDown", "tearDownClass", "__annotations__", "__call__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "addClassCleanup", "type": "function" }, { "name": "addCleanup", "type": "function" }, { "name": "addTypeEqualityFunc", "type": "function" }, { "name": "assert_", "type": "function" }, { "name": "assertAlmostEqual", "type": "function" }, { "name": "assertAlmostEquals", "type": "function" }, { "name": "assertCountEqual", "type": "function" }, { "name": "assertDictContainsSubset", "type": "function" }, { "name": "assertDictEqual", "type": "function" }, { "name": "assertEqual", "type": "function" }, { "name": "assertEquals", "type": "function" }, { "name": "assertFalse", "type": "function" }, { "name": "assertGreater", "type": "function" }, { "name": "assertGreaterEqual", "type": "function" }, { "name": "assertIn", "type": "function" }, { "name": "assertIs", "type": "function" }, { "name": "assertIsInstance", "type": "function" }, { "name": "assertIsNone", "type": "function" }, { "name": "assertIsNot", "type": "function" }, { "name": "assertIsNotNone", "type": "function" }, { "name": "assertLess", "type": "function" }, { "name": "assertLessEqual", "type": "function" }, { "name": "assertListEqual", "type": "function" }, { "name": "assertLogs", "type": "function" }, { "name": "assertMultiLineEqual", "type": "function" }, { "name": "assertNotAlmostEqual", "type": "function" }, { "name": "assertNotAlmostEquals", "type": "function" }, { "name": "assertNotEqual", "type": "function" }, { "name": "assertNotEquals", "type": "function" }, { "name": "assertNotIn", "type": "function" }, { "name": "assertNotIsInstance", "type": "function" }, { "name": "assertNotRegex", "type": "function" }, { "name": "assertNotRegexpMatches", "type": "function" }, { "name": "assertRaises", "type": "function" }, { "name": "assertRaisesRegex", "type": "function" }, { "name": "assertRaisesRegexp", "type": "function" }, { "name": "assertRegex", "type": "function" }, { "name": "assertRegexpMatches", "type": "function" }, { "name": "assertSequenceEqual", "type": "function" }, { "name": "assertSetEqual", "type": "function" }, { "name": "assertTrue", "type": "function" }, { "name": "assertTupleEqual", "type": "function" }, { "name": "assertWarns", "type": "function" }, { "name": "assertWarnsRegex", "type": "function" }, { "name": "asset_dir", "type": "statement" }, { "name": "countTestCases", "type": "function" }, { "name": "data", "type": "statement" }, { "name": "debug", "type": "function" }, { "name": "defaultTestResult", "type": "function" }, { "name": "doClassCleanups", "type": "function" }, { "name": "doCleanups", "type": "function" }, { "name": "fail", "type": "function" }, { "name": "failIf", "type": "function" }, { "name": "failIfAlmostEqual", "type": "function" }, { "name": "failIfEqual", "type": "function" }, { "name": "failUnless", "type": "function" }, { "name": "failUnlessAlmostEqual", "type": "function" }, { "name": "failUnlessEqual", "type": "function" }, { "name": "failUnlessRaises", "type": "function" }, { "name": "failureException", "type": "statement" }, { "name": "id", "type": "function" }, { "name": "in_pd_df_by_series", "type": "statement" }, { "name": "in_pd_df_by_series_with_duplicated_popularity", "type": "statement" }, { "name": "in_pd_df_by_series_with_index", "type": "statement" }, { "name": "in_pd_df_by_series_with_nan", "type": "statement" }, { "name": "in_pd_series_dimension", "type": "statement" }, { "name": "in_pd_series_dimension_with_index", "type": "statement" }, { "name": "in_pd_series_dimension_with_nan", "type": "statement" }, { "name": "in_pd_series_measure", "type": "statement" }, { "name": "in_pd_series_measure_with_index", "type": "statement" }, { "name": "in_pd_series_measure_with_nan", "type": "statement" }, { "name": "longMessage", "type": "statement" }, { "name": "maxDiff", "type": "statement" }, { "name": "ref_pd_df_by_series", "type": "statement" }, { "name": "ref_pd_df_by_series_max_rows", "type": "statement" }, { "name": "ref_pd_df_by_series_only_index", "type": "statement" }, { "name": "ref_pd_df_by_series_with_duplicated_popularity", "type": "statement" }, { "name": "ref_pd_df_by_series_with_index", "type": "statement" }, { "name": "ref_pd_df_by_series_with_nan", "type": "statement" }, { "name": "ref_pd_series", "type": "statement" }, { "name": "ref_pd_series_only_index", "type": "statement" }, { "name": "ref_pd_series_with_index", "type": "statement" }, { "name": "ref_pd_series_with_nan", "type": "statement" }, { "name": "run", "type": "function" }, { "name": "set_up_pd_df", "type": "function" }, { "name": "set_up_pd_series", "type": "function" }, { "name": "setUp", "type": "function" }, { "name": "setUpClass", "type": "function" }, { "name": "shortDescription", "type": "function" }, { "name": "skipTest", "type": "function" }, { "name": "subTest", "type": "function" }, { "name": "tearDown", "type": "function" }, { "name": "tearDownClass", "type": "function" }, { "name": "test_add_df_index_with_series", "type": "function" }, { "name": "_addSkip", "type": "function" }, { "name": "_formatMessage", "type": "function" }, { "name": "_getAssertEqualityFunc", "type": "function" }, { "name": "_testMethodDoc", "type": "statement" }, { "name": "_testMethodName", "type": "statement" }, { "name": "__annotations__", "type": "statement" }, { "name": "__call__", "type": "function" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
# pylint: disable=missing-module-docstring,missing-class-docstring,missing-function-docstring import pandas as pd from tests.test_data import DataWithAssets from tests.utils.import_error import RaiseImportError class TestDf(DataWithAssets): def test_add_df_if_pandas_not_installed(self) -> None: with RaiseImportError.module_name("pandas"): with self.assertRaises(ImportError): self.data.add_df(pd.DataFrame()) def test_add_df_with_none(self) -> None: self.data.add_df(None) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_df_with_empty_df(self) -> None: self.data.add_df(pd.DataFrame()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_df_with_df(self) -> None: df = self.in_pd_df_by_series_with_duplicated_popularity self.data.add_df(df) self.assertEqual( self.ref_pd_df_by_series_with_duplicated_popularity, self.data.build(), ) def test_add_df_with_df_contains_na(self) -> None: df = self.in_pd_df_by_series_with_nan self.data.add_df(df) self.assertEqual( self.ref_pd_df_by_series_with_nan, self.data.build(), ) def test_add_df_with_df_and_with_include_index(self) -> None: df = self.in_pd_df_by_series_with_index self.data.add_df(df, include_index="Index") self.assertEqual( self.ref_pd_df_by_series_with_index, self.data.build(), ) def test_add_df_with_df_and_max_rows(self) -> None: df = self.in_pd_df_by_series self.data.add_df(df, max_rows=2) self.assertEqual( self.ref_pd_df_by_series_max_rows, self.data.build(), ) class TestDataFrame(DataWithAssets): def test_add_data_frame_with_none(self) -> None: self.data.add_data_frame(None) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_data_frame_with_empty_df(self) -> None: self.data.add_data_frame(pd.DataFrame()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_data_frame_with_df(self) -> None: df = self.in_pd_df_by_series_with_duplicated_popularity self.data.add_data_frame(df) self.assertEqual( self.ref_pd_df_by_series_with_duplicated_popularity, self.data.build(), ) def test_add_data_frame_with_df_contains_na(self) -> None: df = self.in_pd_df_by_series_with_nan self.data.add_data_frame(df) self.assertEqual( self.ref_pd_df_by_series_with_nan, self.data.build(), ) class TestDfWithSeries(DataWithAssets): def test_add_df_with_empty_series(self) -> None: self.data.add_df(pd.Series()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_df_with_series(self) -> None: self.data.add_df(self.in_pd_series_dimension) self.data.add_df(self.in_pd_series_measure) self.assertEqual( self.ref_pd_series, self.data.build(), ) def test_add_df_with_series_contains_na(self) -> None: self.data.add_df(self.in_pd_series_dimension_with_nan) self.data.add_df(self.in_pd_series_measure_with_nan) self.assertEqual( self.ref_pd_series_with_nan, self.data.build(), ) def test_add_df_with_series_and_with_include_index(self) -> None: self.data.add_df( self.in_pd_series_dimension_with_index, include_index="DimensionIndex", ) self.data.add_df( self.in_pd_series_measure_with_index, include_index="MeasureIndex", ) self.assertEqual( self.ref_pd_series_with_index, self.data.build(), ) class TestDataFrameWithSeries(DataWithAssets): def test_add_data_frame_with_empty_series(self) -> None: self.data.add_data_frame(pd.Series()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_data_frame_with_series(self) -> None: self.data.add_data_frame(self.in_pd_series_dimension) self.data.add_data_frame(self.in_pd_series_measure) self.assertEqual( self.ref_pd_series, self.data.build(), ) def test_add_data_frame_with_series_contains_na(self) -> None: self.data.add_data_frame(self.in_pd_series_dimension_with_nan) self.data.add_data_frame(self.in_pd_series_measure_with_nan) self.assertEqual( self.ref_pd_series_with_nan, self.data.build(), ) class TestDfIndex(DataWithAssets): def test_add_df_index_with_none(self) -> None: self.data.add_df_index(None, column_name="Index") self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_df_index_with_df(self) -> None: df = self.in_pd_df_by_series_with_index self.data.add_df_index(df, column_name="Index") self.assertEqual( self.ref_pd_df_by_series_only_index, self.data.build(), ) class TestDataFrameIndex(DataWithAssets): def test_add_data_frame_index_with_none(self) -> None: self.data.add_data_frame_index(None, name="Index") self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_data_frame_index_with_df(self) -> None: df = self.in_pd_df_by_series_with_index self.data.add_data_frame_index(df, name="Index") self.assertEqual( self.ref_pd_df_by_series_only_index, self.data.build(), ) class TestDfIndexWithSeries(DataWithAssets): def test_add_df_index_with_series(self) -> None: self.data.add_df_index( self.in_pd_series_dimension_with_index, column_name="DimensionIndex", ) self.data.add_df_index( self.in_pd_series_measure_with_index, column_name="MeasureIndex", ) self.assertEqual( self.ref_pd_series_only_index, self.
[ "data", "in_pd_df_by_series", "ref_pd_series", "assertEqual", "in_pd_series_dimension", "test_add_df_index_with_series", "asset_dir", "in_pd_df_by_series_with_duplicated_popularity", "in_pd_df_by_series_with_index", "in_pd_df_by_series_with_nan", "in_pd_series_dimension_with_index", "in_pd_series_dimension_with_nan", "in_pd_series_measure", "in_pd_series_measure_with_index", "in_pd_series_measure_with_nan", "ref_pd_df_by_series", "ref_pd_df_by_series_max_rows", "ref_pd_df_by_series_only_index", "ref_pd_df_by_series_with_duplicated_popularity", "ref_pd_df_by_series_with_index", "ref_pd_df_by_series_with_nan", "ref_pd_series_only_index", "ref_pd_series_with_index", "ref_pd_series_with_nan", "set_up_pd_df", "set_up_pd_series", "setUp", "setUpClass", "addClassCleanup", "addCleanup", "addTypeEqualityFunc", "assert_", "assertAlmostEqual", "assertAlmostEquals", "assertCountEqual", "assertDictContainsSubset", "assertDictEqual", "assertEquals", "assertFalse", "assertGreater", "assertGreaterEqual", "assertIn", "assertIs", "assertIsInstance", "assertIsNone", "assertIsNot", "assertIsNotNone", "assertLess", "assertLessEqual", "assertListEqual", "assertLogs", "assertMultiLineEqual", "assertNoLogs", "assertNotAlmostEqual", "assertNotAlmostEquals", "assertNotEqual", "assertNotEquals", "assertNotIn", "assertNotIsInstance", "assertNotRegex", "assertNotRegexpMatches", "assertRaises", "assertRaisesRegex", "assertRaisesRegexp", "assertRegex", "assertRegexpMatches", "assertSequenceEqual", "assertSetEqual", "assertTrue", "assertTupleEqual", "assertWarns", "assertWarnsRegex", "countTestCases", "debug", "defaultTestResult", "doClassCleanups", "doCleanups", "fail", "failIf", "failIfAlmostEqual", "failIfEqual", "failUnless", "failUnlessAlmostEqual", "failUnlessEqual", "failUnlessRaises", "failureException", "id", "longMessage", "maxDiff", "run", "shortDescription", "skipTest", "subTest", "tearDown", "tearDownClass" ]
easure) self.assertEqual( self.ref_pd_series, self.data.build(), ) def test_add_data_frame_with_series_contains_na(self) -> None: self.data.add_data_frame(self.in_pd_series_dimension_with_nan) self.data.add_data_frame(self.in_pd_series_measure_with_nan) self.assertEqual( self.ref_pd_series_with_nan, self.data.build(), ) class TestDfIndex(DataWithAssets): def test_add_df_index_with_none(self) -> None: self.data.add_df_index(None, column_name="Index") self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_df_index_with_df(self) -> None: df = self.in_pd_df_by_series_with_index self.data.add_df_index(df, column_name="Index") self.assertEqual( self.ref_pd_df_by_series_only_index, self.data.build(), ) class TestDataFrameIndex(DataWithAssets): def test_add_data_frame_index_with_none(self) -> None: self.data.add_data_frame_index(None, name="Index") self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_data_frame_index_with_df(self) -> None: df = self.in_pd_df_by_series_with_index self.data.add_data_frame_index(df, name="Index") self.assertEqual( self.ref_pd_df_by_series_only_index, self.data.build(), ) class TestDfIndexWithSeries(DataWithAssets): def test_add_df_index_with_series(self) -> None: self.data.add_df_index( self.in_pd_series_dimension_with_index, column_name="DimensionIndex", ) self.data.add_df_index( self.in_pd_series_measure_with_index, column_name="MeasureIndex", ) self.assertEqual( self.ref_pd_series_only_index, self.
5,451
7,719
216
6,528
vizzuhq__ipyvizzu
54b0334aa736a77f9430739c9375b16be145b3fd
tests/test_data/test_pandas.py
inproject
data
true
statement
95
99
false
false
[ "data", "ref_pd_series", "in_pd_df_by_series", "assertEqual", "in_pd_series_dimension", "test_add_data_frame_index_with_series", "asset_dir", "in_pd_df_by_series_with_duplicated_popularity", "in_pd_df_by_series_with_index", "in_pd_df_by_series_with_nan", "in_pd_series_dimension_with_index", "in_pd_series_dimension_with_nan", "in_pd_series_measure", "in_pd_series_measure_with_index", "in_pd_series_measure_with_nan", "ref_pd_df_by_series", "ref_pd_df_by_series_max_rows", "ref_pd_df_by_series_only_index", "ref_pd_df_by_series_with_duplicated_popularity", "ref_pd_df_by_series_with_index", "ref_pd_df_by_series_with_nan", "ref_pd_series_only_index", "ref_pd_series_with_index", "ref_pd_series_with_nan", "set_up_pd_df", "set_up_pd_series", "setUp", "setUpClass", "addClassCleanup", "addCleanup", "addTypeEqualityFunc", "assert_", "assertAlmostEqual", "assertAlmostEquals", "assertCountEqual", "assertDictContainsSubset", "assertDictEqual", "assertEquals", "assertFalse", "assertGreater", "assertGreaterEqual", "assertIn", "assertIs", "assertIsInstance", "assertIsNone", "assertIsNot", "assertIsNotNone", "assertLess", "assertLessEqual", "assertListEqual", "assertLogs", "assertMultiLineEqual", "assertNoLogs", "assertNotAlmostEqual", "assertNotAlmostEquals", "assertNotEqual", "assertNotEquals", "assertNotIn", "assertNotIsInstance", "assertNotRegex", "assertNotRegexpMatches", "assertRaises", "assertRaisesRegex", "assertRaisesRegexp", "assertRegex", "assertRegexpMatches", "assertSequenceEqual", "assertSetEqual", "assertTrue", "assertTupleEqual", "assertWarns", "assertWarnsRegex", "countTestCases", "debug", "defaultTestResult", "doClassCleanups", "doCleanups", "fail", "failIf", "failIfAlmostEqual", "failIfEqual", "failUnless", "failUnlessAlmostEqual", "failUnlessEqual", "failUnlessRaises", "failureException", "id", "longMessage", "maxDiff", "run", "shortDescription", "skipTest", "subTest", "tearDown", "tearDownClass", "__annotations__", "__call__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "addClassCleanup", "type": "function" }, { "name": "addCleanup", "type": "function" }, { "name": "addTypeEqualityFunc", "type": "function" }, { "name": "assert_", "type": "function" }, { "name": "assertAlmostEqual", "type": "function" }, { "name": "assertAlmostEquals", "type": "function" }, { "name": "assertCountEqual", "type": "function" }, { "name": "assertDictContainsSubset", "type": "function" }, { "name": "assertDictEqual", "type": "function" }, { "name": "assertEqual", "type": "function" }, { "name": "assertEquals", "type": "function" }, { "name": "assertFalse", "type": "function" }, { "name": "assertGreater", "type": "function" }, { "name": "assertGreaterEqual", "type": "function" }, { "name": "assertIn", "type": "function" }, { "name": "assertIs", "type": "function" }, { "name": "assertIsInstance", "type": "function" }, { "name": "assertIsNone", "type": "function" }, { "name": "assertIsNot", "type": "function" }, { "name": "assertIsNotNone", "type": "function" }, { "name": "assertLess", "type": "function" }, { "name": "assertLessEqual", "type": "function" }, { "name": "assertListEqual", "type": "function" }, { "name": "assertLogs", "type": "function" }, { "name": "assertMultiLineEqual", "type": "function" }, { "name": "assertNotAlmostEqual", "type": "function" }, { "name": "assertNotAlmostEquals", "type": "function" }, { "name": "assertNotEqual", "type": "function" }, { "name": "assertNotEquals", "type": "function" }, { "name": "assertNotIn", "type": "function" }, { "name": "assertNotIsInstance", "type": "function" }, { "name": "assertNotRegex", "type": "function" }, { "name": "assertNotRegexpMatches", "type": "function" }, { "name": "assertRaises", "type": "function" }, { "name": "assertRaisesRegex", "type": "function" }, { "name": "assertRaisesRegexp", "type": "function" }, { "name": "assertRegex", "type": "function" }, { "name": "assertRegexpMatches", "type": "function" }, { "name": "assertSequenceEqual", "type": "function" }, { "name": "assertSetEqual", "type": "function" }, { "name": "assertTrue", "type": "function" }, { "name": "assertTupleEqual", "type": "function" }, { "name": "assertWarns", "type": "function" }, { "name": "assertWarnsRegex", "type": "function" }, { "name": "asset_dir", "type": "statement" }, { "name": "countTestCases", "type": "function" }, { "name": "data", "type": "statement" }, { "name": "debug", "type": "function" }, { "name": "defaultTestResult", "type": "function" }, { "name": "doClassCleanups", "type": "function" }, { "name": "doCleanups", "type": "function" }, { "name": "fail", "type": "function" }, { "name": "failIf", "type": "function" }, { "name": "failIfAlmostEqual", "type": "function" }, { "name": "failIfEqual", "type": "function" }, { "name": "failUnless", "type": "function" }, { "name": "failUnlessAlmostEqual", "type": "function" }, { "name": "failUnlessEqual", "type": "function" }, { "name": "failUnlessRaises", "type": "function" }, { "name": "failureException", "type": "statement" }, { "name": "id", "type": "function" }, { "name": "in_pd_df_by_series", "type": "statement" }, { "name": "in_pd_df_by_series_with_duplicated_popularity", "type": "statement" }, { "name": "in_pd_df_by_series_with_index", "type": "statement" }, { "name": "in_pd_df_by_series_with_nan", "type": "statement" }, { "name": "in_pd_series_dimension", "type": "statement" }, { "name": "in_pd_series_dimension_with_index", "type": "statement" }, { "name": "in_pd_series_dimension_with_nan", "type": "statement" }, { "name": "in_pd_series_measure", "type": "statement" }, { "name": "in_pd_series_measure_with_index", "type": "statement" }, { "name": "in_pd_series_measure_with_nan", "type": "statement" }, { "name": "longMessage", "type": "statement" }, { "name": "maxDiff", "type": "statement" }, { "name": "ref_pd_df_by_series", "type": "statement" }, { "name": "ref_pd_df_by_series_max_rows", "type": "statement" }, { "name": "ref_pd_df_by_series_only_index", "type": "statement" }, { "name": "ref_pd_df_by_series_with_duplicated_popularity", "type": "statement" }, { "name": "ref_pd_df_by_series_with_index", "type": "statement" }, { "name": "ref_pd_df_by_series_with_nan", "type": "statement" }, { "name": "ref_pd_series", "type": "statement" }, { "name": "ref_pd_series_only_index", "type": "statement" }, { "name": "ref_pd_series_with_index", "type": "statement" }, { "name": "ref_pd_series_with_nan", "type": "statement" }, { "name": "run", "type": "function" }, { "name": "set_up_pd_df", "type": "function" }, { "name": "set_up_pd_series", "type": "function" }, { "name": "setUp", "type": "function" }, { "name": "setUpClass", "type": "function" }, { "name": "shortDescription", "type": "function" }, { "name": "skipTest", "type": "function" }, { "name": "subTest", "type": "function" }, { "name": "tearDown", "type": "function" }, { "name": "tearDownClass", "type": "function" }, { "name": "test_add_data_frame_index_with_series", "type": "function" }, { "name": "_addSkip", "type": "function" }, { "name": "_formatMessage", "type": "function" }, { "name": "_getAssertEqualityFunc", "type": "function" }, { "name": "_testMethodDoc", "type": "statement" }, { "name": "_testMethodName", "type": "statement" }, { "name": "__annotations__", "type": "statement" }, { "name": "__call__", "type": "function" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
# pylint: disable=missing-module-docstring,missing-class-docstring,missing-function-docstring import pandas as pd from tests.test_data import DataWithAssets from tests.utils.import_error import RaiseImportError class TestDf(DataWithAssets): def test_add_df_if_pandas_not_installed(self) -> None: with RaiseImportError.module_name("pandas"): with self.assertRaises(ImportError): self.data.add_df(pd.DataFrame()) def test_add_df_with_none(self) -> None: self.data.add_df(None) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_df_with_empty_df(self) -> None: self.data.add_df(pd.DataFrame()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_df_with_df(self) -> None: df = self.in_pd_df_by_series_with_duplicated_popularity self.data.add_df(df) self.assertEqual( self.ref_pd_df_by_series_with_duplicated_popularity, self.data.build(), ) def test_add_df_with_df_contains_na(self) -> None: df = self.in_pd_df_by_series_with_nan self.data.add_df(df) self.assertEqual( self.ref_pd_df_by_series_with_nan, self.data.build(), ) def test_add_df_with_df_and_with_include_index(self) -> None: df = self.in_pd_df_by_series_with_index self.data.add_df(df, include_index="Index") self.assertEqual( self.ref_pd_df_by_series_with_index, self.data.build(), ) def test_add_df_with_df_and_max_rows(self) -> None: df = self.in_pd_df_by_series self.data.add_df(df, max_rows=2) self.assertEqual( self.ref_pd_df_by_series_max_rows, self.data.build(), ) class TestDataFrame(DataWithAssets): def test_add_data_frame_with_none(self) -> None: self.data.add_data_frame(None) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_data_frame_with_empty_df(self) -> None: self.data.add_data_frame(pd.DataFrame()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_data_frame_with_df(self) -> None: df = self.in_pd_df_by_series_with_duplicated_popularity self.data.add_data_frame(df) self.assertEqual( self.ref_pd_df_by_series_with_duplicated_popularity, self.data.build(), ) def test_add_data_frame_with_df_contains_na(self) -> None: df = self.in_pd_df_by_series_with_nan self.data.add_data_frame(df) self.assertEqual( self.ref_pd_df_by_series_with_nan, self.data.build(), ) class TestDfWithSeries(DataWithAssets): def test_add_df_with_empty_series(self) -> None: self.data.add_df(pd.Series()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_df_with_series(self) -> None: self.data.add_df(self.in_pd_series_dimension) self.data.add_df(self.in_pd_series_measure) self.assertEqual( self.ref_pd_series, self.data.build(), ) def test_add_df_with_series_contains_na(self) -> None: self.data.add_df(self.in_pd_series_dimension_with_nan) self.data.add_df(self.in_pd_series_measure_with_nan) self.assertEqual( self.ref_pd_series_with_nan, self.data.build(), ) def test_add_df_with_series_and_with_include_index(self) -> None: self.data.add_df( self.in_pd_series_dimension_with_index, include_index="DimensionIndex", ) self.data.add_df( self.in_pd_series_measure_with_index, include_index="MeasureIndex", ) self.assertEqual( self.ref_pd_series_with_index, self.data.build(), ) class TestDataFrameWithSeries(DataWithAssets): def test_add_data_frame_with_empty_series(self) -> None: self.data.add_data_frame(pd.Series()) self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_data_frame_with_series(self) -> None: self.data.add_data_frame(self.in_pd_series_dimension) self.data.add_data_frame(self.in_pd_series_measure) self.assertEqual( self.ref_pd_series, self.data.build(), ) def test_add_data_frame_with_series_contains_na(self) -> None: self.data.add_data_frame(self.in_pd_series_dimension_with_nan) self.data.add_data_frame(self.in_pd_series_measure_with_nan) self.assertEqual( self.ref_pd_series_with_nan, self.data.build(), ) class TestDfIndex(DataWithAssets): def test_add_df_index_with_none(self) -> None: self.data.add_df_index(None, column_name="Index") self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_df_index_with_df(self) -> None: df = self.in_pd_df_by_series_with_index self.data.add_df_index(df, column_name="Index") self.assertEqual( self.ref_pd_df_by_series_only_index, self.data.build(), ) class TestDataFrameIndex(DataWithAssets): def test_add_data_frame_index_with_none(self) -> None: self.data.add_data_frame_index(None, name="Index") self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_data_frame_index_with_df(self) -> None: df = self.in_pd_df_by_series_with_index self.data.add_data_frame_index(df, name="Index") self.assertEqual( self.ref_pd_df_by_series_only_index, self.data.build(), ) class TestDfIndexWithSeries(DataWithAssets): def test_add_df_index_with_series(self) -> None: self.data.add_df_index( self.in_pd_series_dimension_with_index, column_name="DimensionIndex", ) self.data.add_df_index( self.in_pd_series_measure_with_index, column_name="MeasureIndex", ) self.assertEqual( self.ref_pd_series_only_index, self.data.build(), ) class TestDataFrameIndexWithSeries(DataWithAssets): def test_add_data_frame_index_with_series(self) -> None: self.
[ "data", "ref_pd_series", "in_pd_df_by_series", "assertEqual", "in_pd_series_dimension", "test_add_data_frame_index_with_series", "asset_dir", "in_pd_df_by_series_with_duplicated_popularity", "in_pd_df_by_series_with_index", "in_pd_df_by_series_with_nan", "in_pd_series_dimension_with_index", "in_pd_series_dimension_with_nan", "in_pd_series_measure", "in_pd_series_measure_with_index", "in_pd_series_measure_with_nan", "ref_pd_df_by_series", "ref_pd_df_by_series_max_rows", "ref_pd_df_by_series_only_index", "ref_pd_df_by_series_with_duplicated_popularity", "ref_pd_df_by_series_with_index", "ref_pd_df_by_series_with_nan", "ref_pd_series_only_index", "ref_pd_series_with_index", "ref_pd_series_with_nan", "set_up_pd_df", "set_up_pd_series", "setUp", "setUpClass", "addClassCleanup", "addCleanup", "addTypeEqualityFunc", "assert_", "assertAlmostEqual", "assertAlmostEquals", "assertCountEqual", "assertDictContainsSubset", "assertDictEqual", "assertEquals", "assertFalse", "assertGreater", "assertGreaterEqual", "assertIn", "assertIs", "assertIsInstance", "assertIsNone", "assertIsNot", "assertIsNotNone", "assertLess", "assertLessEqual", "assertListEqual", "assertLogs", "assertMultiLineEqual", "assertNoLogs", "assertNotAlmostEqual", "assertNotAlmostEquals", "assertNotEqual", "assertNotEquals", "assertNotIn", "assertNotIsInstance", "assertNotRegex", "assertNotRegexpMatches", "assertRaises", "assertRaisesRegex", "assertRaisesRegexp", "assertRegex", "assertRegexpMatches", "assertSequenceEqual", "assertSetEqual", "assertTrue", "assertTupleEqual", "assertWarns", "assertWarnsRegex", "countTestCases", "debug", "defaultTestResult", "doClassCleanups", "doCleanups", "fail", "failIf", "failIfAlmostEqual", "failIfEqual", "failUnless", "failUnlessAlmostEqual", "failUnlessEqual", "failUnlessRaises", "failureException", "id", "longMessage", "maxDiff", "run", "shortDescription", "skipTest", "subTest", "tearDown", "tearDownClass" ]
ains_na(self) -> None: self.data.add_data_frame(self.in_pd_series_dimension_with_nan) self.data.add_data_frame(self.in_pd_series_measure_with_nan) self.assertEqual( self.ref_pd_series_with_nan, self.data.build(), ) class TestDfIndex(DataWithAssets): def test_add_df_index_with_none(self) -> None: self.data.add_df_index(None, column_name="Index") self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_df_index_with_df(self) -> None: df = self.in_pd_df_by_series_with_index self.data.add_df_index(df, column_name="Index") self.assertEqual( self.ref_pd_df_by_series_only_index, self.data.build(), ) class TestDataFrameIndex(DataWithAssets): def test_add_data_frame_index_with_none(self) -> None: self.data.add_data_frame_index(None, name="Index") self.assertEqual( {"data": {}}, self.data.build(), ) def test_add_data_frame_index_with_df(self) -> None: df = self.in_pd_df_by_series_with_index self.data.add_data_frame_index(df, name="Index") self.assertEqual( self.ref_pd_df_by_series_only_index, self.data.build(), ) class TestDfIndexWithSeries(DataWithAssets): def test_add_df_index_with_series(self) -> None: self.data.add_df_index( self.in_pd_series_dimension_with_index, column_name="DimensionIndex", ) self.data.add_df_index( self.in_pd_series_measure_with_index, column_name="MeasureIndex", ) self.assertEqual( self.ref_pd_series_only_index, self.data.build(), ) class TestDataFrameIndexWithSeries(DataWithAssets): def test_add_data_frame_index_with_series(self) -> None: self.
5,452
7,733
219
13,763
mage-ai__mage-ai
9ed779ccaf3538efbe1f2f54dd68f61fb1c3af55
src/data_cleaner/tests/transformer_actions/test_row.py
common
execute
true
function
9
9
false
true
[ "action", "action_type", "hydrate_action", "axis", "join", "columns_by_type", "execute", "groupby", "transform", "__init__", "__annotations__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "action", "type": "statement" }, { "name": "action_type", "type": "property" }, { "name": "axis", "type": "property" }, { "name": "columns_by_type", "type": "statement" }, { "name": "execute", "type": "function" }, { "name": "groupby", "type": "function" }, { "name": "hydrate_action", "type": "function" }, { "name": "join", "type": "function" }, { "name": "transform", "type": "function" }, { "name": "__annotations__", "type": "statement" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
from data_cleaner.tests.base_test import TestCase from data_cleaner.transformer_actions.base import BaseAction from data_cleaner.transformer_actions.row import ( drop_duplicates, # explode, filter_rows, sort_rows, ) from pandas.util.testing import assert_frame_equal import numpy as np import pandas as pd class RowTests(TestCase): def test_drop_duplicates(self): df = pd.DataFrame([ [0, False, 'a'], [1, True, 'b'], [1, True, 'c'], [0, True, 'd'], ], columns=[ 'integer', 'boolean', 'string', ]) test_cases = [ (dict(action_arguments=['integer']), df.iloc[[2, 3]]), (dict(action_arguments=['integer'], action_options=dict(keep='first')), df.iloc[[0, 1]]), (dict(action_arguments=['boolean']), df.iloc[[0, 3]]), (dict(action_arguments=['boolean'], action_options=dict(keep='first')), df.iloc[[0, 1]]), (dict(action_arguments=['integer', 'boolean']), df.iloc[[0, 2, 3]]), ] for action, val in test_cases: self.assertTrue(drop_duplicates(df, action).equals(val)) # def test_explode(self): # df = pd.DataFrame([ # ['(a, b, c)'], # ['[b, c, d]'], # [' e, f '], # ], columns=['tags']) # action = dict( # action_arguments=['tags'], # action_options={ # 'separator': ',', # }, # outputs=[ # dict( # uuid='tag', # column_type='text', # ), # ], # ) # df_new = explode(df, action) # df_expected = pd.DataFrame([ # ['a', '(a, b, c)'], # ['b', '(a, b, c)'], # ['c', '(a, b, c)'], # ['b', '[b, c, d]'], # ['c', '[b, c, d]'], # ['d', '[b, c, d]'], # ['e', ' e, f '], # ['f', ' e, f '], # ], columns=['tag', 'tags']) # assert_frame_equal(df_new.reset_index(drop=True), df_expected) def test_filter_rows(self): df = pd.DataFrame([ [0, False, 'a'], [1, True, 'b'], ], columns=[ 'integer', 'boolean', 'string', ]) test_cases = [ ([0, False, 'a'], 'integer == 0'), ([0, False, 'a'], 'string == \'a\''), ([1, True, 'b'], 'boolean == True'), ([1, True, 'b'], 'integer >= 1'), ([1, True, 'b'], 'integer >= 1 and boolean == True'), ([1, True, 'b'], 'integer >= 1 and (boolean == False or string == \'b\')'), ] for val, query in test_cases: self.assertEqual( val, filter_rows(df, dict(action_code=query)).iloc[0].values.tolist(), ) def test_filter_rows_is_null(self): df = pd.DataFrame([ [None, False, 'a'], [2, True, 'b'], [3, False, 'c'], [1, None, 'a'], [2, True, 'b'], [3, '', 'c'], [1, False, None], [2, True, 'b'], [3, False, ''], ], columns=[ 'integer', 'boolean', 'string', ]) integer_rows = filter_rows( df, dict(action_code='integer == null'), original_df=df, ).values.tolist() self.assertEqual(len(integer_rows), 1) self.assertEqual(integer_rows[0][1], False) self.assertEqual(integer_rows[0][2], 'a') boolean_rows = filter_rows( df, dict(action_code='boolean == null'), original_df=df, ).values.tolist() self.assertEqual(len(boolean_rows), 2) self.assertEqual(boolean_rows[0][0], 1.0) self.assertEqual(boolean_rows[0][1], None) self.assertEqual(boolean_rows[0][2], 'a') self.assertEqual(boolean_rows[1][0], 3.0) self.assertEqual(boolean_rows[1][1], '') self.assertEqual(boolean_rows[1][2], 'c') string_rows = filter_rows( df, dict(action_code='string == null'), original_df=df, ).values.tolist() self.assertEqual(len(string_rows), 2) self.assertEqual(string_rows[0][0], 1.0) self.assertEqual(string_rows[0][1], False) self.assertEqual(string_rows[0][2], None) self.assertEqual(string_rows[1][0], 3.0) self.assertEqual(string_rows[1][1], False) self.assertEqual(string_rows[1][2], '') def test_filter_rows_is_not_null(self): df = pd.DataFrame([ [None, False, 'a'], [2, True, 'b'], [3, False, 'c'], [1, None, 'a'], [2, True, 'b'], [3, '', 'c'], [1, False, None], [2, True, 'b'], [3, False, ''], ], columns=[ 'integer', 'boolean', 'string', ]) integer_rows = filter_rows( df, dict(action_code='integer != null'), original_df=df, )['integer'].values.tolist() self.assertEqual(integer_rows, [ 2, 3, 1, 2, 3, 1, 2, 3, ]) boolean_rows = filter_rows( df, dict(action_code='boolean != null'), original_df=df, )['boolean'].values.tolist() self.assertEqual(boolean_rows, [ False, True, False, True, False, True, False, ]) string_rows = filter_rows( df, dict(action_code='string != null'), original_df=df, )['string'].values.tolist() self.assertEqual(string_rows, [ 'a', 'b', 'c', 'a', 'b', 'c', 'b', ]) def test_filter_row_contains_string(self): df = pd.DataFrame([ ['fsdijfosidjfiosfj'], ['[email protected]'], [np.NaN], ['fsdfsdfdsfdsf'], ['[email protected]'], ], columns=[ 'id', ]) action = dict( action_code='id contains @', ) action2 = dict( action_code='id contains \'@\'', ) df_new = filter_rows(df, action, original_df=df).reset_index(drop=True) df_new2 = filter_rows(df, action2, original_df=df).reset_index(drop=True) df_expected = pd.DataFrame([ ['[email protected]'], ['[email protected]'], ], columns=[ 'id', ]) assert_frame_equal(df_new, df_expected) assert_frame_equal(df_new2, df_expected) def test_filter_row_not_contains_string(self): df = pd.DataFrame([ [np.NaN, False], ['[email protected]', True], ['[email protected]', True], ['fsdfsdfdsfdsf', False], ['[email protected]', False], ['eeeeasdf', True] ], columns=[ 'email', 'subscription' ]) action = dict( action_code='email not contains mailnet', ) action2 = dict( action_code='email not contains \'mailnet\'', ) action3 = dict( action_code = 'email not contains @', ) action4 = dict( action_code = 'email not contains \'^e+\w\'', ) action_invalid = dict( action_code='subscription not contains False' ) df_new = filter_rows(df, action, original_df=df).reset_index(drop=True) df_new2 = filter_rows(df, action2, original_df=df).reset_index(drop=True) df_new3 = filter_rows(df, action3, original_df=df).reset_index(drop=True) df_new4 = filter_rows(df, action4, original_df=df).reset_index(drop=True) df_expected1 = pd.DataFrame([ [np.NaN, False], ['[email protected]', True], ['fsdfsdfdsfdsf', False], ['eeeeasdf', True] ], columns=[ 'email', 'subscription' ]) df_expected2 = pd.DataFrame([ [np.NaN, False], ['fsdfsdfdsfdsf', False], ['eeeeasdf', True] ], columns=[ 'email', 'subscription' ]) df_expected3 = pd.DataFrame([ [np.NaN, False], ['[email protected]', True], ['[email protected]', True], ['fsdfsdfdsfdsf', False], ['[email protected]', False] ], columns=[ 'email', 'subscription' ]) assert_frame_equal(df_new, df_expected1) assert_frame_equal(df_new2, df_expected1) assert_frame_equal(df_new3, df_expected2) assert_frame_equal(df_new4, df_expected3) with self.assertRaises(Exception): _ = filter_rows(df, action_invalid, original_df=df).reset_index(drop=True) def test_filter_rows_multi_condition(self): df = pd.DataFrame( [ [100, None, '', 10], [250, 'brand1', False, np.NaN], [np.NaN, 'brand2', None, 18], [50, 'brand1', True, 13], [75, '', '', 80], [None, 'company3', False, 23], ], columns=['value', 'brand', 'discounted', 'inventory'] ) action = dict(action_code='(value < 110 and value >= 50) and (value != null)') action2 = dict(action_code='brand contains brand and inventory != null') action3 = dict(action_code='(brand != null and value > 60) or (discounted == null)') action4 = dict( action_code='(discounted == True and inventory > 15)' ' or (discounted == False and value != null)' ) action5 = dict( action_code='(brand not contains company and value == 75 and inventory <= 80)' ' or (discounted != null)' ) df_expected = pd.DataFrame( [ [100, None, '', 10], [50, 'brand1', True, 13], [75, '', '', 80], ], columns=['value', 'brand', 'discounted', 'inventory'] ) df_expected2 = pd.DataFrame( [ [np.NaN, 'brand2', None, 18], [50, 'brand1', True, 13], ], columns=['value', 'brand', 'discounted', 'inventory'] ) df_expected3 = pd.DataFrame( [ [100, None, '', 10], [250, 'brand1', False, np.NaN], [np.NaN, 'brand2', None, 18], [75, '', '', 80], ], columns=['value', 'brand', 'discounted', 'inventory'] ) df_expected4 = pd.DataFrame( [ [250, 'brand1', False, np.NaN], ], columns=['value', 'brand', 'discounted', 'inventory'] ) df_expected5 = pd.DataFrame( [ [250, 'brand1', False, np.NaN], [50, 'brand1', True, 13], [75, '', '', 80], [None, 'company3', False, 23], ], columns=['value', 'brand', 'discounted', 'inventory'] ) df_new = filter_rows(df, action, original_df=df).reset_index(drop=True) df_new2 = filter_rows(df, action2, original_df=df).reset_index(drop=True) df_new3 = filter_rows(df, action3, original_df=df).reset_index(drop=True) df_new4 = filter_rows(df, action4, original_df=df).reset_index(drop=True) df_new5 = filter_rows(df, action5, original_df=df).reset_index(drop=True) df_new['value'] = df_new['value'].astype(int) df_new['inventory'] = df_new['inventory'].astype(int) df_new2['brand'] = df_new2['brand'].astype(str) df_new2['inventory'] = df_new2['inventory'].astype(int) df_new4['value'] = df_new4['value'].astype(int) df_new4['brand'] = df_new4['brand'].astype(str) df_new4['discounted'] = df_new4['discounted'].astype(bool) assert_frame_equal(df_expected, df_new) assert_frame_equal(df_expected2, df_new2) assert_frame_equal(df_expected3, df_new3) assert_frame_equal(df_expected4, df_new4) assert_frame_equal(df_expected5, df_new5) def test_filter_row_implicit_null(self): # tests that implicit null values in the transformed dataframe are still removed df = pd.DataFrame( [ [100, None, '', 10], [250, 'brand1', False, np.NaN], [np.NaN, 'brand2', None, 18], [50, 'brand1', True, 13], [75, '', '', 80], [None, 'company3', False, 23], ], columns=['value', 'brand', 'discounted', 'inventory'] ) action_payload = { 'action_type': 'filter', 'action_code': '%{1} != null', 'action_arguments': [], 'action_options': {}, 'axis': 'row', 'action_variables': { '1': { 'id': 'value', 'type': 'feature', 'feature': { 'column_type': 'number', 'uuid': 'value' } }, }, 'outputs': [] } action = BaseAction(action_payload) df_new = action.
[ "action", "action_type", "hydrate_action", "axis", "join", "columns_by_type", "execute", "groupby", "transform" ]
inal_df=df).reset_index(drop=True) df_new5 = filter_rows(df, action5, original_df=df).reset_index(drop=True) df_new['value'] = df_new['value'].astype(int) df_new['inventory'] = df_new['inventory'].astype(int) df_new2['brand'] = df_new2['brand'].astype(str) df_new2['inventory'] = df_new2['inventory'].astype(int) df_new4['value'] = df_new4['value'].astype(int) df_new4['brand'] = df_new4['brand'].astype(str) df_new4['discounted'] = df_new4['discounted'].astype(bool) assert_frame_equal(df_expected, df_new) assert_frame_equal(df_expected2, df_new2) assert_frame_equal(df_expected3, df_new3) assert_frame_equal(df_expected4, df_new4) assert_frame_equal(df_expected5, df_new5) def test_filter_row_implicit_null(self): # tests that implicit null values in the transformed dataframe are still removed df = pd.DataFrame( [ [100, None, '', 10], [250, 'brand1', False, np.NaN], [np.NaN, 'brand2', None, 18], [50, 'brand1', True, 13], [75, '', '', 80], [None, 'company3', False, 23], ], columns=['value', 'brand', 'discounted', 'inventory'] ) action_payload = { 'action_type': 'filter', 'action_code': '%{1} != null', 'action_arguments': [], 'action_options': {}, 'axis': 'row', 'action_variables': { '1': { 'id': 'value', 'type': 'feature', 'feature': { 'column_type': 'number', 'uuid': 'value' } }, }, 'outputs': [] } action = BaseAction(action_payload) df_new = action.
5,463
7,735
220
351
mage-ai__mage-ai
5d823db31cab8cb2e89873aec656b5a522769873
mage_ai/tests/data_cleaner/cleaning_rules/test_remove_collinear_columns.py
commited
setUp
true
function
75
74
false
true
[ "setUp", "assertEqual", "assertAlmostEqual", "fail", "failIf", "tearDown", "addClassCleanup", "addCleanup", "addTypeEqualityFunc", "assert_", "assertAlmostEquals", "assertCountEqual", "assertDictContainsSubset", "assertDictEqual", "assertEquals", "assertFalse", "assertGreater", "assertGreaterEqual", "assertIn", "assertIs", "assertIsInstance", "assertIsNone", "assertIsNot", "assertIsNotNone", "assertLess", "assertLessEqual", "assertListEqual", "assertLogs", "assertMultiLineEqual", "assertNoLogs", "assertNotAlmostEqual", "assertNotAlmostEquals", "assertNotEqual", "assertNotEquals", "assertNotIn", "assertNotIsInstance", "assertNotRegex", "assertNotRegexpMatches", "assertRaises", "assertRaisesRegex", "assertRaisesRegexp", "assertRegex", "assertRegexpMatches", "assertSequenceEqual", "assertSetEqual", "assertTrue", "assertTupleEqual", "assertWarns", "assertWarnsRegex", "countTestCases", "debug", "defaultTestResult", "doClassCleanups", "doCleanups", "failIfAlmostEqual", "failIfEqual", "failUnless", "failUnlessAlmostEqual", "failUnlessEqual", "failUnlessRaises", "failureException", "id", "longMessage", "maxDiff", "run", "setUpClass", "shortDescription", "skipTest", "subTest", "tearDownClass", "_addSkip", "_formatMessage", "_getAssertEqualityFunc", "_testMethodDoc", "_testMethodName", "__annotations__", "__call__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "addClassCleanup", "type": "function" }, { "name": "addCleanup", "type": "function" }, { "name": "addTypeEqualityFunc", "type": "function" }, { "name": "assert_", "type": "function" }, { "name": "assertAlmostEqual", "type": "function" }, { "name": "assertAlmostEquals", "type": "function" }, { "name": "assertCountEqual", "type": "function" }, { "name": "assertDictContainsSubset", "type": "function" }, { "name": "assertDictEqual", "type": "function" }, { "name": "assertEqual", "type": "function" }, { "name": "assertEquals", "type": "function" }, { "name": "assertFalse", "type": "function" }, { "name": "assertGreater", "type": "function" }, { "name": "assertGreaterEqual", "type": "function" }, { "name": "assertIn", "type": "function" }, { "name": "assertIs", "type": "function" }, { "name": "assertIsInstance", "type": "function" }, { "name": "assertIsNone", "type": "function" }, { "name": "assertIsNot", "type": "function" }, { "name": "assertIsNotNone", "type": "function" }, { "name": "assertLess", "type": "function" }, { "name": "assertLessEqual", "type": "function" }, { "name": "assertListEqual", "type": "function" }, { "name": "assertLogs", "type": "function" }, { "name": "assertMultiLineEqual", "type": "function" }, { "name": "assertNotAlmostEqual", "type": "function" }, { "name": "assertNotAlmostEquals", "type": "function" }, { "name": "assertNotEqual", "type": "function" }, { "name": "assertNotEquals", "type": "function" }, { "name": "assertNotIn", "type": "function" }, { "name": "assertNotIsInstance", "type": "function" }, { "name": "assertNotRegex", "type": "function" }, { "name": "assertNotRegexpMatches", "type": "function" }, { "name": "assertRaises", "type": "function" }, { "name": "assertRaisesRegex", "type": "function" }, { "name": "assertRaisesRegexp", "type": "function" }, { "name": "assertRegex", "type": "function" }, { "name": "assertRegexpMatches", "type": "function" }, { "name": "assertSequenceEqual", "type": "function" }, { "name": "assertSetEqual", "type": "function" }, { "name": "assertTrue", "type": "function" }, { "name": "assertTupleEqual", "type": "function" }, { "name": "assertWarns", "type": "function" }, { "name": "assertWarnsRegex", "type": "function" }, { "name": "countTestCases", "type": "function" }, { "name": "debug", "type": "function" }, { "name": "defaultTestResult", "type": "function" }, { "name": "doClassCleanups", "type": "function" }, { "name": "doCleanups", "type": "function" }, { "name": "fail", "type": "function" }, { "name": "failIf", "type": "function" }, { "name": "failIfAlmostEqual", "type": "function" }, { "name": "failIfEqual", "type": "function" }, { "name": "failUnless", "type": "function" }, { "name": "failUnlessAlmostEqual", "type": "function" }, { "name": "failUnlessEqual", "type": "function" }, { "name": "failUnlessRaises", "type": "function" }, { "name": "failureException", "type": "statement" }, { "name": "id", "type": "function" }, { "name": "longMessage", "type": "statement" }, { "name": "maxDiff", "type": "statement" }, { "name": "run", "type": "function" }, { "name": "setUp", "type": "function" }, { "name": "setUpClass", "type": "function" }, { "name": "shortDescription", "type": "function" }, { "name": "skipTest", "type": "function" }, { "name": "subTest", "type": "function" }, { "name": "tearDown", "type": "function" }, { "name": "tearDownClass", "type": "function" }, { "name": "_addSkip", "type": "function" }, { "name": "_formatMessage", "type": "function" }, { "name": "_getAssertEqualityFunc", "type": "function" }, { "name": "_testMethodDoc", "type": "statement" }, { "name": "_testMethodName", "type": "statement" }, { "name": "__annotations__", "type": "statement" }, { "name": "__call__", "type": "function" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
from data_cleaner.cleaning_rules.remove_collinear_columns import RemoveCollinearColumns from tests.base_test import TestCase from pandas.util.testing import assert_frame_equal import numpy as np import pandas as pd class RemoveCollinearColumnsTests(TestCase): def setUp(self): self.rng = np.random.default_rng(42) return super().
[ "setUp", "assertEqual", "assertAlmostEqual", "fail", "failIf", "tearDown", "addClassCleanup", "addCleanup", "addTypeEqualityFunc", "assert_", "assertAlmostEquals", "assertCountEqual", "assertDictContainsSubset", "assertDictEqual", "assertEquals", "assertFalse", "assertGreater", "assertGreaterEqual", "assertIn", "assertIs", "assertIsInstance", "assertIsNone", "assertIsNot", "assertIsNotNone", "assertLess", "assertLessEqual", "assertListEqual", "assertLogs", "assertMultiLineEqual", "assertNoLogs", "assertNotAlmostEqual", "assertNotAlmostEquals", "assertNotEqual", "assertNotEquals", "assertNotIn", "assertNotIsInstance", "assertNotRegex", "assertNotRegexpMatches", "assertRaises", "assertRaisesRegex", "assertRaisesRegexp", "assertRegex", "assertRegexpMatches", "assertSequenceEqual", "assertSetEqual", "assertTrue", "assertTupleEqual", "assertWarns", "assertWarnsRegex", "countTestCases", "debug", "defaultTestResult", "doClassCleanups", "doCleanups", "failIfAlmostEqual", "failIfEqual", "failUnless", "failUnlessAlmostEqual", "failUnlessEqual", "failUnlessRaises", "failureException", "id", "longMessage", "maxDiff", "run", "setUpClass", "shortDescription", "skipTest", "subTest", "tearDownClass" ]
from data_cleaner.cleaning_rules.remove_collinear_columns import RemoveCollinearColumns from tests.base_test import TestCase from pandas.util.testing import assert_frame_equal import numpy as np import pandas as pd class RemoveCollinearColumnsTests(TestCase): def setUp(self): self.rng = np.random.default_rng(42) return super().
5,464
7,738
220
2,473
mage-ai__mage-ai
5d823db31cab8cb2e89873aec656b5a522769873
mage_ai/tests/data_cleaner/cleaning_rules/test_remove_collinear_columns.py
inproject
evaluate
true
function
14
15
false
false
[ "numeric_columns", "evaluate", "df_columns", "column_types", "numeric_df", "df", "EPSILON", "filter_numeric_types", "get_variance_inflation_factor", "MIN_ENTRIES", "numeric_indices", "ROW_SAMPLE_SIZE", "statistics", "VIF_UB", "__init__", "__annotations__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "column_types", "type": "statement" }, { "name": "df", "type": "statement" }, { "name": "df_columns", "type": "statement" }, { "name": "EPSILON", "type": "statement" }, { "name": "evaluate", "type": "function" }, { "name": "filter_numeric_types", "type": "function" }, { "name": "get_variance_inflation_factor", "type": "function" }, { "name": "MIN_ENTRIES", "type": "statement" }, { "name": "numeric_columns", "type": "statement" }, { "name": "numeric_df", "type": "statement" }, { "name": "numeric_indices", "type": "statement" }, { "name": "ROW_SAMPLE_SIZE", "type": "statement" }, { "name": "statistics", "type": "statement" }, { "name": "VIF_UB", "type": "statement" }, { "name": "_build_transformer_action_suggestion", "type": "function" }, { "name": "__annotations__", "type": "statement" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
from data_cleaner.cleaning_rules.remove_collinear_columns import RemoveCollinearColumns from tests.base_test import TestCase from pandas.util.testing import assert_frame_equal import numpy as np import pandas as pd class RemoveCollinearColumnsTests(TestCase): def setUp(self): self.rng = np.random.default_rng(42) return super().setUp() def test_categorical_data_frame(self): df = pd.DataFrame([ [1, 1000, '2021-10-01', '2021-09-01'], [1, 1050, '2021-10-01', '2021-08-01'], [1, 1100, '2021-10-01', '2021-01-01'], [2, 1150, '2021-09-01', '2021-08-01'], ], columns=[ 'group_id', 'order_id', 'group_churned_at', 'order_created_at', ]) column_types = { 'group_id': 'category', 'order_id': 'category', 'group_churned_at': 'datetime', 'order_created_at': 'datetime' } statistics = {} result = RemoveCollinearColumns(df, column_types, statistics).evaluate() self.assertEqual(result, []) def test_clean_removes_all_data_frame(self): df = pd.DataFrame([ [None, 1000, '2021-10-01', '2021-09-01'], [1, None, '2021-10-01', '2021-08-01'], [np.nan, 1100, '2021-10-01', '2021-01-01'], [None, 1150, '2021-09-01', '2021-08-01'], ], columns=[ 'group_id', 'order_id', 'group_churned_at', 'order_created_at', ]) column_types = { 'group_id': 'number', 'order_id': 'number', 'group_churned_at': 'datetime', 'order_created_at': 'datetime' } statistics = {} result = RemoveCollinearColumns(df, column_types, statistics).evaluate() self.assertEqual(result, []) def test_collinear_no_results(self): df = pd.DataFrame([ [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1] ], columns=['number_of_users', 'views', 'revenue', 'losses']) column_types = { 'number_of_users': 'number', 'views': 'number', 'revenue': 'number', 'losses': 'number', } statistics = {} result = RemoveCollinearColumns(df, column_types, statistics).
[ "numeric_columns", "evaluate", "df_columns", "column_types", "numeric_df", "df", "EPSILON", "filter_numeric_types", "get_variance_inflation_factor", "MIN_ENTRIES", "numeric_indices", "ROW_SAMPLE_SIZE", "statistics", "VIF_UB" ]
[1, 1100, '2021-10-01', '2021-01-01'], [2, 1150, '2021-09-01', '2021-08-01'], ], columns=[ 'group_id', 'order_id', 'group_churned_at', 'order_created_at', ]) column_types = { 'group_id': 'category', 'order_id': 'category', 'group_churned_at': 'datetime', 'order_created_at': 'datetime' } statistics = {} result = RemoveCollinearColumns(df, column_types, statistics).evaluate() self.assertEqual(result, []) def test_clean_removes_all_data_frame(self): df = pd.DataFrame([ [None, 1000, '2021-10-01', '2021-09-01'], [1, None, '2021-10-01', '2021-08-01'], [np.nan, 1100, '2021-10-01', '2021-01-01'], [None, 1150, '2021-09-01', '2021-08-01'], ], columns=[ 'group_id', 'order_id', 'group_churned_at', 'order_created_at', ]) column_types = { 'group_id': 'number', 'order_id': 'number', 'group_churned_at': 'datetime', 'order_created_at': 'datetime' } statistics = {} result = RemoveCollinearColumns(df, column_types, statistics).evaluate() self.assertEqual(result, []) def test_collinear_no_results(self): df = pd.DataFrame([ [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1] ], columns=['number_of_users', 'views', 'revenue', 'losses']) column_types = { 'number_of_users': 'number', 'views': 'number', 'revenue': 'number', 'losses': 'number', } statistics = {} result = RemoveCollinearColumns(df, column_types, statistics).
5,467
7,743
220
9,766
mage-ai__mage-ai
5d823db31cab8cb2e89873aec656b5a522769873
mage_ai/tests/data_cleaner/cleaning_rules/test_remove_collinear_columns.py
inproject
evaluate
true
function
14
15
false
false
[ "evaluate", "numeric_df", "numeric_columns", "get_variance_inflation_factor", "df", "column_types", "df_columns", "EPSILON", "filter_numeric_types", "MIN_ENTRIES", "numeric_indices", "ROW_SAMPLE_SIZE", "statistics", "VIF_UB", "__init__", "__annotations__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "column_types", "type": "statement" }, { "name": "df", "type": "statement" }, { "name": "df_columns", "type": "statement" }, { "name": "EPSILON", "type": "statement" }, { "name": "evaluate", "type": "function" }, { "name": "filter_numeric_types", "type": "function" }, { "name": "get_variance_inflation_factor", "type": "function" }, { "name": "MIN_ENTRIES", "type": "statement" }, { "name": "numeric_columns", "type": "statement" }, { "name": "numeric_df", "type": "statement" }, { "name": "numeric_indices", "type": "statement" }, { "name": "ROW_SAMPLE_SIZE", "type": "statement" }, { "name": "statistics", "type": "statement" }, { "name": "VIF_UB", "type": "statement" }, { "name": "_build_transformer_action_suggestion", "type": "function" }, { "name": "__annotations__", "type": "statement" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
from data_cleaner.cleaning_rules.remove_collinear_columns import RemoveCollinearColumns from tests.base_test import TestCase from pandas.util.testing import assert_frame_equal import numpy as np import pandas as pd class RemoveCollinearColumnsTests(TestCase): def setUp(self): self.rng = np.random.default_rng(42) return super().setUp() def test_categorical_data_frame(self): df = pd.DataFrame([ [1, 1000, '2021-10-01', '2021-09-01'], [1, 1050, '2021-10-01', '2021-08-01'], [1, 1100, '2021-10-01', '2021-01-01'], [2, 1150, '2021-09-01', '2021-08-01'], ], columns=[ 'group_id', 'order_id', 'group_churned_at', 'order_created_at', ]) column_types = { 'group_id': 'category', 'order_id': 'category', 'group_churned_at': 'datetime', 'order_created_at': 'datetime' } statistics = {} result = RemoveCollinearColumns(df, column_types, statistics).evaluate() self.assertEqual(result, []) def test_clean_removes_all_data_frame(self): df = pd.DataFrame([ [None, 1000, '2021-10-01', '2021-09-01'], [1, None, '2021-10-01', '2021-08-01'], [np.nan, 1100, '2021-10-01', '2021-01-01'], [None, 1150, '2021-09-01', '2021-08-01'], ], columns=[ 'group_id', 'order_id', 'group_churned_at', 'order_created_at', ]) column_types = { 'group_id': 'number', 'order_id': 'number', 'group_churned_at': 'datetime', 'order_created_at': 'datetime' } statistics = {} result = RemoveCollinearColumns(df, column_types, statistics).evaluate() self.assertEqual(result, []) def test_collinear_no_results(self): df = pd.DataFrame([ [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1] ], columns=['number_of_users', 'views', 'revenue', 'losses']) column_types = { 'number_of_users': 'number', 'views': 'number', 'revenue': 'number', 'losses': 'number', } statistics = {} result = RemoveCollinearColumns(df, column_types, statistics).evaluate() self.assertEqual(result, []) def test_evaluate(self): df = pd.DataFrame([ [1000, 30000, 10, 100, 30], [500, 10000, 20, 3000, 20], [250, 7500, 25, 8000, 20], [1000, 45003, 20, 90, 40], [1500, 75000, 30, 70, 25], [1250, 60000, 50, 80, 20], [200, 5000, 30, 10000, 30], [800, 12050, 40, 2000, 45], [600, 11000, 50, 3000, 50], [700, 11750, 20, 2750, 55], [1200, 52000, 10, 75, 60] ], columns=[ 'number_of_users', 'views', 'number_of_creators', 'losses', 'number_of_advertisers' ]) column_types = { 'number_of_users': 'number', 'views': 'number', 'number_of_creators': 'number', 'losses': 'number', 'number_of_advertisers': 'number' } statistics = {} rule = RemoveCollinearColumns(df, column_types, statistics) results = rule.evaluate() expected_results = [ dict( title='Remove collinear columns', message='The following columns are strongly correlated ' 'with other columns in the dataset: [\'number_of_users\']. ' 'Removing these columns may increase data quality ' 'by removing redundant and closely related data.', action_payload=dict( action_type='remove', action_arguments=['number_of_users'], axis='column', action_options = {}, action_variables = {}, action_code = '', outputs = [], ) ) ] self.assertEqual(results, expected_results) def test_evaluate_bad_dtypes(self): df = pd.DataFrame([ [1000, 'US', 30000, '10', 'cute animal #1', 100, '30'], ['500', 'CA', 10000, '20', 'intro to regression', 3000, '20'], [200, '', np.nan, 50, 'daily news #1', None, '75'], [250, 'CA', 7500, 25, 'machine learning seminar', 8000, '20'], ['1000', 'MX', 45003, '20', 'cute animal #4', 90, '40'], [1500, 'MX', 75000, '30', '', 70, 25], [1500, 'US', 75000, np.nan, 'daily news #3', 70, '25'], [None, 'US', 75000, '30', 'tutorial: how to start a startup', 70, np.nan], [1250, 'US', 60000, '50', 'cute animal #3', 80, '20'], ['200', 'CA', 5000, '30', '', 10000, '30'], [800, 'US', 12050, '40', 'meme compilation', 2000, '45'], ['600', 'CA', 11000, '50', 'daily news #2', 3000, '50'], [600, 'CA', '', 50, '', 3000, None], ['700', 'MX', 11750, '20', 'cute animal #2', 2750, '55'], [700, '', None, 20, '', None, '55'], [700, 'MX', 11750, '', '', 2750, '55'], [1200, 'MX', 52000, '10', 'vc funding strats', 75, '60'] ], columns=[ 'number_of_users', 'location', 'views', 'number_of_creators', 'name', 'losses', 'number_of_advertisers' ]) cleaned_df = pd.DataFrame([ [1000, 30000, 10, 100, 30], [500, 10000, 20, 3000, 20], [250, 7500, 25, 8000, 20], [1000, 45003, 20, 90, 40], [1500, 75000, 30, 70, 25], [1250, 60000, 50, 80, 20], [200, 5000, 30, 10000, 30], [800, 12050, 40, 2000, 45], [600, 11000, 50, 3000, 50], [700, 11750, 20, 2750, 55], [1200, 52000, 10, 75, 60] ], columns=[ 'number_of_users', 'views', 'number_of_creators', 'losses', 'number_of_advertisers' ]).astype(float) column_types = { 'number_of_users': 'number', 'location': 'category', 'views': 'number', 'number_of_creators': 'number', 'name': 'text', 'losses': 'number', 'number_of_advertisers': 'number' } statistics = {} rule = RemoveCollinearColumns(df, column_types, statistics) assert_frame_equal(cleaned_df, rule.numeric_df.reset_index(drop=True)) results = rule.evaluate() expected_results = [ dict( title='Remove collinear columns', message='The following columns are strongly correlated ' 'with other columns in the dataset: [\'number_of_users\']. ' 'Removing these columns may increase data quality ' 'by removing redundant and closely related data.', action_payload=dict( action_type='remove', action_arguments=['number_of_users'], axis='column', action_options = {}, action_variables = {}, action_code = '', outputs = [], ) ) ] self.assertEqual(results, expected_results) def test_evaluate_dirty(self): df = pd.DataFrame([ [1000, 30000, 10, 100, 30], [500, 10000, 20, 3000, 20], [200, np.nan, 50, None, 75], [250, 7500, 25, 8000, 20], [1000, 45003, 20, 90, 40], [1500, 75000, 30, 70, 25], [1500, 75000, np.nan, 70, 25], [None, 75000, 30, 70, np.nan], [1250, 60000, 50, 80, 20], [200, 5000, 30, 10000, 30], [800, 12050, 40, 2000, 45], [600, 11000, 50, 3000, 50], [600, '', 50, 3000, None], [700, 11750, 20, 2750, 55], [700, None, 20, None, 55], [700, 11750, '', 2750, 55], [1200, 52000, 10, 75, 60] ], columns=[ 'number_of_users', 'views', 'number_of_creators', 'losses', 'number_of_advertisers' ]) cleaned_df = pd.DataFrame([ [1000, 30000, 10, 100, 30], [500, 10000, 20, 3000, 20], [250, 7500, 25, 8000, 20], [1000, 45003, 20, 90, 40], [1500, 75000, 30, 70, 25], [1250, 60000, 50, 80, 20], [200, 5000, 30, 10000, 30], [800, 12050, 40, 2000, 45], [600, 11000, 50, 3000, 50], [700, 11750, 20, 2750, 55], [1200, 52000, 10, 75, 60] ], columns=[ 'number_of_users', 'views', 'number_of_creators', 'losses', 'number_of_advertisers' ]).astype(float) column_types = { 'number_of_users': 'number', 'views': 'number', 'number_of_creators': 'number', 'losses': 'number', 'number_of_advertisers': 'number' } statistics = {} rule = RemoveCollinearColumns(df, column_types, statistics) assert_frame_equal(cleaned_df, rule.numeric_df.reset_index(drop=True)) results = rule.
[ "evaluate", "numeric_df", "numeric_columns", "get_variance_inflation_factor", "df", "column_types", "df_columns", "EPSILON", "filter_numeric_types", "MIN_ENTRIES", "numeric_indices", "ROW_SAMPLE_SIZE", "statistics", "VIF_UB" ]
, 10, 100, 30], [500, 10000, 20, 3000, 20], [200, np.nan, 50, None, 75], [250, 7500, 25, 8000, 20], [1000, 45003, 20, 90, 40], [1500, 75000, 30, 70, 25], [1500, 75000, np.nan, 70, 25], [None, 75000, 30, 70, np.nan], [1250, 60000, 50, 80, 20], [200, 5000, 30, 10000, 30], [800, 12050, 40, 2000, 45], [600, 11000, 50, 3000, 50], [600, '', 50, 3000, None], [700, 11750, 20, 2750, 55], [700, None, 20, None, 55], [700, 11750, '', 2750, 55], [1200, 52000, 10, 75, 60] ], columns=[ 'number_of_users', 'views', 'number_of_creators', 'losses', 'number_of_advertisers' ]) cleaned_df = pd.DataFrame([ [1000, 30000, 10, 100, 30], [500, 10000, 20, 3000, 20], [250, 7500, 25, 8000, 20], [1000, 45003, 20, 90, 40], [1500, 75000, 30, 70, 25], [1250, 60000, 50, 80, 20], [200, 5000, 30, 10000, 30], [800, 12050, 40, 2000, 45], [600, 11000, 50, 3000, 50], [700, 11750, 20, 2750, 55], [1200, 52000, 10, 75, 60] ], columns=[ 'number_of_users', 'views', 'number_of_creators', 'losses', 'number_of_advertisers' ]).astype(float) column_types = { 'number_of_users': 'number', 'views': 'number', 'number_of_creators': 'number', 'losses': 'number', 'number_of_advertisers': 'number' } statistics = {} rule = RemoveCollinearColumns(df, column_types, statistics) assert_frame_equal(cleaned_df, rule.numeric_df.reset_index(drop=True)) results = rule.
5,472
7,752
220
17,318
mage-ai__mage-ai
5d823db31cab8cb2e89873aec656b5a522769873
mage_ai/tests/data_cleaner/cleaning_rules/test_remove_collinear_columns.py
inproject
numeric_df
true
statement
14
15
false
false
[ "column_types", "numeric_columns", "df", "VIF_UB", "statistics", "df_columns", "EPSILON", "evaluate", "filter_numeric_types", "get_variance_inflation_factor", "MIN_ENTRIES", "numeric_df", "numeric_indices", "ROW_SAMPLE_SIZE", "__init__", "__annotations__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "column_types", "type": "statement" }, { "name": "df", "type": "statement" }, { "name": "df_columns", "type": "statement" }, { "name": "EPSILON", "type": "statement" }, { "name": "evaluate", "type": "function" }, { "name": "filter_numeric_types", "type": "function" }, { "name": "get_variance_inflation_factor", "type": "function" }, { "name": "MIN_ENTRIES", "type": "statement" }, { "name": "numeric_columns", "type": "statement" }, { "name": "numeric_df", "type": "statement" }, { "name": "numeric_indices", "type": "statement" }, { "name": "ROW_SAMPLE_SIZE", "type": "statement" }, { "name": "statistics", "type": "statement" }, { "name": "VIF_UB", "type": "statement" }, { "name": "_build_transformer_action_suggestion", "type": "function" }, { "name": "__annotations__", "type": "statement" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
from data_cleaner.cleaning_rules.remove_collinear_columns import RemoveCollinearColumns from tests.base_test import TestCase from pandas.util.testing import assert_frame_equal import numpy as np import pandas as pd class RemoveCollinearColumnsTests(TestCase): def setUp(self): self.rng = np.random.default_rng(42) return super().setUp() def test_categorical_data_frame(self): df = pd.DataFrame([ [1, 1000, '2021-10-01', '2021-09-01'], [1, 1050, '2021-10-01', '2021-08-01'], [1, 1100, '2021-10-01', '2021-01-01'], [2, 1150, '2021-09-01', '2021-08-01'], ], columns=[ 'group_id', 'order_id', 'group_churned_at', 'order_created_at', ]) column_types = { 'group_id': 'category', 'order_id': 'category', 'group_churned_at': 'datetime', 'order_created_at': 'datetime' } statistics = {} result = RemoveCollinearColumns(df, column_types, statistics).evaluate() self.assertEqual(result, []) def test_clean_removes_all_data_frame(self): df = pd.DataFrame([ [None, 1000, '2021-10-01', '2021-09-01'], [1, None, '2021-10-01', '2021-08-01'], [np.nan, 1100, '2021-10-01', '2021-01-01'], [None, 1150, '2021-09-01', '2021-08-01'], ], columns=[ 'group_id', 'order_id', 'group_churned_at', 'order_created_at', ]) column_types = { 'group_id': 'number', 'order_id': 'number', 'group_churned_at': 'datetime', 'order_created_at': 'datetime' } statistics = {} result = RemoveCollinearColumns(df, column_types, statistics).evaluate() self.assertEqual(result, []) def test_collinear_no_results(self): df = pd.DataFrame([ [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1] ], columns=['number_of_users', 'views', 'revenue', 'losses']) column_types = { 'number_of_users': 'number', 'views': 'number', 'revenue': 'number', 'losses': 'number', } statistics = {} result = RemoveCollinearColumns(df, column_types, statistics).evaluate() self.assertEqual(result, []) def test_evaluate(self): df = pd.DataFrame([ [1000, 30000, 10, 100, 30], [500, 10000, 20, 3000, 20], [250, 7500, 25, 8000, 20], [1000, 45003, 20, 90, 40], [1500, 75000, 30, 70, 25], [1250, 60000, 50, 80, 20], [200, 5000, 30, 10000, 30], [800, 12050, 40, 2000, 45], [600, 11000, 50, 3000, 50], [700, 11750, 20, 2750, 55], [1200, 52000, 10, 75, 60] ], columns=[ 'number_of_users', 'views', 'number_of_creators', 'losses', 'number_of_advertisers' ]) column_types = { 'number_of_users': 'number', 'views': 'number', 'number_of_creators': 'number', 'losses': 'number', 'number_of_advertisers': 'number' } statistics = {} rule = RemoveCollinearColumns(df, column_types, statistics) results = rule.evaluate() expected_results = [ dict( title='Remove collinear columns', message='The following columns are strongly correlated ' 'with other columns in the dataset: [\'number_of_users\']. ' 'Removing these columns may increase data quality ' 'by removing redundant and closely related data.', action_payload=dict( action_type='remove', action_arguments=['number_of_users'], axis='column', action_options = {}, action_variables = {}, action_code = '', outputs = [], ) ) ] self.assertEqual(results, expected_results) def test_evaluate_bad_dtypes(self): df = pd.DataFrame([ [1000, 'US', 30000, '10', 'cute animal #1', 100, '30'], ['500', 'CA', 10000, '20', 'intro to regression', 3000, '20'], [200, '', np.nan, 50, 'daily news #1', None, '75'], [250, 'CA', 7500, 25, 'machine learning seminar', 8000, '20'], ['1000', 'MX', 45003, '20', 'cute animal #4', 90, '40'], [1500, 'MX', 75000, '30', '', 70, 25], [1500, 'US', 75000, np.nan, 'daily news #3', 70, '25'], [None, 'US', 75000, '30', 'tutorial: how to start a startup', 70, np.nan], [1250, 'US', 60000, '50', 'cute animal #3', 80, '20'], ['200', 'CA', 5000, '30', '', 10000, '30'], [800, 'US', 12050, '40', 'meme compilation', 2000, '45'], ['600', 'CA', 11000, '50', 'daily news #2', 3000, '50'], [600, 'CA', '', 50, '', 3000, None], ['700', 'MX', 11750, '20', 'cute animal #2', 2750, '55'], [700, '', None, 20, '', None, '55'], [700, 'MX', 11750, '', '', 2750, '55'], [1200, 'MX', 52000, '10', 'vc funding strats', 75, '60'] ], columns=[ 'number_of_users', 'location', 'views', 'number_of_creators', 'name', 'losses', 'number_of_advertisers' ]) cleaned_df = pd.DataFrame([ [1000, 30000, 10, 100, 30], [500, 10000, 20, 3000, 20], [250, 7500, 25, 8000, 20], [1000, 45003, 20, 90, 40], [1500, 75000, 30, 70, 25], [1250, 60000, 50, 80, 20], [200, 5000, 30, 10000, 30], [800, 12050, 40, 2000, 45], [600, 11000, 50, 3000, 50], [700, 11750, 20, 2750, 55], [1200, 52000, 10, 75, 60] ], columns=[ 'number_of_users', 'views', 'number_of_creators', 'losses', 'number_of_advertisers' ]).astype(float) column_types = { 'number_of_users': 'number', 'location': 'category', 'views': 'number', 'number_of_creators': 'number', 'name': 'text', 'losses': 'number', 'number_of_advertisers': 'number' } statistics = {} rule = RemoveCollinearColumns(df, column_types, statistics) assert_frame_equal(cleaned_df, rule.numeric_df.reset_index(drop=True)) results = rule.evaluate() expected_results = [ dict( title='Remove collinear columns', message='The following columns are strongly correlated ' 'with other columns in the dataset: [\'number_of_users\']. ' 'Removing these columns may increase data quality ' 'by removing redundant and closely related data.', action_payload=dict( action_type='remove', action_arguments=['number_of_users'], axis='column', action_options = {}, action_variables = {}, action_code = '', outputs = [], ) ) ] self.assertEqual(results, expected_results) def test_evaluate_dirty(self): df = pd.DataFrame([ [1000, 30000, 10, 100, 30], [500, 10000, 20, 3000, 20], [200, np.nan, 50, None, 75], [250, 7500, 25, 8000, 20], [1000, 45003, 20, 90, 40], [1500, 75000, 30, 70, 25], [1500, 75000, np.nan, 70, 25], [None, 75000, 30, 70, np.nan], [1250, 60000, 50, 80, 20], [200, 5000, 30, 10000, 30], [800, 12050, 40, 2000, 45], [600, 11000, 50, 3000, 50], [600, '', 50, 3000, None], [700, 11750, 20, 2750, 55], [700, None, 20, None, 55], [700, 11750, '', 2750, 55], [1200, 52000, 10, 75, 60] ], columns=[ 'number_of_users', 'views', 'number_of_creators', 'losses', 'number_of_advertisers' ]) cleaned_df = pd.DataFrame([ [1000, 30000, 10, 100, 30], [500, 10000, 20, 3000, 20], [250, 7500, 25, 8000, 20], [1000, 45003, 20, 90, 40], [1500, 75000, 30, 70, 25], [1250, 60000, 50, 80, 20], [200, 5000, 30, 10000, 30], [800, 12050, 40, 2000, 45], [600, 11000, 50, 3000, 50], [700, 11750, 20, 2750, 55], [1200, 52000, 10, 75, 60] ], columns=[ 'number_of_users', 'views', 'number_of_creators', 'losses', 'number_of_advertisers' ]).astype(float) column_types = { 'number_of_users': 'number', 'views': 'number', 'number_of_creators': 'number', 'losses': 'number', 'number_of_advertisers': 'number' } statistics = {} rule = RemoveCollinearColumns(df, column_types, statistics) assert_frame_equal(cleaned_df, rule.numeric_df.reset_index(drop=True)) results = rule.evaluate() expected_results = [ dict( title='Remove collinear columns', message='The following columns are strongly correlated ' 'with other columns in the dataset: [\'number_of_users\']. ' 'Removing these columns may increase data quality ' 'by removing redundant and closely related data.', action_payload=dict( action_type='remove', action_arguments=['number_of_users'], axis='column', action_options = {}, action_variables = {}, action_code = '', outputs = [], ) ) ] self.assertEqual(results, expected_results) def test_evaluate_non_numeric(self): df = pd.DataFrame([ [1000, 'US', 30000, 10, 'cute animal #1', 100, 30], [500, 'CA', 10000, 20, 'intro to regression', 3000, 20], [200, '', np.nan, 50, 'daily news #1', None, 75], [250, 'CA', 7500, 25, 'machine learning seminar', 8000, 20], [1000, 'MX', 45003, 20, 'cute animal #4', 90, 40], [1500, 'MX', 75000, 30, '', 70, 25], [1500, 'US', 75000, np.nan, 'daily news #3', 70, 25], [None, 'US', 75000, 30, 'tutorial: how to start a startup', 70, np.nan], [1250, 'US', 60000, 50, 'cute animal #3', 80, 20], [200, 'CA', 5000, 30, '', 10000, 30], [800, 'US', 12050, 40, 'meme compilation', 2000, 45], [600, 'CA', 11000, 50, 'daily news #2', 3000, 50], [600, 'CA', '', 50, '', 3000, None], [700, 'MX', 11750, 20, 'cute animal #2', 2750, 55], [700, '', None, 20, '', None, 55], [700, 'MX', 11750, '', '', 2750, 55], [1200, 'MX', 52000, 10, 'vc funding strats', 75, 60] ], columns=[ 'number_of_users', 'location', 'views', 'number_of_creators', 'name', 'losses', 'number_of_advertisers' ]) cleaned_df = pd.DataFrame([ [1000, 30000, 10, 100, 30], [500, 10000, 20, 3000, 20], [250, 7500, 25, 8000, 20], [1000, 45003, 20, 90, 40], [1500, 75000, 30, 70, 25], [1250, 60000, 50, 80, 20], [200, 5000, 30, 10000, 30], [800, 12050, 40, 2000, 45], [600, 11000, 50, 3000, 50], [700, 11750, 20, 2750, 55], [1200, 52000, 10, 75, 60] ], columns=[ 'number_of_users', 'views', 'number_of_creators', 'losses', 'number_of_advertisers' ]).astype(float) column_types = { 'number_of_users': 'number', 'location': 'category', 'views': 'number', 'number_of_creators': 'number', 'name': 'text', 'losses': 'number', 'number_of_advertisers': 'number' } statistics = {} rule = RemoveCollinearColumns(df, column_types, statistics) assert_frame_equal(cleaned_df, rule.numeric_df.reset_index(drop=True)) results = rule.evaluate() expected_results = [ dict( title='Remove collinear columns', message='The following columns are strongly correlated ' 'with other columns in the dataset: [\'number_of_users\']. ' 'Removing these columns may increase data quality ' 'by removing redundant and closely related data.', action_payload=dict( action_type='remove', action_arguments=['number_of_users'], axis='column', action_options = {}, action_variables = {}, action_code = '', outputs = [], ) ) ] self.assertEqual(results, expected_results) def test_perfectly_collinear(self): number_of_users = self.rng.integers(1000, 500000, (10000)) views = number_of_users * 300 revenue = 2 * views - number_of_users losses = revenue / views + number_of_users df = pd.DataFrame({ 'number_of_users':number_of_users, 'views': views, 'revenue': revenue, 'losses': losses }) column_types = { 'number_of_users': 'number', 'views': 'number', 'revenue': 'number', 'losses': 'number', } statistics = {} result = RemoveCollinearColumns(df, column_types, statistics).evaluate() expected_results = [ dict( title='Remove collinear columns', message='The following columns are strongly correlated ' 'with other columns in the dataset:' ' [\'number_of_users\', \'views\', \'revenue\']. ' 'Removing these columns may increase data quality ' 'by removing redundant and closely related data.', action_payload=dict( action_type='remove', action_arguments=['number_of_users', 'views', 'revenue'], axis='column', action_options = {}, action_variables = {}, action_code = '', outputs = [], ) ) ] self.assertEqual(result, expected_results) def test_vif_calcuation(self): df = pd.DataFrame([ [1000, 30000, 10, 100, 30], [500, 10000, 20, 3000, 20], [250, 7500, 25, 8000, 20], [1000, 45003, 20, 90, 40], [1500, 75000, 30, 70, 25], [1250, 60000, 50, 80, 20], [200, 5000, 30, 10000, 30], [800, 12050, 40, 2000, 45], [600, 11000, 50, 3000, 50], [700, 11750, 20, 2750, 55], [1200, 52000, 10, 75, 60] ], columns=[ 'number_of_users', 'views', 'number_of_creators', 'losses', 'number_of_advertisers' ]) column_types = { 'number_of_users': 'number', 'views': 'number', 'number_of_creators': 'number', 'losses': 'number', 'number_of_advertisers': 'number' } statistics = {} rule = RemoveCollinearColumns(df, column_types, statistics) expected_vifs_no_remove = ( 59.32817701051733, 26.10502642724925, 5.6541251174451315, 2.6033835916281176, 10.735934980453335 ) expected_vifs_remove = ( 59.32817701051733, 2.941751614824833, 3.4216357503903243, 1.370441833599666 ) for column, expected_vif in zip(rule.numeric_columns, expected_vifs_no_remove): vif = rule.get_variance_inflation_factor(column) self.assertAlmostEqual(vif, expected_vif) for column, expected_vif in zip(rule.numeric_columns[:-1], expected_vifs_remove): vif = rule.get_variance_inflation_factor(column) self.assertAlmostEqual(vif, expected_vif) rule.
[ "column_types", "numeric_columns", "df", "VIF_UB", "statistics", "df_columns", "EPSILON", "evaluate", "filter_numeric_types", "get_variance_inflation_factor", "MIN_ENTRIES", "numeric_df", "numeric_indices", "ROW_SAMPLE_SIZE" ]
', outputs = [], ) ) ] self.assertEqual(result, expected_results) def test_vif_calcuation(self): df = pd.DataFrame([ [1000, 30000, 10, 100, 30], [500, 10000, 20, 3000, 20], [250, 7500, 25, 8000, 20], [1000, 45003, 20, 90, 40], [1500, 75000, 30, 70, 25], [1250, 60000, 50, 80, 20], [200, 5000, 30, 10000, 30], [800, 12050, 40, 2000, 45], [600, 11000, 50, 3000, 50], [700, 11750, 20, 2750, 55], [1200, 52000, 10, 75, 60] ], columns=[ 'number_of_users', 'views', 'number_of_creators', 'losses', 'number_of_advertisers' ]) column_types = { 'number_of_users': 'number', 'views': 'number', 'number_of_creators': 'number', 'losses': 'number', 'number_of_advertisers': 'number' } statistics = {} rule = RemoveCollinearColumns(df, column_types, statistics) expected_vifs_no_remove = ( 59.32817701051733, 26.10502642724925, 5.6541251174451315, 2.6033835916281176, 10.735934980453335 ) expected_vifs_remove = ( 59.32817701051733, 2.941751614824833, 3.4216357503903243, 1.370441833599666 ) for column, expected_vif in zip(rule.numeric_columns, expected_vifs_no_remove): vif = rule.get_variance_inflation_factor(column) self.assertAlmostEqual(vif, expected_vif) for column, expected_vif in zip(rule.numeric_columns[:-1], expected_vifs_remove): vif = rule.get_variance_inflation_factor(column) self.assertAlmostEqual(vif, expected_vif) rule.
5,481
7,753
221
817
mage-ai__mage-ai
5d174cafe82dab0bc46d82b5ac6dff808a60f5ac
mage_ai/server/routes.py
infile
data
true
statement
17
18
false
true
[ "metadata", "data", "to_dict", "write_files", "id", "dir", "folder_name", "insights", "objects", "path", "path_name", "pipeline", "read_json_file", "sample_data", "statistics", "suggestions", "write_json_file", "__init__", "__annotations__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "data", "type": "statement" }, { "name": "dir", "type": "statement" }, { "name": "folder_name", "type": "function" }, { "name": "id", "type": "statement" }, { "name": "insights", "type": "statement" }, { "name": "metadata", "type": "statement" }, { "name": "objects", "type": "function" }, { "name": "path", "type": "statement" }, { "name": "path_name", "type": "function" }, { "name": "pipeline", "type": "property" }, { "name": "read_json_file", "type": "function" }, { "name": "sample_data", "type": "property" }, { "name": "statistics", "type": "statement" }, { "name": "suggestions", "type": "statement" }, { "name": "to_dict", "type": "function" }, { "name": "write_files", "type": "function" }, { "name": "write_json_file", "type": "function" }, { "name": "_data", "type": "statement" }, { "name": "__annotations__", "type": "statement" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
from data_cleaner.data_cleaner import analyze, clean as clean_data from data_cleaner.pipelines.base import BasePipeline from flask import render_template, request from numpyencoder import NumpyEncoder from server.data.models import FeatureSet, Pipeline from server import app import json import threading @app.route("/") def index(): return render_template('index.html') """ request: { id: string (feature set id) clean: boolean } response: { id, metadata, sample_data, statistics, insights, suggestions } """ @app.route("/process", methods=["POST"]) def process(): request_data = request.json if not request_data: request_data = request.form id = request_data['id'] if not id: return feature_set = FeatureSet(id=id) df = feature_set.
[ "metadata", "data", "to_dict", "write_files", "id", "dir", "folder_name", "insights", "objects", "path", "path_name", "pipeline", "read_json_file", "sample_data", "statistics", "suggestions", "write_json_file" ]
from data_cleaner.data_cleaner import analyze, clean as clean_data from data_cleaner.pipelines.base import BasePipeline from flask import render_template, request from numpyencoder import NumpyEncoder from server.data.models import FeatureSet, Pipeline from server import app import json import threading @app.route("/") def index(): return render_template('index.html') """ request: { id: string (feature set id) clean: boolean } response: { id, metadata, sample_data, statistics, insights, suggestions } """ @app.route("/process", methods=["POST"]) def process(): request_data = request.json if not request_data: request_data = request.form id = request_data['id'] if not id: return feature_set = FeatureSet(id=id) df = feature_set.
5,482
7,758
221
1,505
mage-ai__mage-ai
5d174cafe82dab0bc46d82b5ac6dff808a60f5ac
mage_ai/server/routes.py
infile
objects
true
function
15
15
false
true
[ "to_dict", "data", "metadata", "write_files", "pipeline", "folder_name", "insights", "objects", "path_name", "read_json_file", "sample_data", "statistics", "suggestions", "write_json_file", "mro", "__init__", "__annotations__", "__base__", "__bases__", "__basicsize__", "__call__", "__delattr__", "__dict__", "__dictoffset__", "__dir__", "__eq__", "__flags__", "__format__", "__getattribute__", "__hash__", "__init_subclass__", "__instancecheck__", "__itemsize__", "__mro__", "__name__", "__ne__", "__new__", "__or__", "__prepare__", "__qualname__", "__reduce__", "__reduce_ex__", "__repr__", "__ror__", "__setattr__", "__sizeof__", "__str__", "__subclasscheck__", "__subclasses__", "__subclasshook__", "__text_signature__", "__weakrefoffset__", "__class__", "__doc__", "__module__" ]
[ { "name": "data", "type": "property" }, { "name": "folder_name", "type": "function" }, { "name": "insights", "type": "property" }, { "name": "metadata", "type": "property" }, { "name": "mro", "type": "function" }, { "name": "objects", "type": "function" }, { "name": "path_name", "type": "function" }, { "name": "pipeline", "type": "property" }, { "name": "read_json_file", "type": "function" }, { "name": "sample_data", "type": "property" }, { "name": "statistics", "type": "property" }, { "name": "suggestions", "type": "property" }, { "name": "to_dict", "type": "function" }, { "name": "write_files", "type": "function" }, { "name": "write_json_file", "type": "function" }, { "name": "__annotations__", "type": "statement" }, { "name": "__base__", "type": "statement" }, { "name": "__bases__", "type": "statement" }, { "name": "__basicsize__", "type": "statement" }, { "name": "__call__", "type": "function" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dictoffset__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__flags__", "type": "statement" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__instancecheck__", "type": "function" }, { "name": "__itemsize__", "type": "statement" }, { "name": "__module__", "type": "statement" }, { "name": "__mro__", "type": "statement" }, { "name": "__name__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__prepare__", "type": "function" }, { "name": "__qualname__", "type": "statement" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" }, { "name": "__subclasscheck__", "type": "function" }, { "name": "__subclasses__", "type": "function" }, { "name": "__text_signature__", "type": "statement" }, { "name": "__weakrefoffset__", "type": "statement" } ]
from data_cleaner.data_cleaner import analyze, clean as clean_data from data_cleaner.pipelines.base import BasePipeline from flask import render_template, request from numpyencoder import NumpyEncoder from server.data.models import FeatureSet, Pipeline from server import app import json import threading @app.route("/") def index(): return render_template('index.html') """ request: { id: string (feature set id) clean: boolean } response: { id, metadata, sample_data, statistics, insights, suggestions } """ @app.route("/process", methods=["POST"]) def process(): request_data = request.json if not request_data: request_data = request.form id = request_data['id'] if not id: return feature_set = FeatureSet(id=id) df = feature_set.data metadata = feature_set.metadata if request_data.get('clean', True): result = clean_data(df) else: result = analyze(df) feature_set.write_files(result) column_types = result['column_types'] metadata['column_types'] = column_types feature_set.metadata = metadata response = app.response_class( response=json.dumps(feature_set.to_dict(), cls=NumpyEncoder), status=200, mimetype='application/json' ) return response """ response: [ { id, metadata, } ] """ @app.route("/feature_sets") def feature_sets(): feature_sets = list(map(lambda fs: fs.to_dict(False), FeatureSet.
[ "to_dict", "data", "metadata", "write_files", "pipeline", "folder_name", "insights", "objects", "path_name", "read_json_file", "sample_data", "statistics", "suggestions", "write_json_file", "mro" ]
from data_cleaner.data_cleaner import analyze, clean as clean_data from data_cleaner.pipelines.base import BasePipeline from flask import render_template, request from numpyencoder import NumpyEncoder from server.data.models import FeatureSet, Pipeline from server import app import json import threading @app.route("/") def index(): return render_template('index.html') """ request: { id: string (feature set id) clean: boolean } response: { id, metadata, sample_data, statistics, insights, suggestions } """ @app.route("/process", methods=["POST"]) def process(): request_data = request.json if not request_data: request_data = request.form id = request_data['id'] if not id: return feature_set = FeatureSet(id=id) df = feature_set.data metadata = feature_set.metadata if request_data.get('clean', True): result = clean_data(df) else: result = analyze(df) feature_set.write_files(result) column_types = result['column_types'] metadata['column_types'] = column_types feature_set.metadata = metadata response = app.response_class( response=json.dumps(feature_set.to_dict(), cls=NumpyEncoder), status=200, mimetype='application/json' ) return response """ response: [ { id, metadata, } ] """ @app.route("/feature_sets") def feature_sets(): feature_sets = list(map(lambda fs: fs.to_dict(False), FeatureSet.
5,486
7,761
222
4,543
qiboteam__qibolab
097a3fc1a66f8aff1fce4978054707b1d7b2c596
examples/qili_single_qubit/diagnostics.py
common
platform
true
statement
6
6
false
true
[ "platform", "sequence", "name", "label", "unit", "__init__", "get", "__annotations__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "get", "type": "function" }, { "name": "label", "type": "statement" }, { "name": "name", "type": "statement" }, { "name": "platform", "type": "statement" }, { "name": "sequence", "type": "statement" }, { "name": "unit", "type": "statement" }, { "name": "__annotations__", "type": "statement" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
import pathlib import numpy as np import matplotlib.pyplot as plt import yaml # TODO: Have a look in the documentation of ``MeasurementControl`` from quantify_core.measurement import MeasurementControl from quantify_core.measurement.control import Gettable, Settable from quantify_core.data.handling import set_datadir from scipy.signal import savgol_filter # TODO: Check why this set_datadir is needed set_datadir(pathlib.Path(__file__).parent / "data" / "quantify") def backup_config_file(): import os import shutil import errno from datetime import datetime original = os.path.realpath(os.path.join(os.path.dirname(__file__), '..', '..', 'src', 'qibolab', 'runcards', 'tiiq.yml')) now = datetime.now() now = now.strftime("%d%m%Y%H%M%S") destination_file_name = "tiiq_" + now + ".yml" target = os.path.realpath(os.path.join(os.path.dirname(__file__), 'data/settings_backups', destination_file_name)) try: print("Copying file: " + original) print("Destination file" + target) shutil.copyfile(original, target) print("Platform settings backup done") except IOError as e: # ENOENT(2): file does not exist, raised also on missing dest parent dir if e.errno != errno.ENOENT: raise # try creating parent directories os.makedirs(os.path.dirname(target)) shutil.copy(original, target) def get_config_parameter(dictID, dictID1, key): import os calibration_path = os.path.realpath(os.path.join(os.path.dirname(__file__), '..', '..', 'src', 'qibolab', 'runcards', 'tiiq.yml')) with open(calibration_path) as file: settings = yaml.safe_load(file) file.close() if (not dictID1): return settings[dictID][key] else: return settings[dictID][dictID1][key] def save_config_parameter(dictID, dictID1, key, value): import os calibration_path = os.path.realpath(os.path.join(os.path.dirname(__file__), '..', '..', 'src', 'qibolab', 'runcards', 'tiiq.yml')) with open(calibration_path, "r") as file: settings = yaml.safe_load(file) file.close() if (not dictID1): settings[dictID][key] = value print("Saved value: " + str(settings[dictID][key])) else: settings[dictID][dictID1][key] = value print("Saved value: " + str(settings[dictID][dictID1][key])) with open(calibration_path, "w") as file: settings = yaml.dump(settings, file, sort_keys=False, indent=4) file.close() def plot(smooth_dataset, dataset, label, type): if (type == 0): #cavity plots fig, ax = plt.subplots(1, 1, figsize=(15, 15/2/1.61)) ax.plot(dataset['x0'].values, dataset['y0'].values,'-',color='C0') ax.plot(dataset['x0'].values, smooth_dataset,'-',color='C1') ax.title.set_text(label) ax.plot(dataset['x0'].values[smooth_dataset.argmax()], smooth_dataset[smooth_dataset.argmax()], 'o', color='C2') plt.savefig(pathlib.Path("data") / f"{label}.pdf") return if (type == 1): #qubit spec, rabi, ramsey, t1 plots fig, ax = plt.subplots(1, 1, figsize=(15, 15/2/1.61)) ax.plot(dataset['x0'].values, dataset['y0'].values,'-',color='C0') ax.plot(dataset['x0'].values, smooth_dataset,'-',color='C1') ax.title.set_text(label) ax.plot(dataset['x0'].values[smooth_dataset.argmin()], smooth_dataset[smooth_dataset.argmin()], 'o', color='C2') plt.savefig(pathlib.Path("data") / f"{label}.pdf") return def create_measurement_control(name): import os if os.environ.get("ENABLE_PLOTMON", True): mc = MeasurementControl(f'MC {name}') from quantify_core.visualization.pyqt_plotmon import PlotMonitor_pyqt plotmon = PlotMonitor_pyqt(f'Plot Monitor {name}') plotmon.tuids_max_num(3) mc.instr_plotmon(plotmon.name) from quantify_core.visualization.instrument_monitor import InstrumentMonitor insmon = InstrumentMonitor(f"Instruments Monitor {name}") mc.instrument_monitor(insmon.name) return mc, plotmon, insmon else: mc = MeasurementControl(f'MC {name}') return mc, None, None class ROController(): # Quantify Gettable Interface Implementation label = ['Amplitude', 'Phase','I','Q'] unit = ['V', 'Radians','V','V'] name = ['A', 'Phi','I','Q'] def __init__(self, platform, sequence): self.platform = platform self.sequence = sequence def get(self): return self.
[ "platform", "sequence", "name", "label", "unit", "get" ]
g, ax = plt.subplots(1, 1, figsize=(15, 15/2/1.61)) ax.plot(dataset['x0'].values, dataset['y0'].values,'-',color='C0') ax.plot(dataset['x0'].values, smooth_dataset,'-',color='C1') ax.title.set_text(label) ax.plot(dataset['x0'].values[smooth_dataset.argmax()], smooth_dataset[smooth_dataset.argmax()], 'o', color='C2') plt.savefig(pathlib.Path("data") / f"{label}.pdf") return if (type == 1): #qubit spec, rabi, ramsey, t1 plots fig, ax = plt.subplots(1, 1, figsize=(15, 15/2/1.61)) ax.plot(dataset['x0'].values, dataset['y0'].values,'-',color='C0') ax.plot(dataset['x0'].values, smooth_dataset,'-',color='C1') ax.title.set_text(label) ax.plot(dataset['x0'].values[smooth_dataset.argmin()], smooth_dataset[smooth_dataset.argmin()], 'o', color='C2') plt.savefig(pathlib.Path("data") / f"{label}.pdf") return def create_measurement_control(name): import os if os.environ.get("ENABLE_PLOTMON", True): mc = MeasurementControl(f'MC {name}') from quantify_core.visualization.pyqt_plotmon import PlotMonitor_pyqt plotmon = PlotMonitor_pyqt(f'Plot Monitor {name}') plotmon.tuids_max_num(3) mc.instr_plotmon(plotmon.name) from quantify_core.visualization.instrument_monitor import InstrumentMonitor insmon = InstrumentMonitor(f"Instruments Monitor {name}") mc.instrument_monitor(insmon.name) return mc, plotmon, insmon else: mc = MeasurementControl(f'MC {name}') return mc, None, None class ROController(): # Quantify Gettable Interface Implementation label = ['Amplitude', 'Phase','I','Q'] unit = ['V', 'Radians','V','V'] name = ['A', 'Phi','I','Q'] def __init__(self, platform, sequence): self.platform = platform self.sequence = sequence def get(self): return self.
5,487
7,762
222
4,565
qiboteam__qibolab
097a3fc1a66f8aff1fce4978054707b1d7b2c596
examples/qili_single_qubit/diagnostics.py
common
sequence
true
statement
6
6
false
true
[ "platform", "name", "sequence", "label", "unit", "__init__", "get", "__annotations__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "get", "type": "function" }, { "name": "label", "type": "statement" }, { "name": "name", "type": "statement" }, { "name": "platform", "type": "statement" }, { "name": "sequence", "type": "statement" }, { "name": "unit", "type": "statement" }, { "name": "__annotations__", "type": "statement" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
import pathlib import numpy as np import matplotlib.pyplot as plt import yaml # TODO: Have a look in the documentation of ``MeasurementControl`` from quantify_core.measurement import MeasurementControl from quantify_core.measurement.control import Gettable, Settable from quantify_core.data.handling import set_datadir from scipy.signal import savgol_filter # TODO: Check why this set_datadir is needed set_datadir(pathlib.Path(__file__).parent / "data" / "quantify") def backup_config_file(): import os import shutil import errno from datetime import datetime original = os.path.realpath(os.path.join(os.path.dirname(__file__), '..', '..', 'src', 'qibolab', 'runcards', 'tiiq.yml')) now = datetime.now() now = now.strftime("%d%m%Y%H%M%S") destination_file_name = "tiiq_" + now + ".yml" target = os.path.realpath(os.path.join(os.path.dirname(__file__), 'data/settings_backups', destination_file_name)) try: print("Copying file: " + original) print("Destination file" + target) shutil.copyfile(original, target) print("Platform settings backup done") except IOError as e: # ENOENT(2): file does not exist, raised also on missing dest parent dir if e.errno != errno.ENOENT: raise # try creating parent directories os.makedirs(os.path.dirname(target)) shutil.copy(original, target) def get_config_parameter(dictID, dictID1, key): import os calibration_path = os.path.realpath(os.path.join(os.path.dirname(__file__), '..', '..', 'src', 'qibolab', 'runcards', 'tiiq.yml')) with open(calibration_path) as file: settings = yaml.safe_load(file) file.close() if (not dictID1): return settings[dictID][key] else: return settings[dictID][dictID1][key] def save_config_parameter(dictID, dictID1, key, value): import os calibration_path = os.path.realpath(os.path.join(os.path.dirname(__file__), '..', '..', 'src', 'qibolab', 'runcards', 'tiiq.yml')) with open(calibration_path, "r") as file: settings = yaml.safe_load(file) file.close() if (not dictID1): settings[dictID][key] = value print("Saved value: " + str(settings[dictID][key])) else: settings[dictID][dictID1][key] = value print("Saved value: " + str(settings[dictID][dictID1][key])) with open(calibration_path, "w") as file: settings = yaml.dump(settings, file, sort_keys=False, indent=4) file.close() def plot(smooth_dataset, dataset, label, type): if (type == 0): #cavity plots fig, ax = plt.subplots(1, 1, figsize=(15, 15/2/1.61)) ax.plot(dataset['x0'].values, dataset['y0'].values,'-',color='C0') ax.plot(dataset['x0'].values, smooth_dataset,'-',color='C1') ax.title.set_text(label) ax.plot(dataset['x0'].values[smooth_dataset.argmax()], smooth_dataset[smooth_dataset.argmax()], 'o', color='C2') plt.savefig(pathlib.Path("data") / f"{label}.pdf") return if (type == 1): #qubit spec, rabi, ramsey, t1 plots fig, ax = plt.subplots(1, 1, figsize=(15, 15/2/1.61)) ax.plot(dataset['x0'].values, dataset['y0'].values,'-',color='C0') ax.plot(dataset['x0'].values, smooth_dataset,'-',color='C1') ax.title.set_text(label) ax.plot(dataset['x0'].values[smooth_dataset.argmin()], smooth_dataset[smooth_dataset.argmin()], 'o', color='C2') plt.savefig(pathlib.Path("data") / f"{label}.pdf") return def create_measurement_control(name): import os if os.environ.get("ENABLE_PLOTMON", True): mc = MeasurementControl(f'MC {name}') from quantify_core.visualization.pyqt_plotmon import PlotMonitor_pyqt plotmon = PlotMonitor_pyqt(f'Plot Monitor {name}') plotmon.tuids_max_num(3) mc.instr_plotmon(plotmon.name) from quantify_core.visualization.instrument_monitor import InstrumentMonitor insmon = InstrumentMonitor(f"Instruments Monitor {name}") mc.instrument_monitor(insmon.name) return mc, plotmon, insmon else: mc = MeasurementControl(f'MC {name}') return mc, None, None class ROController(): # Quantify Gettable Interface Implementation label = ['Amplitude', 'Phase','I','Q'] unit = ['V', 'Radians','V','V'] name = ['A', 'Phi','I','Q'] def __init__(self, platform, sequence): self.platform = platform self.sequence = sequence def get(self): return self.platform.execute(self.
[ "platform", "name", "sequence", "label", "unit", "get" ]
, 1, figsize=(15, 15/2/1.61)) ax.plot(dataset['x0'].values, dataset['y0'].values,'-',color='C0') ax.plot(dataset['x0'].values, smooth_dataset,'-',color='C1') ax.title.set_text(label) ax.plot(dataset['x0'].values[smooth_dataset.argmax()], smooth_dataset[smooth_dataset.argmax()], 'o', color='C2') plt.savefig(pathlib.Path("data") / f"{label}.pdf") return if (type == 1): #qubit spec, rabi, ramsey, t1 plots fig, ax = plt.subplots(1, 1, figsize=(15, 15/2/1.61)) ax.plot(dataset['x0'].values, dataset['y0'].values,'-',color='C0') ax.plot(dataset['x0'].values, smooth_dataset,'-',color='C1') ax.title.set_text(label) ax.plot(dataset['x0'].values[smooth_dataset.argmin()], smooth_dataset[smooth_dataset.argmin()], 'o', color='C2') plt.savefig(pathlib.Path("data") / f"{label}.pdf") return def create_measurement_control(name): import os if os.environ.get("ENABLE_PLOTMON", True): mc = MeasurementControl(f'MC {name}') from quantify_core.visualization.pyqt_plotmon import PlotMonitor_pyqt plotmon = PlotMonitor_pyqt(f'Plot Monitor {name}') plotmon.tuids_max_num(3) mc.instr_plotmon(plotmon.name) from quantify_core.visualization.instrument_monitor import InstrumentMonitor insmon = InstrumentMonitor(f"Instruments Monitor {name}") mc.instrument_monitor(insmon.name) return mc, plotmon, insmon else: mc = MeasurementControl(f'MC {name}') return mc, None, None class ROController(): # Quantify Gettable Interface Implementation label = ['Amplitude', 'Phase','I','Q'] unit = ['V', 'Radians','V','V'] name = ['A', 'Phi','I','Q'] def __init__(self, platform, sequence): self.platform = platform self.sequence = sequence def get(self): return self.platform.execute(self.
5,488
7,807
223
1,687
qiboteam__qibolab
e4b0e8e6dd612e696a161da9972f4bb9b6bf8cd0
src/qibolab/calibration/calibration.py
inproject
add
true
function
8
8
false
true
[ "add", "pulses", "phase", "qcm_pulses", "qrm_pulses", "add_measurement", "add_u3", "time", "__init__", "__annotations__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "add", "type": "function" }, { "name": "add_measurement", "type": "function" }, { "name": "add_u3", "type": "function" }, { "name": "phase", "type": "statement" }, { "name": "pulses", "type": "statement" }, { "name": "qcm_pulses", "type": "statement" }, { "name": "qrm_pulses", "type": "statement" }, { "name": "time", "type": "statement" }, { "name": "__annotations__", "type": "statement" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
import pathlib import numpy as np #import matplotlib.pyplot as plt import utils import yaml import fitting from qibolab import Platform # TODO: Have a look in the documentation of ``MeasurementControl`` #from quantify_core.measurement import MeasurementControl from quantify_core.measurement.control import Gettable, Settable from quantify_core.data.handling import set_datadir from scipy.signal import savgol_filter from qibolab.pulses import Pulse, ReadoutPulse from qibolab.circuit import PulseSequence from qibolab.pulse_shapes import Rectangular, Gaussian # TODO: Check why this set_datadir is needed #set_datadir(pathlib.Path("data") / "quantify") set_datadir(pathlib.Path(__file__).parent / "data" / "quantify") class Calibration(): def __init__(self, platform: Platform): self.platform = platform self.mc, self.pl, self.ins = utils.create_measurement_control('Calibration') def load_settings(self): # Load diagnostics settings with open("calibration.yml", "r") as file: return yaml.safe_load(file) def run_resonator_spectroscopy(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.
[ "add", "pulses", "phase", "qcm_pulses", "qrm_pulses", "add_measurement", "add_u3", "time" ]
import pathlib import numpy as np #import matplotlib.pyplot as plt import utils import yaml import fitting from qibolab import Platform # TODO: Have a look in the documentation of ``MeasurementControl`` #from quantify_core.measurement import MeasurementControl from quantify_core.measurement.control import Gettable, Settable from quantify_core.data.handling import set_datadir from scipy.signal import savgol_filter from qibolab.pulses import Pulse, ReadoutPulse from qibolab.circuit import PulseSequence from qibolab.pulse_shapes import Rectangular, Gaussian # TODO: Check why this set_datadir is needed #set_datadir(pathlib.Path("data") / "quantify") set_datadir(pathlib.Path(__file__).parent / "data" / "quantify") class Calibration(): def __init__(self, platform: Platform): self.platform = platform self.mc, self.pl, self.ins = utils.create_measurement_control('Calibration') def load_settings(self): # Load diagnostics settings with open("calibration.yml", "r") as file: return yaml.safe_load(file) def run_resonator_spectroscopy(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.
5,491
7,811
223
3,549
qiboteam__qibolab
e4b0e8e6dd612e696a161da9972f4bb9b6bf8cd0
src/qibolab/calibration/calibration.py
inproject
lorentzian_fit
true
function
12
17
false
true
[ "t1_fit", "rabi_fit", "lorentzian_fit", "ramsey_fit", "curve_fit", "BaseAnalysis", "data_post", "exp", "rabi", "ramsey", "resonator_peak", "set_datadir" ]
[ { "name": "BaseAnalysis", "type": "module" }, { "name": "curve_fit", "type": "module" }, { "name": "data_post", "type": "function" }, { "name": "exp", "type": "function" }, { "name": "lmfit", "type": "module" }, { "name": "lorentzian_fit", "type": "function" }, { "name": "np", "type": "module" }, { "name": "os", "type": "module" }, { "name": "pathlib", "type": "module" }, { "name": "plt", "type": "module" }, { "name": "rabi", "type": "function" }, { "name": "rabi_fit", "type": "function" }, { "name": "ramsey", "type": "function" }, { "name": "ramsey_fit", "type": "function" }, { "name": "resonator_peak", "type": "function" }, { "name": "set_datadir", "type": "module" }, { "name": "t1_fit", "type": "function" }, { "name": "__doc__", "type": "instance" }, { "name": "__file__", "type": "instance" }, { "name": "__name__", "type": "instance" }, { "name": "__package__", "type": "instance" } ]
import pathlib import numpy as np #import matplotlib.pyplot as plt import utils import yaml import fitting from qibolab import Platform # TODO: Have a look in the documentation of ``MeasurementControl`` #from quantify_core.measurement import MeasurementControl from quantify_core.measurement.control import Gettable, Settable from quantify_core.data.handling import set_datadir from scipy.signal import savgol_filter from qibolab.pulses import Pulse, ReadoutPulse from qibolab.circuit import PulseSequence from qibolab.pulse_shapes import Rectangular, Gaussian # TODO: Check why this set_datadir is needed #set_datadir(pathlib.Path("data") / "quantify") set_datadir(pathlib.Path(__file__).parent / "data" / "quantify") class Calibration(): def __init__(self, platform: Platform): self.platform = platform self.mc, self.pl, self.ins = utils.create_measurement_control('Calibration') def load_settings(self): # Load diagnostics settings with open("calibration.yml", "r") as file: return yaml.safe_load(file) def run_resonator_spectroscopy(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['resonator_spectroscopy'] lowres_width = ds['lowres_width'] lowres_step = ds['lowres_step'] highres_width = ds['highres_width'] highres_step = ds['highres_step'] precision_width = ds['precision_width'] precision_step = ds['precision_step'] #Fast Sweep scanrange = utils.variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step) mc.settables(platform.LO_qrm.device.frequency) mc.setpoints(scanrange + platform.LO_qrm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() platform.LO_qcm.off() dataset = mc.run("Resonator Spectroscopy Fast", soft_avg=1) platform.stop() platform.LO_qrm.set_frequency(dataset['x0'].values[dataset['y0'].argmax().values]) avg_min_voltage = np.mean(dataset['y0'].values[:(lowres_width//lowres_step)]) * 1e6 # Precision Sweep scanrange = np.arange(-precision_width, precision_width, precision_step) mc.settables(platform.LO_qrm.device.frequency) mc.setpoints(scanrange + platform.LO_qrm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() platform.LO_qcm.off() dataset = mc.run("Resonator Spectroscopy Precision", soft_avg=software_averages) platform.stop() # Fitting smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2) # resonator_freq = dataset['x0'].values[smooth_dataset.argmax()] + ro_pulse.frequency max_ro_voltage = smooth_dataset.max() * 1e6 f0, BW, Q = fitting.
[ "t1_fit", "rabi_fit", "lorentzian_fit", "ramsey_fit", "curve_fit", "BaseAnalysis", "data_post", "exp", "rabi", "ramsey", "resonator_peak", "set_datadir" ]
hape) sequence = PulseSequence() sequence.add(qc_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['resonator_spectroscopy'] lowres_width = ds['lowres_width'] lowres_step = ds['lowres_step'] highres_width = ds['highres_width'] highres_step = ds['highres_step'] precision_width = ds['precision_width'] precision_step = ds['precision_step'] #Fast Sweep scanrange = utils.variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step) mc.settables(platform.LO_qrm.device.frequency) mc.setpoints(scanrange + platform.LO_qrm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() platform.LO_qcm.off() dataset = mc.run("Resonator Spectroscopy Fast", soft_avg=1) platform.stop() platform.LO_qrm.set_frequency(dataset['x0'].values[dataset['y0'].argmax().values]) avg_min_voltage = np.mean(dataset['y0'].values[:(lowres_width//lowres_step)]) * 1e6 # Precision Sweep scanrange = np.arange(-precision_width, precision_width, precision_step) mc.settables(platform.LO_qrm.device.frequency) mc.setpoints(scanrange + platform.LO_qrm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() platform.LO_qcm.off() dataset = mc.run("Resonator Spectroscopy Precision", soft_avg=software_averages) platform.stop() # Fitting smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2) # resonator_freq = dataset['x0'].values[smooth_dataset.argmax()] + ro_pulse.frequency max_ro_voltage = smooth_dataset.max() * 1e6 f0, BW, Q = fitting.
5,495
7,813
223
3,931
qiboteam__qibolab
e4b0e8e6dd612e696a161da9972f4bb9b6bf8cd0
src/qibolab/calibration/calibration.py
random
mc
true
statement
11
11
false
false
[ "mc", "platform", "load_settings", "pl", "ins", "__init__", "auto_calibrate_plaform", "callibrate_qubit_states", "run_qubit_spectroscopy", "run_rabi_pulse_length", "run_resonator_spectroscopy", "run_t1", "__annotations__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "auto_calibrate_plaform", "type": "function" }, { "name": "callibrate_qubit_states", "type": "function" }, { "name": "ins", "type": "statement" }, { "name": "load_settings", "type": "function" }, { "name": "mc", "type": "statement" }, { "name": "pl", "type": "statement" }, { "name": "platform", "type": "statement" }, { "name": "run_qubit_spectroscopy", "type": "function" }, { "name": "run_rabi_pulse_length", "type": "function" }, { "name": "run_resonator_spectroscopy", "type": "function" }, { "name": "run_t1", "type": "function" }, { "name": "__annotations__", "type": "statement" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
import pathlib import numpy as np #import matplotlib.pyplot as plt import utils import yaml import fitting from qibolab import Platform # TODO: Have a look in the documentation of ``MeasurementControl`` #from quantify_core.measurement import MeasurementControl from quantify_core.measurement.control import Gettable, Settable from quantify_core.data.handling import set_datadir from scipy.signal import savgol_filter from qibolab.pulses import Pulse, ReadoutPulse from qibolab.circuit import PulseSequence from qibolab.pulse_shapes import Rectangular, Gaussian # TODO: Check why this set_datadir is needed #set_datadir(pathlib.Path("data") / "quantify") set_datadir(pathlib.Path(__file__).parent / "data" / "quantify") class Calibration(): def __init__(self, platform: Platform): self.platform = platform self.mc, self.pl, self.ins = utils.create_measurement_control('Calibration') def load_settings(self): # Load diagnostics settings with open("calibration.yml", "r") as file: return yaml.safe_load(file) def run_resonator_spectroscopy(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['resonator_spectroscopy'] lowres_width = ds['lowres_width'] lowres_step = ds['lowres_step'] highres_width = ds['highres_width'] highres_step = ds['highres_step'] precision_width = ds['precision_width'] precision_step = ds['precision_step'] #Fast Sweep scanrange = utils.variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step) mc.settables(platform.LO_qrm.device.frequency) mc.setpoints(scanrange + platform.LO_qrm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() platform.LO_qcm.off() dataset = mc.run("Resonator Spectroscopy Fast", soft_avg=1) platform.stop() platform.LO_qrm.set_frequency(dataset['x0'].values[dataset['y0'].argmax().values]) avg_min_voltage = np.mean(dataset['y0'].values[:(lowres_width//lowres_step)]) * 1e6 # Precision Sweep scanrange = np.arange(-precision_width, precision_width, precision_step) mc.settables(platform.LO_qrm.device.frequency) mc.setpoints(scanrange + platform.LO_qrm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() platform.LO_qcm.off() dataset = mc.run("Resonator Spectroscopy Precision", soft_avg=software_averages) platform.stop() # Fitting smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2) # resonator_freq = dataset['x0'].values[smooth_dataset.argmax()] + ro_pulse.frequency max_ro_voltage = smooth_dataset.max() * 1e6 f0, BW, Q = fitting.lorentzian_fit("last", max, "Resonator_spectroscopy") resonator_freq = (f0*1e9 + ro_pulse.frequency) print(f"\nResonator Frequency = {resonator_freq}") return resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset def run_qubit_spectroscopy(self): platform = self.platform platform.reload_settings() mc = self.
[ "mc", "platform", "load_settings", "pl", "ins", "auto_calibrate_plaform", "callibrate_qubit_states", "run_qubit_spectroscopy", "run_rabi_pulse_length", "run_resonator_spectroscopy", "run_t1" ]
idth = ds['highres_width'] highres_step = ds['highres_step'] precision_width = ds['precision_width'] precision_step = ds['precision_step'] #Fast Sweep scanrange = utils.variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step) mc.settables(platform.LO_qrm.device.frequency) mc.setpoints(scanrange + platform.LO_qrm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() platform.LO_qcm.off() dataset = mc.run("Resonator Spectroscopy Fast", soft_avg=1) platform.stop() platform.LO_qrm.set_frequency(dataset['x0'].values[dataset['y0'].argmax().values]) avg_min_voltage = np.mean(dataset['y0'].values[:(lowres_width//lowres_step)]) * 1e6 # Precision Sweep scanrange = np.arange(-precision_width, precision_width, precision_step) mc.settables(platform.LO_qrm.device.frequency) mc.setpoints(scanrange + platform.LO_qrm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() platform.LO_qcm.off() dataset = mc.run("Resonator Spectroscopy Precision", soft_avg=software_averages) platform.stop() # Fitting smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2) # resonator_freq = dataset['x0'].values[smooth_dataset.argmax()] + ro_pulse.frequency max_ro_voltage = smooth_dataset.max() * 1e6 f0, BW, Q = fitting.lorentzian_fit("last", max, "Resonator_spectroscopy") resonator_freq = (f0*1e9 + ro_pulse.frequency) print(f"\nResonator Frequency = {resonator_freq}") return resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset def run_qubit_spectroscopy(self): platform = self.platform platform.reload_settings() mc = self.
5,497
7,818
223
6,259
qiboteam__qibolab
e4b0e8e6dd612e696a161da9972f4bb9b6bf8cd0
src/qibolab/calibration/calibration.py
inproject
lorentzian_fit
true
function
12
17
false
false
[ "t1_fit", "rabi_fit", "lorentzian_fit", "ramsey_fit", "curve_fit", "BaseAnalysis", "data_post", "exp", "rabi", "ramsey", "resonator_peak", "set_datadir" ]
[ { "name": "BaseAnalysis", "type": "module" }, { "name": "curve_fit", "type": "module" }, { "name": "data_post", "type": "function" }, { "name": "exp", "type": "function" }, { "name": "lmfit", "type": "module" }, { "name": "lorentzian_fit", "type": "function" }, { "name": "np", "type": "module" }, { "name": "os", "type": "module" }, { "name": "pathlib", "type": "module" }, { "name": "plt", "type": "module" }, { "name": "rabi", "type": "function" }, { "name": "rabi_fit", "type": "function" }, { "name": "ramsey", "type": "function" }, { "name": "ramsey_fit", "type": "function" }, { "name": "resonator_peak", "type": "function" }, { "name": "set_datadir", "type": "module" }, { "name": "t1_fit", "type": "function" }, { "name": "__doc__", "type": "instance" }, { "name": "__file__", "type": "instance" }, { "name": "__name__", "type": "instance" }, { "name": "__package__", "type": "instance" } ]
import pathlib import numpy as np #import matplotlib.pyplot as plt import utils import yaml import fitting from qibolab import Platform # TODO: Have a look in the documentation of ``MeasurementControl`` #from quantify_core.measurement import MeasurementControl from quantify_core.measurement.control import Gettable, Settable from quantify_core.data.handling import set_datadir from scipy.signal import savgol_filter from qibolab.pulses import Pulse, ReadoutPulse from qibolab.circuit import PulseSequence from qibolab.pulse_shapes import Rectangular, Gaussian # TODO: Check why this set_datadir is needed #set_datadir(pathlib.Path("data") / "quantify") set_datadir(pathlib.Path(__file__).parent / "data" / "quantify") class Calibration(): def __init__(self, platform: Platform): self.platform = platform self.mc, self.pl, self.ins = utils.create_measurement_control('Calibration') def load_settings(self): # Load diagnostics settings with open("calibration.yml", "r") as file: return yaml.safe_load(file) def run_resonator_spectroscopy(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['resonator_spectroscopy'] lowres_width = ds['lowres_width'] lowres_step = ds['lowres_step'] highres_width = ds['highres_width'] highres_step = ds['highres_step'] precision_width = ds['precision_width'] precision_step = ds['precision_step'] #Fast Sweep scanrange = utils.variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step) mc.settables(platform.LO_qrm.device.frequency) mc.setpoints(scanrange + platform.LO_qrm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() platform.LO_qcm.off() dataset = mc.run("Resonator Spectroscopy Fast", soft_avg=1) platform.stop() platform.LO_qrm.set_frequency(dataset['x0'].values[dataset['y0'].argmax().values]) avg_min_voltage = np.mean(dataset['y0'].values[:(lowres_width//lowres_step)]) * 1e6 # Precision Sweep scanrange = np.arange(-precision_width, precision_width, precision_step) mc.settables(platform.LO_qrm.device.frequency) mc.setpoints(scanrange + platform.LO_qrm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() platform.LO_qcm.off() dataset = mc.run("Resonator Spectroscopy Precision", soft_avg=software_averages) platform.stop() # Fitting smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2) # resonator_freq = dataset['x0'].values[smooth_dataset.argmax()] + ro_pulse.frequency max_ro_voltage = smooth_dataset.max() * 1e6 f0, BW, Q = fitting.lorentzian_fit("last", max, "Resonator_spectroscopy") resonator_freq = (f0*1e9 + ro_pulse.frequency) print(f"\nResonator Frequency = {resonator_freq}") return resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset def run_qubit_spectroscopy(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['qubit_spectroscopy'] fast_start = ds['fast_start'] fast_end = ds['fast_end'] fast_step = ds['fast_step'] precision_start = ds['precision_start'] precision_end = ds['precision_end'] precision_step = ds['precision_step'] # Fast Sweep fast_sweep_scan_range = np.arange(fast_start, fast_end, fast_step) mc.settables(platform.LO_qcm.device.frequency) mc.setpoints(fast_sweep_scan_range + platform.LO_qcm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run("Qubit Spectroscopy Fast", soft_avg=1) platform.stop() # Precision Sweep platform.software_averages = 1 precision_sweep_scan_range = np.arange(precision_start, precision_end, precision_step) mc.settables(platform.LO_qcm.device.frequency) mc.setpoints(precision_sweep_scan_range + platform.LO_qcm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run("Qubit Spectroscopy Precision", soft_avg=software_averages) platform.stop() # Fitting smooth_dataset = savgol_filter(dataset['y0'].values, 11, 2) qubit_freq = dataset['x0'].values[smooth_dataset.argmin()] - qc_pulse.frequency min_ro_voltage = smooth_dataset.min() * 1e6 print(f"\nQubit Frequency = {qubit_freq}") utils.plot(smooth_dataset, dataset, "Qubit_Spectroscopy", 1) print("Qubit freq ontained from MC results: ", qubit_freq) f0, BW, Q = fitting.
[ "t1_fit", "rabi_fit", "lorentzian_fit", "ramsey_fit", "curve_fit", "BaseAnalysis", "data_post", "exp", "rabi", "ramsey", "resonator_peak", "set_datadir" ]
settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['qubit_spectroscopy'] fast_start = ds['fast_start'] fast_end = ds['fast_end'] fast_step = ds['fast_step'] precision_start = ds['precision_start'] precision_end = ds['precision_end'] precision_step = ds['precision_step'] # Fast Sweep fast_sweep_scan_range = np.arange(fast_start, fast_end, fast_step) mc.settables(platform.LO_qcm.device.frequency) mc.setpoints(fast_sweep_scan_range + platform.LO_qcm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run("Qubit Spectroscopy Fast", soft_avg=1) platform.stop() # Precision Sweep platform.software_averages = 1 precision_sweep_scan_range = np.arange(precision_start, precision_end, precision_step) mc.settables(platform.LO_qcm.device.frequency) mc.setpoints(precision_sweep_scan_range + platform.LO_qcm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run("Qubit Spectroscopy Precision", soft_avg=software_averages) platform.stop() # Fitting smooth_dataset = savgol_filter(dataset['y0'].values, 11, 2) qubit_freq = dataset['x0'].values[smooth_dataset.argmin()] - qc_pulse.frequency min_ro_voltage = smooth_dataset.min() * 1e6 print(f"\nQubit Frequency = {qubit_freq}") utils.plot(smooth_dataset, dataset, "Qubit_Spectroscopy", 1) print("Qubit freq ontained from MC results: ", qubit_freq) f0, BW, Q = fitting.
5,502
7,823
223
7,173
qiboteam__qibolab
e4b0e8e6dd612e696a161da9972f4bb9b6bf8cd0
src/qibolab/calibration/calibration.py
infile
load_settings
true
function
11
11
false
false
[ "platform", "mc", "pl", "load_settings", "ins", "__init__", "auto_calibrate_plaform", "callibrate_qubit_states", "run_qubit_spectroscopy", "run_rabi_pulse_length", "run_resonator_spectroscopy", "run_t1", "__annotations__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "auto_calibrate_plaform", "type": "function" }, { "name": "callibrate_qubit_states", "type": "function" }, { "name": "ins", "type": "statement" }, { "name": "load_settings", "type": "function" }, { "name": "mc", "type": "statement" }, { "name": "pl", "type": "statement" }, { "name": "platform", "type": "statement" }, { "name": "run_qubit_spectroscopy", "type": "function" }, { "name": "run_rabi_pulse_length", "type": "function" }, { "name": "run_resonator_spectroscopy", "type": "function" }, { "name": "run_t1", "type": "function" }, { "name": "__annotations__", "type": "statement" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
import pathlib import numpy as np #import matplotlib.pyplot as plt import utils import yaml import fitting from qibolab import Platform # TODO: Have a look in the documentation of ``MeasurementControl`` #from quantify_core.measurement import MeasurementControl from quantify_core.measurement.control import Gettable, Settable from quantify_core.data.handling import set_datadir from scipy.signal import savgol_filter from qibolab.pulses import Pulse, ReadoutPulse from qibolab.circuit import PulseSequence from qibolab.pulse_shapes import Rectangular, Gaussian # TODO: Check why this set_datadir is needed #set_datadir(pathlib.Path("data") / "quantify") set_datadir(pathlib.Path(__file__).parent / "data" / "quantify") class Calibration(): def __init__(self, platform: Platform): self.platform = platform self.mc, self.pl, self.ins = utils.create_measurement_control('Calibration') def load_settings(self): # Load diagnostics settings with open("calibration.yml", "r") as file: return yaml.safe_load(file) def run_resonator_spectroscopy(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['resonator_spectroscopy'] lowres_width = ds['lowres_width'] lowres_step = ds['lowres_step'] highres_width = ds['highres_width'] highres_step = ds['highres_step'] precision_width = ds['precision_width'] precision_step = ds['precision_step'] #Fast Sweep scanrange = utils.variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step) mc.settables(platform.LO_qrm.device.frequency) mc.setpoints(scanrange + platform.LO_qrm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() platform.LO_qcm.off() dataset = mc.run("Resonator Spectroscopy Fast", soft_avg=1) platform.stop() platform.LO_qrm.set_frequency(dataset['x0'].values[dataset['y0'].argmax().values]) avg_min_voltage = np.mean(dataset['y0'].values[:(lowres_width//lowres_step)]) * 1e6 # Precision Sweep scanrange = np.arange(-precision_width, precision_width, precision_step) mc.settables(platform.LO_qrm.device.frequency) mc.setpoints(scanrange + platform.LO_qrm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() platform.LO_qcm.off() dataset = mc.run("Resonator Spectroscopy Precision", soft_avg=software_averages) platform.stop() # Fitting smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2) # resonator_freq = dataset['x0'].values[smooth_dataset.argmax()] + ro_pulse.frequency max_ro_voltage = smooth_dataset.max() * 1e6 f0, BW, Q = fitting.lorentzian_fit("last", max, "Resonator_spectroscopy") resonator_freq = (f0*1e9 + ro_pulse.frequency) print(f"\nResonator Frequency = {resonator_freq}") return resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset def run_qubit_spectroscopy(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['qubit_spectroscopy'] fast_start = ds['fast_start'] fast_end = ds['fast_end'] fast_step = ds['fast_step'] precision_start = ds['precision_start'] precision_end = ds['precision_end'] precision_step = ds['precision_step'] # Fast Sweep fast_sweep_scan_range = np.arange(fast_start, fast_end, fast_step) mc.settables(platform.LO_qcm.device.frequency) mc.setpoints(fast_sweep_scan_range + platform.LO_qcm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run("Qubit Spectroscopy Fast", soft_avg=1) platform.stop() # Precision Sweep platform.software_averages = 1 precision_sweep_scan_range = np.arange(precision_start, precision_end, precision_step) mc.settables(platform.LO_qcm.device.frequency) mc.setpoints(precision_sweep_scan_range + platform.LO_qcm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run("Qubit Spectroscopy Precision", soft_avg=software_averages) platform.stop() # Fitting smooth_dataset = savgol_filter(dataset['y0'].values, 11, 2) qubit_freq = dataset['x0'].values[smooth_dataset.argmin()] - qc_pulse.frequency min_ro_voltage = smooth_dataset.min() * 1e6 print(f"\nQubit Frequency = {qubit_freq}") utils.plot(smooth_dataset, dataset, "Qubit_Spectroscopy", 1) print("Qubit freq ontained from MC results: ", qubit_freq) f0, BW, Q = fitting.lorentzian_fit("last", min, "Qubit_Spectroscopy") qubit_freq = (f0*1e9 - qc_pulse.frequency) print("Qubit freq ontained from fitting: ", qubit_freq) return qubit_freq, min_ro_voltage, smooth_dataset, dataset def run_rabi_pulse_length(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pulse) sequence.add(ro_pulse) ds = self.
[ "platform", "mc", "pl", "load_settings", "ins", "auto_calibrate_plaform", "callibrate_qubit_states", "run_qubit_spectroscopy", "run_rabi_pulse_length", "run_resonator_spectroscopy", "run_t1" ]
Spectroscopy Fast", soft_avg=1) platform.stop() # Precision Sweep platform.software_averages = 1 precision_sweep_scan_range = np.arange(precision_start, precision_end, precision_step) mc.settables(platform.LO_qcm.device.frequency) mc.setpoints(precision_sweep_scan_range + platform.LO_qcm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run("Qubit Spectroscopy Precision", soft_avg=software_averages) platform.stop() # Fitting smooth_dataset = savgol_filter(dataset['y0'].values, 11, 2) qubit_freq = dataset['x0'].values[smooth_dataset.argmin()] - qc_pulse.frequency min_ro_voltage = smooth_dataset.min() * 1e6 print(f"\nQubit Frequency = {qubit_freq}") utils.plot(smooth_dataset, dataset, "Qubit_Spectroscopy", 1) print("Qubit freq ontained from MC results: ", qubit_freq) f0, BW, Q = fitting.lorentzian_fit("last", min, "Qubit_Spectroscopy") qubit_freq = (f0*1e9 - qc_pulse.frequency) print("Qubit freq ontained from fitting: ", qubit_freq) return qubit_freq, min_ro_voltage, smooth_dataset, dataset def run_rabi_pulse_length(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pulse) sequence.add(ro_pulse) ds = self.
5,507
7,825
223
8,038
qiboteam__qibolab
e4b0e8e6dd612e696a161da9972f4bb9b6bf8cd0
src/qibolab/calibration/calibration.py
inproject
rabi_fit
true
function
12
17
false
true
[ "t1_fit", "lorentzian_fit", "rabi", "rabi_fit", "ramsey_fit", "BaseAnalysis", "curve_fit", "data_post", "exp", "ramsey", "resonator_peak", "set_datadir" ]
[ { "name": "BaseAnalysis", "type": "module" }, { "name": "curve_fit", "type": "module" }, { "name": "data_post", "type": "function" }, { "name": "exp", "type": "function" }, { "name": "lmfit", "type": "module" }, { "name": "lorentzian_fit", "type": "function" }, { "name": "np", "type": "module" }, { "name": "os", "type": "module" }, { "name": "pathlib", "type": "module" }, { "name": "plt", "type": "module" }, { "name": "rabi", "type": "function" }, { "name": "rabi_fit", "type": "function" }, { "name": "ramsey", "type": "function" }, { "name": "ramsey_fit", "type": "function" }, { "name": "resonator_peak", "type": "function" }, { "name": "set_datadir", "type": "module" }, { "name": "t1_fit", "type": "function" }, { "name": "__doc__", "type": "instance" }, { "name": "__file__", "type": "instance" }, { "name": "__name__", "type": "instance" }, { "name": "__package__", "type": "instance" } ]
import pathlib import numpy as np #import matplotlib.pyplot as plt import utils import yaml import fitting from qibolab import Platform # TODO: Have a look in the documentation of ``MeasurementControl`` #from quantify_core.measurement import MeasurementControl from quantify_core.measurement.control import Gettable, Settable from quantify_core.data.handling import set_datadir from scipy.signal import savgol_filter from qibolab.pulses import Pulse, ReadoutPulse from qibolab.circuit import PulseSequence from qibolab.pulse_shapes import Rectangular, Gaussian # TODO: Check why this set_datadir is needed #set_datadir(pathlib.Path("data") / "quantify") set_datadir(pathlib.Path(__file__).parent / "data" / "quantify") class Calibration(): def __init__(self, platform: Platform): self.platform = platform self.mc, self.pl, self.ins = utils.create_measurement_control('Calibration') def load_settings(self): # Load diagnostics settings with open("calibration.yml", "r") as file: return yaml.safe_load(file) def run_resonator_spectroscopy(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['resonator_spectroscopy'] lowres_width = ds['lowres_width'] lowres_step = ds['lowres_step'] highres_width = ds['highres_width'] highres_step = ds['highres_step'] precision_width = ds['precision_width'] precision_step = ds['precision_step'] #Fast Sweep scanrange = utils.variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step) mc.settables(platform.LO_qrm.device.frequency) mc.setpoints(scanrange + platform.LO_qrm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() platform.LO_qcm.off() dataset = mc.run("Resonator Spectroscopy Fast", soft_avg=1) platform.stop() platform.LO_qrm.set_frequency(dataset['x0'].values[dataset['y0'].argmax().values]) avg_min_voltage = np.mean(dataset['y0'].values[:(lowres_width//lowres_step)]) * 1e6 # Precision Sweep scanrange = np.arange(-precision_width, precision_width, precision_step) mc.settables(platform.LO_qrm.device.frequency) mc.setpoints(scanrange + platform.LO_qrm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() platform.LO_qcm.off() dataset = mc.run("Resonator Spectroscopy Precision", soft_avg=software_averages) platform.stop() # Fitting smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2) # resonator_freq = dataset['x0'].values[smooth_dataset.argmax()] + ro_pulse.frequency max_ro_voltage = smooth_dataset.max() * 1e6 f0, BW, Q = fitting.lorentzian_fit("last", max, "Resonator_spectroscopy") resonator_freq = (f0*1e9 + ro_pulse.frequency) print(f"\nResonator Frequency = {resonator_freq}") return resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset def run_qubit_spectroscopy(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['qubit_spectroscopy'] fast_start = ds['fast_start'] fast_end = ds['fast_end'] fast_step = ds['fast_step'] precision_start = ds['precision_start'] precision_end = ds['precision_end'] precision_step = ds['precision_step'] # Fast Sweep fast_sweep_scan_range = np.arange(fast_start, fast_end, fast_step) mc.settables(platform.LO_qcm.device.frequency) mc.setpoints(fast_sweep_scan_range + platform.LO_qcm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run("Qubit Spectroscopy Fast", soft_avg=1) platform.stop() # Precision Sweep platform.software_averages = 1 precision_sweep_scan_range = np.arange(precision_start, precision_end, precision_step) mc.settables(platform.LO_qcm.device.frequency) mc.setpoints(precision_sweep_scan_range + platform.LO_qcm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run("Qubit Spectroscopy Precision", soft_avg=software_averages) platform.stop() # Fitting smooth_dataset = savgol_filter(dataset['y0'].values, 11, 2) qubit_freq = dataset['x0'].values[smooth_dataset.argmin()] - qc_pulse.frequency min_ro_voltage = smooth_dataset.min() * 1e6 print(f"\nQubit Frequency = {qubit_freq}") utils.plot(smooth_dataset, dataset, "Qubit_Spectroscopy", 1) print("Qubit freq ontained from MC results: ", qubit_freq) f0, BW, Q = fitting.lorentzian_fit("last", min, "Qubit_Spectroscopy") qubit_freq = (f0*1e9 - qc_pulse.frequency) print("Qubit freq ontained from fitting: ", qubit_freq) return qubit_freq, min_ro_voltage, smooth_dataset, dataset def run_rabi_pulse_length(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['rabi_pulse_length'] pulse_duration_start = ds['pulse_duration_start'] pulse_duration_end = ds['pulse_duration_end'] pulse_duration_step = ds['pulse_duration_step'] mc.settables(Settable(QCPulseLengthParameter(ro_pulse, qc_pulse))) mc.setpoints(np.arange(pulse_duration_start, pulse_duration_end, pulse_duration_step)) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run('Rabi Pulse Length', soft_avg = software_averages) platform.stop() # Fitting pi_pulse_amplitude = qc_pulse.amplitude smooth_dataset, pi_pulse_duration, rabi_oscillations_pi_pulse_min_voltage, t1 = fitting.
[ "t1_fit", "lorentzian_fit", "rabi", "rabi_fit", "ramsey_fit", "BaseAnalysis", "curve_fit", "data_post", "exp", "ramsey", "resonator_peak", "set_datadir" ]
th_dataset, dataset, "Qubit_Spectroscopy", 1) print("Qubit freq ontained from MC results: ", qubit_freq) f0, BW, Q = fitting.lorentzian_fit("last", min, "Qubit_Spectroscopy") qubit_freq = (f0*1e9 - qc_pulse.frequency) print("Qubit freq ontained from fitting: ", qubit_freq) return qubit_freq, min_ro_voltage, smooth_dataset, dataset def run_rabi_pulse_length(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['rabi_pulse_length'] pulse_duration_start = ds['pulse_duration_start'] pulse_duration_end = ds['pulse_duration_end'] pulse_duration_step = ds['pulse_duration_step'] mc.settables(Settable(QCPulseLengthParameter(ro_pulse, qc_pulse))) mc.setpoints(np.arange(pulse_duration_start, pulse_duration_end, pulse_duration_step)) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run('Rabi Pulse Length', soft_avg = software_averages) platform.stop() # Fitting pi_pulse_amplitude = qc_pulse.amplitude smooth_dataset, pi_pulse_duration, rabi_oscillations_pi_pulse_min_voltage, t1 = fitting.
5,509
7,828
223
9,446
qiboteam__qibolab
e4b0e8e6dd612e696a161da9972f4bb9b6bf8cd0
src/qibolab/calibration/calibration.py
inproject
add
true
function
8
8
false
false
[ "add", "pulses", "phase", "qcm_pulses", "qrm_pulses", "add_measurement", "add_u3", "time", "__init__", "__annotations__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "add", "type": "function" }, { "name": "add_measurement", "type": "function" }, { "name": "add_u3", "type": "function" }, { "name": "phase", "type": "statement" }, { "name": "pulses", "type": "statement" }, { "name": "qcm_pulses", "type": "statement" }, { "name": "qrm_pulses", "type": "statement" }, { "name": "time", "type": "statement" }, { "name": "__annotations__", "type": "statement" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
import pathlib import numpy as np #import matplotlib.pyplot as plt import utils import yaml import fitting from qibolab import Platform # TODO: Have a look in the documentation of ``MeasurementControl`` #from quantify_core.measurement import MeasurementControl from quantify_core.measurement.control import Gettable, Settable from quantify_core.data.handling import set_datadir from scipy.signal import savgol_filter from qibolab.pulses import Pulse, ReadoutPulse from qibolab.circuit import PulseSequence from qibolab.pulse_shapes import Rectangular, Gaussian # TODO: Check why this set_datadir is needed #set_datadir(pathlib.Path("data") / "quantify") set_datadir(pathlib.Path(__file__).parent / "data" / "quantify") class Calibration(): def __init__(self, platform: Platform): self.platform = platform self.mc, self.pl, self.ins = utils.create_measurement_control('Calibration') def load_settings(self): # Load diagnostics settings with open("calibration.yml", "r") as file: return yaml.safe_load(file) def run_resonator_spectroscopy(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['resonator_spectroscopy'] lowres_width = ds['lowres_width'] lowres_step = ds['lowres_step'] highres_width = ds['highres_width'] highres_step = ds['highres_step'] precision_width = ds['precision_width'] precision_step = ds['precision_step'] #Fast Sweep scanrange = utils.variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step) mc.settables(platform.LO_qrm.device.frequency) mc.setpoints(scanrange + platform.LO_qrm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() platform.LO_qcm.off() dataset = mc.run("Resonator Spectroscopy Fast", soft_avg=1) platform.stop() platform.LO_qrm.set_frequency(dataset['x0'].values[dataset['y0'].argmax().values]) avg_min_voltage = np.mean(dataset['y0'].values[:(lowres_width//lowres_step)]) * 1e6 # Precision Sweep scanrange = np.arange(-precision_width, precision_width, precision_step) mc.settables(platform.LO_qrm.device.frequency) mc.setpoints(scanrange + platform.LO_qrm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() platform.LO_qcm.off() dataset = mc.run("Resonator Spectroscopy Precision", soft_avg=software_averages) platform.stop() # Fitting smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2) # resonator_freq = dataset['x0'].values[smooth_dataset.argmax()] + ro_pulse.frequency max_ro_voltage = smooth_dataset.max() * 1e6 f0, BW, Q = fitting.lorentzian_fit("last", max, "Resonator_spectroscopy") resonator_freq = (f0*1e9 + ro_pulse.frequency) print(f"\nResonator Frequency = {resonator_freq}") return resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset def run_qubit_spectroscopy(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['qubit_spectroscopy'] fast_start = ds['fast_start'] fast_end = ds['fast_end'] fast_step = ds['fast_step'] precision_start = ds['precision_start'] precision_end = ds['precision_end'] precision_step = ds['precision_step'] # Fast Sweep fast_sweep_scan_range = np.arange(fast_start, fast_end, fast_step) mc.settables(platform.LO_qcm.device.frequency) mc.setpoints(fast_sweep_scan_range + platform.LO_qcm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run("Qubit Spectroscopy Fast", soft_avg=1) platform.stop() # Precision Sweep platform.software_averages = 1 precision_sweep_scan_range = np.arange(precision_start, precision_end, precision_step) mc.settables(platform.LO_qcm.device.frequency) mc.setpoints(precision_sweep_scan_range + platform.LO_qcm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run("Qubit Spectroscopy Precision", soft_avg=software_averages) platform.stop() # Fitting smooth_dataset = savgol_filter(dataset['y0'].values, 11, 2) qubit_freq = dataset['x0'].values[smooth_dataset.argmin()] - qc_pulse.frequency min_ro_voltage = smooth_dataset.min() * 1e6 print(f"\nQubit Frequency = {qubit_freq}") utils.plot(smooth_dataset, dataset, "Qubit_Spectroscopy", 1) print("Qubit freq ontained from MC results: ", qubit_freq) f0, BW, Q = fitting.lorentzian_fit("last", min, "Qubit_Spectroscopy") qubit_freq = (f0*1e9 - qc_pulse.frequency) print("Qubit freq ontained from fitting: ", qubit_freq) return qubit_freq, min_ro_voltage, smooth_dataset, dataset def run_rabi_pulse_length(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['rabi_pulse_length'] pulse_duration_start = ds['pulse_duration_start'] pulse_duration_end = ds['pulse_duration_end'] pulse_duration_step = ds['pulse_duration_step'] mc.settables(Settable(QCPulseLengthParameter(ro_pulse, qc_pulse))) mc.setpoints(np.arange(pulse_duration_start, pulse_duration_end, pulse_duration_step)) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run('Rabi Pulse Length', soft_avg = software_averages) platform.stop() # Fitting pi_pulse_amplitude = qc_pulse.amplitude smooth_dataset, pi_pulse_duration, rabi_oscillations_pi_pulse_min_voltage, t1 = fitting.rabi_fit(dataset) pi_pulse_gain = platform.qcm.gain utils.plot(smooth_dataset, dataset, "Rabi_pulse_length", 1) print(f"\nPi pulse duration = {pi_pulse_duration}") print(f"\nPi pulse amplitude = {pi_pulse_amplitude}") #Check if the returned value from fitting is correct. print(f"\nPi pulse gain = {pi_pulse_gain}") #Needed? It is equal to the QCM gain when performing a Rabi. print(f"\nrabi oscillation min voltage = {rabi_oscillations_pi_pulse_min_voltage}") print(f"\nT1 = {t1}") return dataset, pi_pulse_duration, pi_pulse_amplitude, pi_pulse_gain, rabi_oscillations_pi_pulse_min_voltage, t1 # T1: RX(pi) - wait t(rotates z) - readout def run_t1(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] start = 0 frequency = ps['pi_pulse_frequency'] amplitude = ps['pi_pulse_amplitude'] duration = ps['pi_pulse_duration'] phase = 0 shape = eval(ps['pi_pulse_shape']) qc_pi_pulse = Pulse(start, duration, amplitude, frequency, phase, shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.
[ "add", "pulses", "phase", "qcm_pulses", "qrm_pulses", "add_measurement", "add_u3", "time" ]
le(QCPulseLengthParameter(ro_pulse, qc_pulse))) mc.setpoints(np.arange(pulse_duration_start, pulse_duration_end, pulse_duration_step)) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run('Rabi Pulse Length', soft_avg = software_averages) platform.stop() # Fitting pi_pulse_amplitude = qc_pulse.amplitude smooth_dataset, pi_pulse_duration, rabi_oscillations_pi_pulse_min_voltage, t1 = fitting.rabi_fit(dataset) pi_pulse_gain = platform.qcm.gain utils.plot(smooth_dataset, dataset, "Rabi_pulse_length", 1) print(f"\nPi pulse duration = {pi_pulse_duration}") print(f"\nPi pulse amplitude = {pi_pulse_amplitude}") #Check if the returned value from fitting is correct. print(f"\nPi pulse gain = {pi_pulse_gain}") #Needed? It is equal to the QCM gain when performing a Rabi. print(f"\nrabi oscillation min voltage = {rabi_oscillations_pi_pulse_min_voltage}") print(f"\nT1 = {t1}") return dataset, pi_pulse_duration, pi_pulse_amplitude, pi_pulse_gain, rabi_oscillations_pi_pulse_min_voltage, t1 # T1: RX(pi) - wait t(rotates z) - readout def run_t1(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] start = 0 frequency = ps['pi_pulse_frequency'] amplitude = ps['pi_pulse_amplitude'] duration = ps['pi_pulse_duration'] phase = 0 shape = eval(ps['pi_pulse_shape']) qc_pi_pulse = Pulse(start, duration, amplitude, frequency, phase, shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.
5,512
7,832
223
10,331
qiboteam__qibolab
e4b0e8e6dd612e696a161da9972f4bb9b6bf8cd0
src/qibolab/calibration/calibration.py
inproject
t1_fit
true
function
12
17
false
true
[ "lorentzian_fit", "rabi_fit", "t1_fit", "ramsey_fit", "curve_fit", "BaseAnalysis", "data_post", "exp", "rabi", "ramsey", "resonator_peak", "set_datadir" ]
[ { "name": "BaseAnalysis", "type": "module" }, { "name": "curve_fit", "type": "module" }, { "name": "data_post", "type": "function" }, { "name": "exp", "type": "function" }, { "name": "lmfit", "type": "module" }, { "name": "lorentzian_fit", "type": "function" }, { "name": "np", "type": "module" }, { "name": "os", "type": "module" }, { "name": "pathlib", "type": "module" }, { "name": "plt", "type": "module" }, { "name": "rabi", "type": "function" }, { "name": "rabi_fit", "type": "function" }, { "name": "ramsey", "type": "function" }, { "name": "ramsey_fit", "type": "function" }, { "name": "resonator_peak", "type": "function" }, { "name": "set_datadir", "type": "module" }, { "name": "t1_fit", "type": "function" }, { "name": "__doc__", "type": "instance" }, { "name": "__file__", "type": "instance" }, { "name": "__name__", "type": "instance" }, { "name": "__package__", "type": "instance" } ]
import pathlib import numpy as np #import matplotlib.pyplot as plt import utils import yaml import fitting from qibolab import Platform # TODO: Have a look in the documentation of ``MeasurementControl`` #from quantify_core.measurement import MeasurementControl from quantify_core.measurement.control import Gettable, Settable from quantify_core.data.handling import set_datadir from scipy.signal import savgol_filter from qibolab.pulses import Pulse, ReadoutPulse from qibolab.circuit import PulseSequence from qibolab.pulse_shapes import Rectangular, Gaussian # TODO: Check why this set_datadir is needed #set_datadir(pathlib.Path("data") / "quantify") set_datadir(pathlib.Path(__file__).parent / "data" / "quantify") class Calibration(): def __init__(self, platform: Platform): self.platform = platform self.mc, self.pl, self.ins = utils.create_measurement_control('Calibration') def load_settings(self): # Load diagnostics settings with open("calibration.yml", "r") as file: return yaml.safe_load(file) def run_resonator_spectroscopy(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['resonator_spectroscopy'] lowres_width = ds['lowres_width'] lowres_step = ds['lowres_step'] highres_width = ds['highres_width'] highres_step = ds['highres_step'] precision_width = ds['precision_width'] precision_step = ds['precision_step'] #Fast Sweep scanrange = utils.variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step) mc.settables(platform.LO_qrm.device.frequency) mc.setpoints(scanrange + platform.LO_qrm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() platform.LO_qcm.off() dataset = mc.run("Resonator Spectroscopy Fast", soft_avg=1) platform.stop() platform.LO_qrm.set_frequency(dataset['x0'].values[dataset['y0'].argmax().values]) avg_min_voltage = np.mean(dataset['y0'].values[:(lowres_width//lowres_step)]) * 1e6 # Precision Sweep scanrange = np.arange(-precision_width, precision_width, precision_step) mc.settables(platform.LO_qrm.device.frequency) mc.setpoints(scanrange + platform.LO_qrm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() platform.LO_qcm.off() dataset = mc.run("Resonator Spectroscopy Precision", soft_avg=software_averages) platform.stop() # Fitting smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2) # resonator_freq = dataset['x0'].values[smooth_dataset.argmax()] + ro_pulse.frequency max_ro_voltage = smooth_dataset.max() * 1e6 f0, BW, Q = fitting.lorentzian_fit("last", max, "Resonator_spectroscopy") resonator_freq = (f0*1e9 + ro_pulse.frequency) print(f"\nResonator Frequency = {resonator_freq}") return resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset def run_qubit_spectroscopy(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['qubit_spectroscopy'] fast_start = ds['fast_start'] fast_end = ds['fast_end'] fast_step = ds['fast_step'] precision_start = ds['precision_start'] precision_end = ds['precision_end'] precision_step = ds['precision_step'] # Fast Sweep fast_sweep_scan_range = np.arange(fast_start, fast_end, fast_step) mc.settables(platform.LO_qcm.device.frequency) mc.setpoints(fast_sweep_scan_range + platform.LO_qcm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run("Qubit Spectroscopy Fast", soft_avg=1) platform.stop() # Precision Sweep platform.software_averages = 1 precision_sweep_scan_range = np.arange(precision_start, precision_end, precision_step) mc.settables(platform.LO_qcm.device.frequency) mc.setpoints(precision_sweep_scan_range + platform.LO_qcm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run("Qubit Spectroscopy Precision", soft_avg=software_averages) platform.stop() # Fitting smooth_dataset = savgol_filter(dataset['y0'].values, 11, 2) qubit_freq = dataset['x0'].values[smooth_dataset.argmin()] - qc_pulse.frequency min_ro_voltage = smooth_dataset.min() * 1e6 print(f"\nQubit Frequency = {qubit_freq}") utils.plot(smooth_dataset, dataset, "Qubit_Spectroscopy", 1) print("Qubit freq ontained from MC results: ", qubit_freq) f0, BW, Q = fitting.lorentzian_fit("last", min, "Qubit_Spectroscopy") qubit_freq = (f0*1e9 - qc_pulse.frequency) print("Qubit freq ontained from fitting: ", qubit_freq) return qubit_freq, min_ro_voltage, smooth_dataset, dataset def run_rabi_pulse_length(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['rabi_pulse_length'] pulse_duration_start = ds['pulse_duration_start'] pulse_duration_end = ds['pulse_duration_end'] pulse_duration_step = ds['pulse_duration_step'] mc.settables(Settable(QCPulseLengthParameter(ro_pulse, qc_pulse))) mc.setpoints(np.arange(pulse_duration_start, pulse_duration_end, pulse_duration_step)) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run('Rabi Pulse Length', soft_avg = software_averages) platform.stop() # Fitting pi_pulse_amplitude = qc_pulse.amplitude smooth_dataset, pi_pulse_duration, rabi_oscillations_pi_pulse_min_voltage, t1 = fitting.rabi_fit(dataset) pi_pulse_gain = platform.qcm.gain utils.plot(smooth_dataset, dataset, "Rabi_pulse_length", 1) print(f"\nPi pulse duration = {pi_pulse_duration}") print(f"\nPi pulse amplitude = {pi_pulse_amplitude}") #Check if the returned value from fitting is correct. print(f"\nPi pulse gain = {pi_pulse_gain}") #Needed? It is equal to the QCM gain when performing a Rabi. print(f"\nrabi oscillation min voltage = {rabi_oscillations_pi_pulse_min_voltage}") print(f"\nT1 = {t1}") return dataset, pi_pulse_duration, pi_pulse_amplitude, pi_pulse_gain, rabi_oscillations_pi_pulse_min_voltage, t1 # T1: RX(pi) - wait t(rotates z) - readout def run_t1(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] start = 0 frequency = ps['pi_pulse_frequency'] amplitude = ps['pi_pulse_amplitude'] duration = ps['pi_pulse_duration'] phase = 0 shape = eval(ps['pi_pulse_shape']) qc_pi_pulse = Pulse(start, duration, amplitude, frequency, phase, shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pi_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['t1'] delay_before_readout_start = ds['delay_before_readout_start'] delay_before_readout_end = ds['delay_before_readout_end'] delay_before_readout_step = ds['delay_before_readout_step'] mc.settables(Settable(T1WaitParameter(ro_pulse, qc_pi_pulse))) mc.setpoints(np.arange(delay_before_readout_start, delay_before_readout_end, delay_before_readout_step)) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run('T1', soft_avg = software_averages) platform.stop() # Fitting smooth_dataset, t1 = fitting.
[ "lorentzian_fit", "rabi_fit", "t1_fit", "ramsey_fit", "curve_fit", "BaseAnalysis", "data_post", "exp", "rabi", "ramsey", "resonator_peak", "set_datadir" ]
qual to the QCM gain when performing a Rabi. print(f"\nrabi oscillation min voltage = {rabi_oscillations_pi_pulse_min_voltage}") print(f"\nT1 = {t1}") return dataset, pi_pulse_duration, pi_pulse_amplitude, pi_pulse_gain, rabi_oscillations_pi_pulse_min_voltage, t1 # T1: RX(pi) - wait t(rotates z) - readout def run_t1(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] start = 0 frequency = ps['pi_pulse_frequency'] amplitude = ps['pi_pulse_amplitude'] duration = ps['pi_pulse_duration'] phase = 0 shape = eval(ps['pi_pulse_shape']) qc_pi_pulse = Pulse(start, duration, amplitude, frequency, phase, shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pi_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['t1'] delay_before_readout_start = ds['delay_before_readout_start'] delay_before_readout_end = ds['delay_before_readout_end'] delay_before_readout_step = ds['delay_before_readout_step'] mc.settables(Settable(T1WaitParameter(ro_pulse, qc_pi_pulse))) mc.setpoints(np.arange(delay_before_readout_start, delay_before_readout_end, delay_before_readout_step)) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run('T1', soft_avg = software_averages) platform.stop() # Fitting smooth_dataset, t1 = fitting.
5,516
7,834
223
11,252
qiboteam__qibolab
e4b0e8e6dd612e696a161da9972f4bb9b6bf8cd0
src/qibolab/calibration/calibration.py
inproject
add
true
function
8
8
false
false
[ "add", "pulses", "phase", "qcm_pulses", "qrm_pulses", "add_measurement", "add_u3", "time", "__init__", "__annotations__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "add", "type": "function" }, { "name": "add_measurement", "type": "function" }, { "name": "add_u3", "type": "function" }, { "name": "phase", "type": "statement" }, { "name": "pulses", "type": "statement" }, { "name": "qcm_pulses", "type": "statement" }, { "name": "qrm_pulses", "type": "statement" }, { "name": "time", "type": "statement" }, { "name": "__annotations__", "type": "statement" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
import pathlib import numpy as np #import matplotlib.pyplot as plt import utils import yaml import fitting from qibolab import Platform # TODO: Have a look in the documentation of ``MeasurementControl`` #from quantify_core.measurement import MeasurementControl from quantify_core.measurement.control import Gettable, Settable from quantify_core.data.handling import set_datadir from scipy.signal import savgol_filter from qibolab.pulses import Pulse, ReadoutPulse from qibolab.circuit import PulseSequence from qibolab.pulse_shapes import Rectangular, Gaussian # TODO: Check why this set_datadir is needed #set_datadir(pathlib.Path("data") / "quantify") set_datadir(pathlib.Path(__file__).parent / "data" / "quantify") class Calibration(): def __init__(self, platform: Platform): self.platform = platform self.mc, self.pl, self.ins = utils.create_measurement_control('Calibration') def load_settings(self): # Load diagnostics settings with open("calibration.yml", "r") as file: return yaml.safe_load(file) def run_resonator_spectroscopy(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['resonator_spectroscopy'] lowres_width = ds['lowres_width'] lowres_step = ds['lowres_step'] highres_width = ds['highres_width'] highres_step = ds['highres_step'] precision_width = ds['precision_width'] precision_step = ds['precision_step'] #Fast Sweep scanrange = utils.variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step) mc.settables(platform.LO_qrm.device.frequency) mc.setpoints(scanrange + platform.LO_qrm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() platform.LO_qcm.off() dataset = mc.run("Resonator Spectroscopy Fast", soft_avg=1) platform.stop() platform.LO_qrm.set_frequency(dataset['x0'].values[dataset['y0'].argmax().values]) avg_min_voltage = np.mean(dataset['y0'].values[:(lowres_width//lowres_step)]) * 1e6 # Precision Sweep scanrange = np.arange(-precision_width, precision_width, precision_step) mc.settables(platform.LO_qrm.device.frequency) mc.setpoints(scanrange + platform.LO_qrm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() platform.LO_qcm.off() dataset = mc.run("Resonator Spectroscopy Precision", soft_avg=software_averages) platform.stop() # Fitting smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2) # resonator_freq = dataset['x0'].values[smooth_dataset.argmax()] + ro_pulse.frequency max_ro_voltage = smooth_dataset.max() * 1e6 f0, BW, Q = fitting.lorentzian_fit("last", max, "Resonator_spectroscopy") resonator_freq = (f0*1e9 + ro_pulse.frequency) print(f"\nResonator Frequency = {resonator_freq}") return resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset def run_qubit_spectroscopy(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['qubit_spectroscopy'] fast_start = ds['fast_start'] fast_end = ds['fast_end'] fast_step = ds['fast_step'] precision_start = ds['precision_start'] precision_end = ds['precision_end'] precision_step = ds['precision_step'] # Fast Sweep fast_sweep_scan_range = np.arange(fast_start, fast_end, fast_step) mc.settables(platform.LO_qcm.device.frequency) mc.setpoints(fast_sweep_scan_range + platform.LO_qcm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run("Qubit Spectroscopy Fast", soft_avg=1) platform.stop() # Precision Sweep platform.software_averages = 1 precision_sweep_scan_range = np.arange(precision_start, precision_end, precision_step) mc.settables(platform.LO_qcm.device.frequency) mc.setpoints(precision_sweep_scan_range + platform.LO_qcm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run("Qubit Spectroscopy Precision", soft_avg=software_averages) platform.stop() # Fitting smooth_dataset = savgol_filter(dataset['y0'].values, 11, 2) qubit_freq = dataset['x0'].values[smooth_dataset.argmin()] - qc_pulse.frequency min_ro_voltage = smooth_dataset.min() * 1e6 print(f"\nQubit Frequency = {qubit_freq}") utils.plot(smooth_dataset, dataset, "Qubit_Spectroscopy", 1) print("Qubit freq ontained from MC results: ", qubit_freq) f0, BW, Q = fitting.lorentzian_fit("last", min, "Qubit_Spectroscopy") qubit_freq = (f0*1e9 - qc_pulse.frequency) print("Qubit freq ontained from fitting: ", qubit_freq) return qubit_freq, min_ro_voltage, smooth_dataset, dataset def run_rabi_pulse_length(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['rabi_pulse_length'] pulse_duration_start = ds['pulse_duration_start'] pulse_duration_end = ds['pulse_duration_end'] pulse_duration_step = ds['pulse_duration_step'] mc.settables(Settable(QCPulseLengthParameter(ro_pulse, qc_pulse))) mc.setpoints(np.arange(pulse_duration_start, pulse_duration_end, pulse_duration_step)) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run('Rabi Pulse Length', soft_avg = software_averages) platform.stop() # Fitting pi_pulse_amplitude = qc_pulse.amplitude smooth_dataset, pi_pulse_duration, rabi_oscillations_pi_pulse_min_voltage, t1 = fitting.rabi_fit(dataset) pi_pulse_gain = platform.qcm.gain utils.plot(smooth_dataset, dataset, "Rabi_pulse_length", 1) print(f"\nPi pulse duration = {pi_pulse_duration}") print(f"\nPi pulse amplitude = {pi_pulse_amplitude}") #Check if the returned value from fitting is correct. print(f"\nPi pulse gain = {pi_pulse_gain}") #Needed? It is equal to the QCM gain when performing a Rabi. print(f"\nrabi oscillation min voltage = {rabi_oscillations_pi_pulse_min_voltage}") print(f"\nT1 = {t1}") return dataset, pi_pulse_duration, pi_pulse_amplitude, pi_pulse_gain, rabi_oscillations_pi_pulse_min_voltage, t1 # T1: RX(pi) - wait t(rotates z) - readout def run_t1(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] start = 0 frequency = ps['pi_pulse_frequency'] amplitude = ps['pi_pulse_amplitude'] duration = ps['pi_pulse_duration'] phase = 0 shape = eval(ps['pi_pulse_shape']) qc_pi_pulse = Pulse(start, duration, amplitude, frequency, phase, shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pi_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['t1'] delay_before_readout_start = ds['delay_before_readout_start'] delay_before_readout_end = ds['delay_before_readout_end'] delay_before_readout_step = ds['delay_before_readout_step'] mc.settables(Settable(T1WaitParameter(ro_pulse, qc_pi_pulse))) mc.setpoints(np.arange(delay_before_readout_start, delay_before_readout_end, delay_before_readout_step)) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run('T1', soft_avg = software_averages) platform.stop() # Fitting smooth_dataset, t1 = fitting.t1_fit(dataset) utils.plot(smooth_dataset, dataset, "t1", 1) print(f'\nT1 = {t1}') return t1, smooth_dataset, dataset def callibrate_qubit_states(self): platform = self.platform platform.reload_settings() ps = platform.settings['settings'] niter=10 nshots=1 #create exc and gnd pulses start = 0 frequency = ps['pi_pulse_frequency'] amplitude = ps['pi_pulse_amplitude'] duration = ps['pi_pulse_duration'] phase = 0 shape = eval(ps['pi_pulse_shape']) qc_pi_pulse = Pulse(start, duration, amplitude, frequency, phase, shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) exc_sequence = PulseSequence() exc_sequence.
[ "add", "pulses", "phase", "qcm_pulses", "qrm_pulses", "add_measurement", "add_u3", "time" ]
e = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pi_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['t1'] delay_before_readout_start = ds['delay_before_readout_start'] delay_before_readout_end = ds['delay_before_readout_end'] delay_before_readout_step = ds['delay_before_readout_step'] mc.settables(Settable(T1WaitParameter(ro_pulse, qc_pi_pulse))) mc.setpoints(np.arange(delay_before_readout_start, delay_before_readout_end, delay_before_readout_step)) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run('T1', soft_avg = software_averages) platform.stop() # Fitting smooth_dataset, t1 = fitting.t1_fit(dataset) utils.plot(smooth_dataset, dataset, "t1", 1) print(f'\nT1 = {t1}') return t1, smooth_dataset, dataset def callibrate_qubit_states(self): platform = self.platform platform.reload_settings() ps = platform.settings['settings'] niter=10 nshots=1 #create exc and gnd pulses start = 0 frequency = ps['pi_pulse_frequency'] amplitude = ps['pi_pulse_amplitude'] duration = ps['pi_pulse_duration'] phase = 0 shape = eval(ps['pi_pulse_shape']) qc_pi_pulse = Pulse(start, duration, amplitude, frequency, phase, shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) exc_sequence = PulseSequence() exc_sequence.
5,518
7,835
223
11,391
qiboteam__qibolab
e4b0e8e6dd612e696a161da9972f4bb9b6bf8cd0
src/qibolab/calibration/calibration.py
inproject
add
true
function
8
8
false
false
[ "add", "pulses", "phase", "qcm_pulses", "qrm_pulses", "add_measurement", "add_u3", "time", "__init__", "__annotations__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "add", "type": "function" }, { "name": "add_measurement", "type": "function" }, { "name": "add_u3", "type": "function" }, { "name": "phase", "type": "statement" }, { "name": "pulses", "type": "statement" }, { "name": "qcm_pulses", "type": "statement" }, { "name": "qrm_pulses", "type": "statement" }, { "name": "time", "type": "statement" }, { "name": "__annotations__", "type": "statement" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
import pathlib import numpy as np #import matplotlib.pyplot as plt import utils import yaml import fitting from qibolab import Platform # TODO: Have a look in the documentation of ``MeasurementControl`` #from quantify_core.measurement import MeasurementControl from quantify_core.measurement.control import Gettable, Settable from quantify_core.data.handling import set_datadir from scipy.signal import savgol_filter from qibolab.pulses import Pulse, ReadoutPulse from qibolab.circuit import PulseSequence from qibolab.pulse_shapes import Rectangular, Gaussian # TODO: Check why this set_datadir is needed #set_datadir(pathlib.Path("data") / "quantify") set_datadir(pathlib.Path(__file__).parent / "data" / "quantify") class Calibration(): def __init__(self, platform: Platform): self.platform = platform self.mc, self.pl, self.ins = utils.create_measurement_control('Calibration') def load_settings(self): # Load diagnostics settings with open("calibration.yml", "r") as file: return yaml.safe_load(file) def run_resonator_spectroscopy(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['resonator_spectroscopy'] lowres_width = ds['lowres_width'] lowres_step = ds['lowres_step'] highres_width = ds['highres_width'] highres_step = ds['highres_step'] precision_width = ds['precision_width'] precision_step = ds['precision_step'] #Fast Sweep scanrange = utils.variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step) mc.settables(platform.LO_qrm.device.frequency) mc.setpoints(scanrange + platform.LO_qrm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() platform.LO_qcm.off() dataset = mc.run("Resonator Spectroscopy Fast", soft_avg=1) platform.stop() platform.LO_qrm.set_frequency(dataset['x0'].values[dataset['y0'].argmax().values]) avg_min_voltage = np.mean(dataset['y0'].values[:(lowres_width//lowres_step)]) * 1e6 # Precision Sweep scanrange = np.arange(-precision_width, precision_width, precision_step) mc.settables(platform.LO_qrm.device.frequency) mc.setpoints(scanrange + platform.LO_qrm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() platform.LO_qcm.off() dataset = mc.run("Resonator Spectroscopy Precision", soft_avg=software_averages) platform.stop() # Fitting smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2) # resonator_freq = dataset['x0'].values[smooth_dataset.argmax()] + ro_pulse.frequency max_ro_voltage = smooth_dataset.max() * 1e6 f0, BW, Q = fitting.lorentzian_fit("last", max, "Resonator_spectroscopy") resonator_freq = (f0*1e9 + ro_pulse.frequency) print(f"\nResonator Frequency = {resonator_freq}") return resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset def run_qubit_spectroscopy(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['qubit_spectroscopy'] fast_start = ds['fast_start'] fast_end = ds['fast_end'] fast_step = ds['fast_step'] precision_start = ds['precision_start'] precision_end = ds['precision_end'] precision_step = ds['precision_step'] # Fast Sweep fast_sweep_scan_range = np.arange(fast_start, fast_end, fast_step) mc.settables(platform.LO_qcm.device.frequency) mc.setpoints(fast_sweep_scan_range + platform.LO_qcm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run("Qubit Spectroscopy Fast", soft_avg=1) platform.stop() # Precision Sweep platform.software_averages = 1 precision_sweep_scan_range = np.arange(precision_start, precision_end, precision_step) mc.settables(platform.LO_qcm.device.frequency) mc.setpoints(precision_sweep_scan_range + platform.LO_qcm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run("Qubit Spectroscopy Precision", soft_avg=software_averages) platform.stop() # Fitting smooth_dataset = savgol_filter(dataset['y0'].values, 11, 2) qubit_freq = dataset['x0'].values[smooth_dataset.argmin()] - qc_pulse.frequency min_ro_voltage = smooth_dataset.min() * 1e6 print(f"\nQubit Frequency = {qubit_freq}") utils.plot(smooth_dataset, dataset, "Qubit_Spectroscopy", 1) print("Qubit freq ontained from MC results: ", qubit_freq) f0, BW, Q = fitting.lorentzian_fit("last", min, "Qubit_Spectroscopy") qubit_freq = (f0*1e9 - qc_pulse.frequency) print("Qubit freq ontained from fitting: ", qubit_freq) return qubit_freq, min_ro_voltage, smooth_dataset, dataset def run_rabi_pulse_length(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['rabi_pulse_length'] pulse_duration_start = ds['pulse_duration_start'] pulse_duration_end = ds['pulse_duration_end'] pulse_duration_step = ds['pulse_duration_step'] mc.settables(Settable(QCPulseLengthParameter(ro_pulse, qc_pulse))) mc.setpoints(np.arange(pulse_duration_start, pulse_duration_end, pulse_duration_step)) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run('Rabi Pulse Length', soft_avg = software_averages) platform.stop() # Fitting pi_pulse_amplitude = qc_pulse.amplitude smooth_dataset, pi_pulse_duration, rabi_oscillations_pi_pulse_min_voltage, t1 = fitting.rabi_fit(dataset) pi_pulse_gain = platform.qcm.gain utils.plot(smooth_dataset, dataset, "Rabi_pulse_length", 1) print(f"\nPi pulse duration = {pi_pulse_duration}") print(f"\nPi pulse amplitude = {pi_pulse_amplitude}") #Check if the returned value from fitting is correct. print(f"\nPi pulse gain = {pi_pulse_gain}") #Needed? It is equal to the QCM gain when performing a Rabi. print(f"\nrabi oscillation min voltage = {rabi_oscillations_pi_pulse_min_voltage}") print(f"\nT1 = {t1}") return dataset, pi_pulse_duration, pi_pulse_amplitude, pi_pulse_gain, rabi_oscillations_pi_pulse_min_voltage, t1 # T1: RX(pi) - wait t(rotates z) - readout def run_t1(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] start = 0 frequency = ps['pi_pulse_frequency'] amplitude = ps['pi_pulse_amplitude'] duration = ps['pi_pulse_duration'] phase = 0 shape = eval(ps['pi_pulse_shape']) qc_pi_pulse = Pulse(start, duration, amplitude, frequency, phase, shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pi_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['t1'] delay_before_readout_start = ds['delay_before_readout_start'] delay_before_readout_end = ds['delay_before_readout_end'] delay_before_readout_step = ds['delay_before_readout_step'] mc.settables(Settable(T1WaitParameter(ro_pulse, qc_pi_pulse))) mc.setpoints(np.arange(delay_before_readout_start, delay_before_readout_end, delay_before_readout_step)) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run('T1', soft_avg = software_averages) platform.stop() # Fitting smooth_dataset, t1 = fitting.t1_fit(dataset) utils.plot(smooth_dataset, dataset, "t1", 1) print(f'\nT1 = {t1}') return t1, smooth_dataset, dataset def callibrate_qubit_states(self): platform = self.platform platform.reload_settings() ps = platform.settings['settings'] niter=10 nshots=1 #create exc and gnd pulses start = 0 frequency = ps['pi_pulse_frequency'] amplitude = ps['pi_pulse_amplitude'] duration = ps['pi_pulse_duration'] phase = 0 shape = eval(ps['pi_pulse_shape']) qc_pi_pulse = Pulse(start, duration, amplitude, frequency, phase, shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) exc_sequence = PulseSequence() exc_sequence.add(qc_pi_pulse) gnd_sequence.add(ro_pulse) gnd_sequence = PulseSequence() #ro_pulse.start=0 gnd_sequence.
[ "add", "pulses", "phase", "qcm_pulses", "qrm_pulses", "add_measurement", "add_u3", "time" ]
sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['t1'] delay_before_readout_start = ds['delay_before_readout_start'] delay_before_readout_end = ds['delay_before_readout_end'] delay_before_readout_step = ds['delay_before_readout_step'] mc.settables(Settable(T1WaitParameter(ro_pulse, qc_pi_pulse))) mc.setpoints(np.arange(delay_before_readout_start, delay_before_readout_end, delay_before_readout_step)) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run('T1', soft_avg = software_averages) platform.stop() # Fitting smooth_dataset, t1 = fitting.t1_fit(dataset) utils.plot(smooth_dataset, dataset, "t1", 1) print(f'\nT1 = {t1}') return t1, smooth_dataset, dataset def callibrate_qubit_states(self): platform = self.platform platform.reload_settings() ps = platform.settings['settings'] niter=10 nshots=1 #create exc and gnd pulses start = 0 frequency = ps['pi_pulse_frequency'] amplitude = ps['pi_pulse_amplitude'] duration = ps['pi_pulse_duration'] phase = 0 shape = eval(ps['pi_pulse_shape']) qc_pi_pulse = Pulse(start, duration, amplitude, frequency, phase, shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) exc_sequence = PulseSequence() exc_sequence.add(qc_pi_pulse) gnd_sequence.add(ro_pulse) gnd_sequence = PulseSequence() #ro_pulse.start=0 gnd_sequence.
5,519
7,837
223
12,736
qiboteam__qibolab
e4b0e8e6dd612e696a161da9972f4bb9b6bf8cd0
src/qibolab/calibration/calibration.py
infile
run_resonator_spectroscopy
true
function
11
11
false
true
[ "platform", "mc", "pl", "load_settings", "ins", "__init__", "auto_calibrate_plaform", "callibrate_qubit_states", "run_qubit_spectroscopy", "run_rabi_pulse_length", "run_resonator_spectroscopy", "run_t1", "__annotations__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "auto_calibrate_plaform", "type": "function" }, { "name": "callibrate_qubit_states", "type": "function" }, { "name": "ins", "type": "statement" }, { "name": "load_settings", "type": "function" }, { "name": "mc", "type": "statement" }, { "name": "pl", "type": "statement" }, { "name": "platform", "type": "statement" }, { "name": "run_qubit_spectroscopy", "type": "function" }, { "name": "run_rabi_pulse_length", "type": "function" }, { "name": "run_resonator_spectroscopy", "type": "function" }, { "name": "run_t1", "type": "function" }, { "name": "__annotations__", "type": "statement" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
import pathlib import numpy as np #import matplotlib.pyplot as plt import utils import yaml import fitting from qibolab import Platform # TODO: Have a look in the documentation of ``MeasurementControl`` #from quantify_core.measurement import MeasurementControl from quantify_core.measurement.control import Gettable, Settable from quantify_core.data.handling import set_datadir from scipy.signal import savgol_filter from qibolab.pulses import Pulse, ReadoutPulse from qibolab.circuit import PulseSequence from qibolab.pulse_shapes import Rectangular, Gaussian # TODO: Check why this set_datadir is needed #set_datadir(pathlib.Path("data") / "quantify") set_datadir(pathlib.Path(__file__).parent / "data" / "quantify") class Calibration(): def __init__(self, platform: Platform): self.platform = platform self.mc, self.pl, self.ins = utils.create_measurement_control('Calibration') def load_settings(self): # Load diagnostics settings with open("calibration.yml", "r") as file: return yaml.safe_load(file) def run_resonator_spectroscopy(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['resonator_spectroscopy'] lowres_width = ds['lowres_width'] lowres_step = ds['lowres_step'] highres_width = ds['highres_width'] highres_step = ds['highres_step'] precision_width = ds['precision_width'] precision_step = ds['precision_step'] #Fast Sweep scanrange = utils.variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step) mc.settables(platform.LO_qrm.device.frequency) mc.setpoints(scanrange + platform.LO_qrm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() platform.LO_qcm.off() dataset = mc.run("Resonator Spectroscopy Fast", soft_avg=1) platform.stop() platform.LO_qrm.set_frequency(dataset['x0'].values[dataset['y0'].argmax().values]) avg_min_voltage = np.mean(dataset['y0'].values[:(lowres_width//lowres_step)]) * 1e6 # Precision Sweep scanrange = np.arange(-precision_width, precision_width, precision_step) mc.settables(platform.LO_qrm.device.frequency) mc.setpoints(scanrange + platform.LO_qrm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() platform.LO_qcm.off() dataset = mc.run("Resonator Spectroscopy Precision", soft_avg=software_averages) platform.stop() # Fitting smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2) # resonator_freq = dataset['x0'].values[smooth_dataset.argmax()] + ro_pulse.frequency max_ro_voltage = smooth_dataset.max() * 1e6 f0, BW, Q = fitting.lorentzian_fit("last", max, "Resonator_spectroscopy") resonator_freq = (f0*1e9 + ro_pulse.frequency) print(f"\nResonator Frequency = {resonator_freq}") return resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset def run_qubit_spectroscopy(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['qubit_spectroscopy'] fast_start = ds['fast_start'] fast_end = ds['fast_end'] fast_step = ds['fast_step'] precision_start = ds['precision_start'] precision_end = ds['precision_end'] precision_step = ds['precision_step'] # Fast Sweep fast_sweep_scan_range = np.arange(fast_start, fast_end, fast_step) mc.settables(platform.LO_qcm.device.frequency) mc.setpoints(fast_sweep_scan_range + platform.LO_qcm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run("Qubit Spectroscopy Fast", soft_avg=1) platform.stop() # Precision Sweep platform.software_averages = 1 precision_sweep_scan_range = np.arange(precision_start, precision_end, precision_step) mc.settables(platform.LO_qcm.device.frequency) mc.setpoints(precision_sweep_scan_range + platform.LO_qcm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run("Qubit Spectroscopy Precision", soft_avg=software_averages) platform.stop() # Fitting smooth_dataset = savgol_filter(dataset['y0'].values, 11, 2) qubit_freq = dataset['x0'].values[smooth_dataset.argmin()] - qc_pulse.frequency min_ro_voltage = smooth_dataset.min() * 1e6 print(f"\nQubit Frequency = {qubit_freq}") utils.plot(smooth_dataset, dataset, "Qubit_Spectroscopy", 1) print("Qubit freq ontained from MC results: ", qubit_freq) f0, BW, Q = fitting.lorentzian_fit("last", min, "Qubit_Spectroscopy") qubit_freq = (f0*1e9 - qc_pulse.frequency) print("Qubit freq ontained from fitting: ", qubit_freq) return qubit_freq, min_ro_voltage, smooth_dataset, dataset def run_rabi_pulse_length(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['rabi_pulse_length'] pulse_duration_start = ds['pulse_duration_start'] pulse_duration_end = ds['pulse_duration_end'] pulse_duration_step = ds['pulse_duration_step'] mc.settables(Settable(QCPulseLengthParameter(ro_pulse, qc_pulse))) mc.setpoints(np.arange(pulse_duration_start, pulse_duration_end, pulse_duration_step)) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run('Rabi Pulse Length', soft_avg = software_averages) platform.stop() # Fitting pi_pulse_amplitude = qc_pulse.amplitude smooth_dataset, pi_pulse_duration, rabi_oscillations_pi_pulse_min_voltage, t1 = fitting.rabi_fit(dataset) pi_pulse_gain = platform.qcm.gain utils.plot(smooth_dataset, dataset, "Rabi_pulse_length", 1) print(f"\nPi pulse duration = {pi_pulse_duration}") print(f"\nPi pulse amplitude = {pi_pulse_amplitude}") #Check if the returned value from fitting is correct. print(f"\nPi pulse gain = {pi_pulse_gain}") #Needed? It is equal to the QCM gain when performing a Rabi. print(f"\nrabi oscillation min voltage = {rabi_oscillations_pi_pulse_min_voltage}") print(f"\nT1 = {t1}") return dataset, pi_pulse_duration, pi_pulse_amplitude, pi_pulse_gain, rabi_oscillations_pi_pulse_min_voltage, t1 # T1: RX(pi) - wait t(rotates z) - readout def run_t1(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] start = 0 frequency = ps['pi_pulse_frequency'] amplitude = ps['pi_pulse_amplitude'] duration = ps['pi_pulse_duration'] phase = 0 shape = eval(ps['pi_pulse_shape']) qc_pi_pulse = Pulse(start, duration, amplitude, frequency, phase, shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pi_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['t1'] delay_before_readout_start = ds['delay_before_readout_start'] delay_before_readout_end = ds['delay_before_readout_end'] delay_before_readout_step = ds['delay_before_readout_step'] mc.settables(Settable(T1WaitParameter(ro_pulse, qc_pi_pulse))) mc.setpoints(np.arange(delay_before_readout_start, delay_before_readout_end, delay_before_readout_step)) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run('T1', soft_avg = software_averages) platform.stop() # Fitting smooth_dataset, t1 = fitting.t1_fit(dataset) utils.plot(smooth_dataset, dataset, "t1", 1) print(f'\nT1 = {t1}') return t1, smooth_dataset, dataset def callibrate_qubit_states(self): platform = self.platform platform.reload_settings() ps = platform.settings['settings'] niter=10 nshots=1 #create exc and gnd pulses start = 0 frequency = ps['pi_pulse_frequency'] amplitude = ps['pi_pulse_amplitude'] duration = ps['pi_pulse_duration'] phase = 0 shape = eval(ps['pi_pulse_shape']) qc_pi_pulse = Pulse(start, duration, amplitude, frequency, phase, shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) exc_sequence = PulseSequence() exc_sequence.add(qc_pi_pulse) gnd_sequence.add(ro_pulse) gnd_sequence = PulseSequence() #ro_pulse.start=0 gnd_sequence.add(ro_pulse) platform.LO_qrm.set_frequency(ps['resonator_freq'] - ro_pulse.frequency) platform.LO_qcm.set_frequency(ps['qubit_freq'] + qc_pi_pulse.frequency) platform.start() #Exectue niter single gnd shots platform.LO_qcm.off() all_gnd_states = [] for i in range(niter): qubit_state = platform.execute(gnd_sequence, nshots) #Compose complex point from i, q obtained from execution point = complex(qubit_state[2], qubit_state[3]) all_gnd_states.add(point) #Exectue niter single exc shots platform.LO_qcm.on() all_exc_states = [] for i in range(niter): qubit_state = platform.execute(exc_sequence, nshots) #Compose complex point from i, q obtained from execution point = complex(qubit_state[2], qubit_state[3]) all_exc_states.add(point) platform.stop() return all_gnd_states, np.mean(all_gnd_states), all_exc_states, np.mean(all_exc_states) def auto_calibrate_plaform(self): platform = self.platform #backup latest platform runcard utils.backup_config_file(platform) #run and save cavity spectroscopy calibration resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset = self.
[ "platform", "mc", "pl", "load_settings", "ins", "auto_calibrate_plaform", "callibrate_qubit_states", "run_qubit_spectroscopy", "run_rabi_pulse_length", "run_resonator_spectroscopy", "run_t1" ]
duration = ps['pi_pulse_duration'] phase = 0 shape = eval(ps['pi_pulse_shape']) qc_pi_pulse = Pulse(start, duration, amplitude, frequency, phase, shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) exc_sequence = PulseSequence() exc_sequence.add(qc_pi_pulse) gnd_sequence.add(ro_pulse) gnd_sequence = PulseSequence() #ro_pulse.start=0 gnd_sequence.add(ro_pulse) platform.LO_qrm.set_frequency(ps['resonator_freq'] - ro_pulse.frequency) platform.LO_qcm.set_frequency(ps['qubit_freq'] + qc_pi_pulse.frequency) platform.start() #Exectue niter single gnd shots platform.LO_qcm.off() all_gnd_states = [] for i in range(niter): qubit_state = platform.execute(gnd_sequence, nshots) #Compose complex point from i, q obtained from execution point = complex(qubit_state[2], qubit_state[3]) all_gnd_states.add(point) #Exectue niter single exc shots platform.LO_qcm.on() all_exc_states = [] for i in range(niter): qubit_state = platform.execute(exc_sequence, nshots) #Compose complex point from i, q obtained from execution point = complex(qubit_state[2], qubit_state[3]) all_exc_states.add(point) platform.stop() return all_gnd_states, np.mean(all_gnd_states), all_exc_states, np.mean(all_exc_states) def auto_calibrate_plaform(self): platform = self.platform #backup latest platform runcard utils.backup_config_file(platform) #run and save cavity spectroscopy calibration resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset = self.
5,521
7,838
223
13,689
qiboteam__qibolab
e4b0e8e6dd612e696a161da9972f4bb9b6bf8cd0
src/qibolab/calibration/calibration.py
infile
run_qubit_spectroscopy
true
function
11
11
false
true
[ "platform", "mc", "pl", "callibrate_qubit_states", "load_settings", "__init__", "auto_calibrate_plaform", "ins", "run_qubit_spectroscopy", "run_rabi_pulse_length", "run_resonator_spectroscopy", "run_t1", "__annotations__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "auto_calibrate_plaform", "type": "function" }, { "name": "callibrate_qubit_states", "type": "function" }, { "name": "ins", "type": "statement" }, { "name": "load_settings", "type": "function" }, { "name": "mc", "type": "statement" }, { "name": "pl", "type": "statement" }, { "name": "platform", "type": "statement" }, { "name": "run_qubit_spectroscopy", "type": "function" }, { "name": "run_rabi_pulse_length", "type": "function" }, { "name": "run_resonator_spectroscopy", "type": "function" }, { "name": "run_t1", "type": "function" }, { "name": "__annotations__", "type": "statement" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
import pathlib import numpy as np #import matplotlib.pyplot as plt import utils import yaml import fitting from qibolab import Platform # TODO: Have a look in the documentation of ``MeasurementControl`` #from quantify_core.measurement import MeasurementControl from quantify_core.measurement.control import Gettable, Settable from quantify_core.data.handling import set_datadir from scipy.signal import savgol_filter from qibolab.pulses import Pulse, ReadoutPulse from qibolab.circuit import PulseSequence from qibolab.pulse_shapes import Rectangular, Gaussian # TODO: Check why this set_datadir is needed #set_datadir(pathlib.Path("data") / "quantify") set_datadir(pathlib.Path(__file__).parent / "data" / "quantify") class Calibration(): def __init__(self, platform: Platform): self.platform = platform self.mc, self.pl, self.ins = utils.create_measurement_control('Calibration') def load_settings(self): # Load diagnostics settings with open("calibration.yml", "r") as file: return yaml.safe_load(file) def run_resonator_spectroscopy(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['resonator_spectroscopy'] lowres_width = ds['lowres_width'] lowres_step = ds['lowres_step'] highres_width = ds['highres_width'] highres_step = ds['highres_step'] precision_width = ds['precision_width'] precision_step = ds['precision_step'] #Fast Sweep scanrange = utils.variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step) mc.settables(platform.LO_qrm.device.frequency) mc.setpoints(scanrange + platform.LO_qrm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() platform.LO_qcm.off() dataset = mc.run("Resonator Spectroscopy Fast", soft_avg=1) platform.stop() platform.LO_qrm.set_frequency(dataset['x0'].values[dataset['y0'].argmax().values]) avg_min_voltage = np.mean(dataset['y0'].values[:(lowres_width//lowres_step)]) * 1e6 # Precision Sweep scanrange = np.arange(-precision_width, precision_width, precision_step) mc.settables(platform.LO_qrm.device.frequency) mc.setpoints(scanrange + platform.LO_qrm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() platform.LO_qcm.off() dataset = mc.run("Resonator Spectroscopy Precision", soft_avg=software_averages) platform.stop() # Fitting smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2) # resonator_freq = dataset['x0'].values[smooth_dataset.argmax()] + ro_pulse.frequency max_ro_voltage = smooth_dataset.max() * 1e6 f0, BW, Q = fitting.lorentzian_fit("last", max, "Resonator_spectroscopy") resonator_freq = (f0*1e9 + ro_pulse.frequency) print(f"\nResonator Frequency = {resonator_freq}") return resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset def run_qubit_spectroscopy(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['qubit_spectroscopy'] fast_start = ds['fast_start'] fast_end = ds['fast_end'] fast_step = ds['fast_step'] precision_start = ds['precision_start'] precision_end = ds['precision_end'] precision_step = ds['precision_step'] # Fast Sweep fast_sweep_scan_range = np.arange(fast_start, fast_end, fast_step) mc.settables(platform.LO_qcm.device.frequency) mc.setpoints(fast_sweep_scan_range + platform.LO_qcm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run("Qubit Spectroscopy Fast", soft_avg=1) platform.stop() # Precision Sweep platform.software_averages = 1 precision_sweep_scan_range = np.arange(precision_start, precision_end, precision_step) mc.settables(platform.LO_qcm.device.frequency) mc.setpoints(precision_sweep_scan_range + platform.LO_qcm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run("Qubit Spectroscopy Precision", soft_avg=software_averages) platform.stop() # Fitting smooth_dataset = savgol_filter(dataset['y0'].values, 11, 2) qubit_freq = dataset['x0'].values[smooth_dataset.argmin()] - qc_pulse.frequency min_ro_voltage = smooth_dataset.min() * 1e6 print(f"\nQubit Frequency = {qubit_freq}") utils.plot(smooth_dataset, dataset, "Qubit_Spectroscopy", 1) print("Qubit freq ontained from MC results: ", qubit_freq) f0, BW, Q = fitting.lorentzian_fit("last", min, "Qubit_Spectroscopy") qubit_freq = (f0*1e9 - qc_pulse.frequency) print("Qubit freq ontained from fitting: ", qubit_freq) return qubit_freq, min_ro_voltage, smooth_dataset, dataset def run_rabi_pulse_length(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['rabi_pulse_length'] pulse_duration_start = ds['pulse_duration_start'] pulse_duration_end = ds['pulse_duration_end'] pulse_duration_step = ds['pulse_duration_step'] mc.settables(Settable(QCPulseLengthParameter(ro_pulse, qc_pulse))) mc.setpoints(np.arange(pulse_duration_start, pulse_duration_end, pulse_duration_step)) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run('Rabi Pulse Length', soft_avg = software_averages) platform.stop() # Fitting pi_pulse_amplitude = qc_pulse.amplitude smooth_dataset, pi_pulse_duration, rabi_oscillations_pi_pulse_min_voltage, t1 = fitting.rabi_fit(dataset) pi_pulse_gain = platform.qcm.gain utils.plot(smooth_dataset, dataset, "Rabi_pulse_length", 1) print(f"\nPi pulse duration = {pi_pulse_duration}") print(f"\nPi pulse amplitude = {pi_pulse_amplitude}") #Check if the returned value from fitting is correct. print(f"\nPi pulse gain = {pi_pulse_gain}") #Needed? It is equal to the QCM gain when performing a Rabi. print(f"\nrabi oscillation min voltage = {rabi_oscillations_pi_pulse_min_voltage}") print(f"\nT1 = {t1}") return dataset, pi_pulse_duration, pi_pulse_amplitude, pi_pulse_gain, rabi_oscillations_pi_pulse_min_voltage, t1 # T1: RX(pi) - wait t(rotates z) - readout def run_t1(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] start = 0 frequency = ps['pi_pulse_frequency'] amplitude = ps['pi_pulse_amplitude'] duration = ps['pi_pulse_duration'] phase = 0 shape = eval(ps['pi_pulse_shape']) qc_pi_pulse = Pulse(start, duration, amplitude, frequency, phase, shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pi_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['t1'] delay_before_readout_start = ds['delay_before_readout_start'] delay_before_readout_end = ds['delay_before_readout_end'] delay_before_readout_step = ds['delay_before_readout_step'] mc.settables(Settable(T1WaitParameter(ro_pulse, qc_pi_pulse))) mc.setpoints(np.arange(delay_before_readout_start, delay_before_readout_end, delay_before_readout_step)) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run('T1', soft_avg = software_averages) platform.stop() # Fitting smooth_dataset, t1 = fitting.t1_fit(dataset) utils.plot(smooth_dataset, dataset, "t1", 1) print(f'\nT1 = {t1}') return t1, smooth_dataset, dataset def callibrate_qubit_states(self): platform = self.platform platform.reload_settings() ps = platform.settings['settings'] niter=10 nshots=1 #create exc and gnd pulses start = 0 frequency = ps['pi_pulse_frequency'] amplitude = ps['pi_pulse_amplitude'] duration = ps['pi_pulse_duration'] phase = 0 shape = eval(ps['pi_pulse_shape']) qc_pi_pulse = Pulse(start, duration, amplitude, frequency, phase, shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) exc_sequence = PulseSequence() exc_sequence.add(qc_pi_pulse) gnd_sequence.add(ro_pulse) gnd_sequence = PulseSequence() #ro_pulse.start=0 gnd_sequence.add(ro_pulse) platform.LO_qrm.set_frequency(ps['resonator_freq'] - ro_pulse.frequency) platform.LO_qcm.set_frequency(ps['qubit_freq'] + qc_pi_pulse.frequency) platform.start() #Exectue niter single gnd shots platform.LO_qcm.off() all_gnd_states = [] for i in range(niter): qubit_state = platform.execute(gnd_sequence, nshots) #Compose complex point from i, q obtained from execution point = complex(qubit_state[2], qubit_state[3]) all_gnd_states.add(point) #Exectue niter single exc shots platform.LO_qcm.on() all_exc_states = [] for i in range(niter): qubit_state = platform.execute(exc_sequence, nshots) #Compose complex point from i, q obtained from execution point = complex(qubit_state[2], qubit_state[3]) all_exc_states.add(point) platform.stop() return all_gnd_states, np.mean(all_gnd_states), all_exc_states, np.mean(all_exc_states) def auto_calibrate_plaform(self): platform = self.platform #backup latest platform runcard utils.backup_config_file(platform) #run and save cavity spectroscopy calibration resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset = self.run_resonator_spectroscopy() print(utils.get_config_parameter("settings", "", "resonator_freq")) print(utils.get_config_parameter("settings", "", "resonator_spectroscopy_avg_min_ro_voltage")) print(utils.get_config_parameter("settings", "", "resonator_spectroscopy_max_ro_voltage")) print(utils.get_config_parameter("LO_QRM_settings", "", "frequency")) # utils.save_config_parameter("settings", "", "resonator_freq", float(resonator_freq)) # utils.save_config_parameter("settings", "", "resonator_spectroscopy_avg_min_ro_voltage", float(avg_min_voltage)) # utils.save_config_parameter("settings", "", "resonator_spectroscopy_max_ro_voltage", float(max_ro_voltage)) # utils.save_config_parameter("LO_QRM_settings", "", "frequency", float(resonator_freq - 20_000_000)) #run and save qubit spectroscopy calibration qubit_freq, min_ro_voltage, smooth_dataset, dataset = self.
[ "platform", "mc", "pl", "callibrate_qubit_states", "load_settings", "auto_calibrate_plaform", "ins", "run_qubit_spectroscopy", "run_rabi_pulse_length", "run_resonator_spectroscopy", "run_t1" ]
sequence, nshots) #Compose complex point from i, q obtained from execution point = complex(qubit_state[2], qubit_state[3]) all_gnd_states.add(point) #Exectue niter single exc shots platform.LO_qcm.on() all_exc_states = [] for i in range(niter): qubit_state = platform.execute(exc_sequence, nshots) #Compose complex point from i, q obtained from execution point = complex(qubit_state[2], qubit_state[3]) all_exc_states.add(point) platform.stop() return all_gnd_states, np.mean(all_gnd_states), all_exc_states, np.mean(all_exc_states) def auto_calibrate_plaform(self): platform = self.platform #backup latest platform runcard utils.backup_config_file(platform) #run and save cavity spectroscopy calibration resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset = self.run_resonator_spectroscopy() print(utils.get_config_parameter("settings", "", "resonator_freq")) print(utils.get_config_parameter("settings", "", "resonator_spectroscopy_avg_min_ro_voltage")) print(utils.get_config_parameter("settings", "", "resonator_spectroscopy_max_ro_voltage")) print(utils.get_config_parameter("LO_QRM_settings", "", "frequency")) # utils.save_config_parameter("settings", "", "resonator_freq", float(resonator_freq)) # utils.save_config_parameter("settings", "", "resonator_spectroscopy_avg_min_ro_voltage", float(avg_min_voltage)) # utils.save_config_parameter("settings", "", "resonator_spectroscopy_max_ro_voltage", float(max_ro_voltage)) # utils.save_config_parameter("LO_QRM_settings", "", "frequency", float(resonator_freq - 20_000_000)) #run and save qubit spectroscopy calibration qubit_freq, min_ro_voltage, smooth_dataset, dataset = self.
5,522
7,839
223
14,451
qiboteam__qibolab
e4b0e8e6dd612e696a161da9972f4bb9b6bf8cd0
src/qibolab/calibration/calibration.py
inproject
run_rabi_pulse_length
true
function
11
11
false
true
[ "platform", "mc", "pl", "load_settings", "ins", "__init__", "auto_calibrate_plaform", "callibrate_qubit_states", "run_qubit_spectroscopy", "run_rabi_pulse_length", "run_resonator_spectroscopy", "run_t1", "__annotations__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "auto_calibrate_plaform", "type": "function" }, { "name": "callibrate_qubit_states", "type": "function" }, { "name": "ins", "type": "statement" }, { "name": "load_settings", "type": "function" }, { "name": "mc", "type": "statement" }, { "name": "pl", "type": "statement" }, { "name": "platform", "type": "statement" }, { "name": "run_qubit_spectroscopy", "type": "function" }, { "name": "run_rabi_pulse_length", "type": "function" }, { "name": "run_resonator_spectroscopy", "type": "function" }, { "name": "run_t1", "type": "function" }, { "name": "__annotations__", "type": "statement" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
import pathlib import numpy as np #import matplotlib.pyplot as plt import utils import yaml import fitting from qibolab import Platform # TODO: Have a look in the documentation of ``MeasurementControl`` #from quantify_core.measurement import MeasurementControl from quantify_core.measurement.control import Gettable, Settable from quantify_core.data.handling import set_datadir from scipy.signal import savgol_filter from qibolab.pulses import Pulse, ReadoutPulse from qibolab.circuit import PulseSequence from qibolab.pulse_shapes import Rectangular, Gaussian # TODO: Check why this set_datadir is needed #set_datadir(pathlib.Path("data") / "quantify") set_datadir(pathlib.Path(__file__).parent / "data" / "quantify") class Calibration(): def __init__(self, platform: Platform): self.platform = platform self.mc, self.pl, self.ins = utils.create_measurement_control('Calibration') def load_settings(self): # Load diagnostics settings with open("calibration.yml", "r") as file: return yaml.safe_load(file) def run_resonator_spectroscopy(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['resonator_spectroscopy'] lowres_width = ds['lowres_width'] lowres_step = ds['lowres_step'] highres_width = ds['highres_width'] highres_step = ds['highres_step'] precision_width = ds['precision_width'] precision_step = ds['precision_step'] #Fast Sweep scanrange = utils.variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step) mc.settables(platform.LO_qrm.device.frequency) mc.setpoints(scanrange + platform.LO_qrm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() platform.LO_qcm.off() dataset = mc.run("Resonator Spectroscopy Fast", soft_avg=1) platform.stop() platform.LO_qrm.set_frequency(dataset['x0'].values[dataset['y0'].argmax().values]) avg_min_voltage = np.mean(dataset['y0'].values[:(lowres_width//lowres_step)]) * 1e6 # Precision Sweep scanrange = np.arange(-precision_width, precision_width, precision_step) mc.settables(platform.LO_qrm.device.frequency) mc.setpoints(scanrange + platform.LO_qrm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() platform.LO_qcm.off() dataset = mc.run("Resonator Spectroscopy Precision", soft_avg=software_averages) platform.stop() # Fitting smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2) # resonator_freq = dataset['x0'].values[smooth_dataset.argmax()] + ro_pulse.frequency max_ro_voltage = smooth_dataset.max() * 1e6 f0, BW, Q = fitting.lorentzian_fit("last", max, "Resonator_spectroscopy") resonator_freq = (f0*1e9 + ro_pulse.frequency) print(f"\nResonator Frequency = {resonator_freq}") return resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset def run_qubit_spectroscopy(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['qubit_spectroscopy'] fast_start = ds['fast_start'] fast_end = ds['fast_end'] fast_step = ds['fast_step'] precision_start = ds['precision_start'] precision_end = ds['precision_end'] precision_step = ds['precision_step'] # Fast Sweep fast_sweep_scan_range = np.arange(fast_start, fast_end, fast_step) mc.settables(platform.LO_qcm.device.frequency) mc.setpoints(fast_sweep_scan_range + platform.LO_qcm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run("Qubit Spectroscopy Fast", soft_avg=1) platform.stop() # Precision Sweep platform.software_averages = 1 precision_sweep_scan_range = np.arange(precision_start, precision_end, precision_step) mc.settables(platform.LO_qcm.device.frequency) mc.setpoints(precision_sweep_scan_range + platform.LO_qcm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run("Qubit Spectroscopy Precision", soft_avg=software_averages) platform.stop() # Fitting smooth_dataset = savgol_filter(dataset['y0'].values, 11, 2) qubit_freq = dataset['x0'].values[smooth_dataset.argmin()] - qc_pulse.frequency min_ro_voltage = smooth_dataset.min() * 1e6 print(f"\nQubit Frequency = {qubit_freq}") utils.plot(smooth_dataset, dataset, "Qubit_Spectroscopy", 1) print("Qubit freq ontained from MC results: ", qubit_freq) f0, BW, Q = fitting.lorentzian_fit("last", min, "Qubit_Spectroscopy") qubit_freq = (f0*1e9 - qc_pulse.frequency) print("Qubit freq ontained from fitting: ", qubit_freq) return qubit_freq, min_ro_voltage, smooth_dataset, dataset def run_rabi_pulse_length(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['rabi_pulse_length'] pulse_duration_start = ds['pulse_duration_start'] pulse_duration_end = ds['pulse_duration_end'] pulse_duration_step = ds['pulse_duration_step'] mc.settables(Settable(QCPulseLengthParameter(ro_pulse, qc_pulse))) mc.setpoints(np.arange(pulse_duration_start, pulse_duration_end, pulse_duration_step)) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run('Rabi Pulse Length', soft_avg = software_averages) platform.stop() # Fitting pi_pulse_amplitude = qc_pulse.amplitude smooth_dataset, pi_pulse_duration, rabi_oscillations_pi_pulse_min_voltage, t1 = fitting.rabi_fit(dataset) pi_pulse_gain = platform.qcm.gain utils.plot(smooth_dataset, dataset, "Rabi_pulse_length", 1) print(f"\nPi pulse duration = {pi_pulse_duration}") print(f"\nPi pulse amplitude = {pi_pulse_amplitude}") #Check if the returned value from fitting is correct. print(f"\nPi pulse gain = {pi_pulse_gain}") #Needed? It is equal to the QCM gain when performing a Rabi. print(f"\nrabi oscillation min voltage = {rabi_oscillations_pi_pulse_min_voltage}") print(f"\nT1 = {t1}") return dataset, pi_pulse_duration, pi_pulse_amplitude, pi_pulse_gain, rabi_oscillations_pi_pulse_min_voltage, t1 # T1: RX(pi) - wait t(rotates z) - readout def run_t1(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] start = 0 frequency = ps['pi_pulse_frequency'] amplitude = ps['pi_pulse_amplitude'] duration = ps['pi_pulse_duration'] phase = 0 shape = eval(ps['pi_pulse_shape']) qc_pi_pulse = Pulse(start, duration, amplitude, frequency, phase, shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pi_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['t1'] delay_before_readout_start = ds['delay_before_readout_start'] delay_before_readout_end = ds['delay_before_readout_end'] delay_before_readout_step = ds['delay_before_readout_step'] mc.settables(Settable(T1WaitParameter(ro_pulse, qc_pi_pulse))) mc.setpoints(np.arange(delay_before_readout_start, delay_before_readout_end, delay_before_readout_step)) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run('T1', soft_avg = software_averages) platform.stop() # Fitting smooth_dataset, t1 = fitting.t1_fit(dataset) utils.plot(smooth_dataset, dataset, "t1", 1) print(f'\nT1 = {t1}') return t1, smooth_dataset, dataset def callibrate_qubit_states(self): platform = self.platform platform.reload_settings() ps = platform.settings['settings'] niter=10 nshots=1 #create exc and gnd pulses start = 0 frequency = ps['pi_pulse_frequency'] amplitude = ps['pi_pulse_amplitude'] duration = ps['pi_pulse_duration'] phase = 0 shape = eval(ps['pi_pulse_shape']) qc_pi_pulse = Pulse(start, duration, amplitude, frequency, phase, shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) exc_sequence = PulseSequence() exc_sequence.add(qc_pi_pulse) gnd_sequence.add(ro_pulse) gnd_sequence = PulseSequence() #ro_pulse.start=0 gnd_sequence.add(ro_pulse) platform.LO_qrm.set_frequency(ps['resonator_freq'] - ro_pulse.frequency) platform.LO_qcm.set_frequency(ps['qubit_freq'] + qc_pi_pulse.frequency) platform.start() #Exectue niter single gnd shots platform.LO_qcm.off() all_gnd_states = [] for i in range(niter): qubit_state = platform.execute(gnd_sequence, nshots) #Compose complex point from i, q obtained from execution point = complex(qubit_state[2], qubit_state[3]) all_gnd_states.add(point) #Exectue niter single exc shots platform.LO_qcm.on() all_exc_states = [] for i in range(niter): qubit_state = platform.execute(exc_sequence, nshots) #Compose complex point from i, q obtained from execution point = complex(qubit_state[2], qubit_state[3]) all_exc_states.add(point) platform.stop() return all_gnd_states, np.mean(all_gnd_states), all_exc_states, np.mean(all_exc_states) def auto_calibrate_plaform(self): platform = self.platform #backup latest platform runcard utils.backup_config_file(platform) #run and save cavity spectroscopy calibration resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset = self.run_resonator_spectroscopy() print(utils.get_config_parameter("settings", "", "resonator_freq")) print(utils.get_config_parameter("settings", "", "resonator_spectroscopy_avg_min_ro_voltage")) print(utils.get_config_parameter("settings", "", "resonator_spectroscopy_max_ro_voltage")) print(utils.get_config_parameter("LO_QRM_settings", "", "frequency")) # utils.save_config_parameter("settings", "", "resonator_freq", float(resonator_freq)) # utils.save_config_parameter("settings", "", "resonator_spectroscopy_avg_min_ro_voltage", float(avg_min_voltage)) # utils.save_config_parameter("settings", "", "resonator_spectroscopy_max_ro_voltage", float(max_ro_voltage)) # utils.save_config_parameter("LO_QRM_settings", "", "frequency", float(resonator_freq - 20_000_000)) #run and save qubit spectroscopy calibration qubit_freq, min_ro_voltage, smooth_dataset, dataset = self.run_qubit_spectroscopy() print(utils.get_config_parameter("settings", "", "qubit_freq")) print(utils.get_config_parameter("LO_QCM_settings", "", "frequency")) print(utils.get_config_parameter("settings", "", "qubit_spectroscopy_min_ro_voltage")) # utils.save_config_parameter("settings", "", "qubit_freq", float(qubit_freq)) # utils.save_config_parameter("LO_QCM_settings", "", "frequency", float(qubit_freq + 200_000_000)) # utils.save_config_parameter("settings", "", "qubit_spectroscopy_min_ro_voltage", float(min_ro_voltage)) # #run Rabi and save Pi pulse params from calibration dataset, pi_pulse_duration, pi_pulse_amplitude, pi_pulse_gain, rabi_oscillations_pi_pulse_min_voltage, t1 = self.
[ "platform", "mc", "pl", "load_settings", "ins", "auto_calibrate_plaform", "callibrate_qubit_states", "run_qubit_spectroscopy", "run_rabi_pulse_length", "run_resonator_spectroscopy", "run_t1" ]
t platform runcard utils.backup_config_file(platform) #run and save cavity spectroscopy calibration resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset = self.run_resonator_spectroscopy() print(utils.get_config_parameter("settings", "", "resonator_freq")) print(utils.get_config_parameter("settings", "", "resonator_spectroscopy_avg_min_ro_voltage")) print(utils.get_config_parameter("settings", "", "resonator_spectroscopy_max_ro_voltage")) print(utils.get_config_parameter("LO_QRM_settings", "", "frequency")) # utils.save_config_parameter("settings", "", "resonator_freq", float(resonator_freq)) # utils.save_config_parameter("settings", "", "resonator_spectroscopy_avg_min_ro_voltage", float(avg_min_voltage)) # utils.save_config_parameter("settings", "", "resonator_spectroscopy_max_ro_voltage", float(max_ro_voltage)) # utils.save_config_parameter("LO_QRM_settings", "", "frequency", float(resonator_freq - 20_000_000)) #run and save qubit spectroscopy calibration qubit_freq, min_ro_voltage, smooth_dataset, dataset = self.run_qubit_spectroscopy() print(utils.get_config_parameter("settings", "", "qubit_freq")) print(utils.get_config_parameter("LO_QCM_settings", "", "frequency")) print(utils.get_config_parameter("settings", "", "qubit_spectroscopy_min_ro_voltage")) # utils.save_config_parameter("settings", "", "qubit_freq", float(qubit_freq)) # utils.save_config_parameter("LO_QCM_settings", "", "frequency", float(qubit_freq + 200_000_000)) # utils.save_config_parameter("settings", "", "qubit_spectroscopy_min_ro_voltage", float(min_ro_voltage)) # #run Rabi and save Pi pulse params from calibration dataset, pi_pulse_duration, pi_pulse_amplitude, pi_pulse_gain, rabi_oscillations_pi_pulse_min_voltage, t1 = self.
5,523
7,840
223
15,369
qiboteam__qibolab
e4b0e8e6dd612e696a161da9972f4bb9b6bf8cd0
src/qibolab/calibration/calibration.py
infile
callibrate_qubit_states
true
function
11
11
false
true
[ "platform", "mc", "pl", "load_settings", "ins", "__init__", "auto_calibrate_plaform", "callibrate_qubit_states", "run_qubit_spectroscopy", "run_rabi_pulse_length", "run_resonator_spectroscopy", "run_t1", "__annotations__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "auto_calibrate_plaform", "type": "function" }, { "name": "callibrate_qubit_states", "type": "function" }, { "name": "ins", "type": "statement" }, { "name": "load_settings", "type": "function" }, { "name": "mc", "type": "statement" }, { "name": "pl", "type": "statement" }, { "name": "platform", "type": "statement" }, { "name": "run_qubit_spectroscopy", "type": "function" }, { "name": "run_rabi_pulse_length", "type": "function" }, { "name": "run_resonator_spectroscopy", "type": "function" }, { "name": "run_t1", "type": "function" }, { "name": "__annotations__", "type": "statement" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
import pathlib import numpy as np #import matplotlib.pyplot as plt import utils import yaml import fitting from qibolab import Platform # TODO: Have a look in the documentation of ``MeasurementControl`` #from quantify_core.measurement import MeasurementControl from quantify_core.measurement.control import Gettable, Settable from quantify_core.data.handling import set_datadir from scipy.signal import savgol_filter from qibolab.pulses import Pulse, ReadoutPulse from qibolab.circuit import PulseSequence from qibolab.pulse_shapes import Rectangular, Gaussian # TODO: Check why this set_datadir is needed #set_datadir(pathlib.Path("data") / "quantify") set_datadir(pathlib.Path(__file__).parent / "data" / "quantify") class Calibration(): def __init__(self, platform: Platform): self.platform = platform self.mc, self.pl, self.ins = utils.create_measurement_control('Calibration') def load_settings(self): # Load diagnostics settings with open("calibration.yml", "r") as file: return yaml.safe_load(file) def run_resonator_spectroscopy(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['resonator_spectroscopy'] lowres_width = ds['lowres_width'] lowres_step = ds['lowres_step'] highres_width = ds['highres_width'] highres_step = ds['highres_step'] precision_width = ds['precision_width'] precision_step = ds['precision_step'] #Fast Sweep scanrange = utils.variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step) mc.settables(platform.LO_qrm.device.frequency) mc.setpoints(scanrange + platform.LO_qrm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() platform.LO_qcm.off() dataset = mc.run("Resonator Spectroscopy Fast", soft_avg=1) platform.stop() platform.LO_qrm.set_frequency(dataset['x0'].values[dataset['y0'].argmax().values]) avg_min_voltage = np.mean(dataset['y0'].values[:(lowres_width//lowres_step)]) * 1e6 # Precision Sweep scanrange = np.arange(-precision_width, precision_width, precision_step) mc.settables(platform.LO_qrm.device.frequency) mc.setpoints(scanrange + platform.LO_qrm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() platform.LO_qcm.off() dataset = mc.run("Resonator Spectroscopy Precision", soft_avg=software_averages) platform.stop() # Fitting smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2) # resonator_freq = dataset['x0'].values[smooth_dataset.argmax()] + ro_pulse.frequency max_ro_voltage = smooth_dataset.max() * 1e6 f0, BW, Q = fitting.lorentzian_fit("last", max, "Resonator_spectroscopy") resonator_freq = (f0*1e9 + ro_pulse.frequency) print(f"\nResonator Frequency = {resonator_freq}") return resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset def run_qubit_spectroscopy(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['qubit_spectroscopy'] fast_start = ds['fast_start'] fast_end = ds['fast_end'] fast_step = ds['fast_step'] precision_start = ds['precision_start'] precision_end = ds['precision_end'] precision_step = ds['precision_step'] # Fast Sweep fast_sweep_scan_range = np.arange(fast_start, fast_end, fast_step) mc.settables(platform.LO_qcm.device.frequency) mc.setpoints(fast_sweep_scan_range + platform.LO_qcm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run("Qubit Spectroscopy Fast", soft_avg=1) platform.stop() # Precision Sweep platform.software_averages = 1 precision_sweep_scan_range = np.arange(precision_start, precision_end, precision_step) mc.settables(platform.LO_qcm.device.frequency) mc.setpoints(precision_sweep_scan_range + platform.LO_qcm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run("Qubit Spectroscopy Precision", soft_avg=software_averages) platform.stop() # Fitting smooth_dataset = savgol_filter(dataset['y0'].values, 11, 2) qubit_freq = dataset['x0'].values[smooth_dataset.argmin()] - qc_pulse.frequency min_ro_voltage = smooth_dataset.min() * 1e6 print(f"\nQubit Frequency = {qubit_freq}") utils.plot(smooth_dataset, dataset, "Qubit_Spectroscopy", 1) print("Qubit freq ontained from MC results: ", qubit_freq) f0, BW, Q = fitting.lorentzian_fit("last", min, "Qubit_Spectroscopy") qubit_freq = (f0*1e9 - qc_pulse.frequency) print("Qubit freq ontained from fitting: ", qubit_freq) return qubit_freq, min_ro_voltage, smooth_dataset, dataset def run_rabi_pulse_length(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['rabi_pulse_length'] pulse_duration_start = ds['pulse_duration_start'] pulse_duration_end = ds['pulse_duration_end'] pulse_duration_step = ds['pulse_duration_step'] mc.settables(Settable(QCPulseLengthParameter(ro_pulse, qc_pulse))) mc.setpoints(np.arange(pulse_duration_start, pulse_duration_end, pulse_duration_step)) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run('Rabi Pulse Length', soft_avg = software_averages) platform.stop() # Fitting pi_pulse_amplitude = qc_pulse.amplitude smooth_dataset, pi_pulse_duration, rabi_oscillations_pi_pulse_min_voltage, t1 = fitting.rabi_fit(dataset) pi_pulse_gain = platform.qcm.gain utils.plot(smooth_dataset, dataset, "Rabi_pulse_length", 1) print(f"\nPi pulse duration = {pi_pulse_duration}") print(f"\nPi pulse amplitude = {pi_pulse_amplitude}") #Check if the returned value from fitting is correct. print(f"\nPi pulse gain = {pi_pulse_gain}") #Needed? It is equal to the QCM gain when performing a Rabi. print(f"\nrabi oscillation min voltage = {rabi_oscillations_pi_pulse_min_voltage}") print(f"\nT1 = {t1}") return dataset, pi_pulse_duration, pi_pulse_amplitude, pi_pulse_gain, rabi_oscillations_pi_pulse_min_voltage, t1 # T1: RX(pi) - wait t(rotates z) - readout def run_t1(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] start = 0 frequency = ps['pi_pulse_frequency'] amplitude = ps['pi_pulse_amplitude'] duration = ps['pi_pulse_duration'] phase = 0 shape = eval(ps['pi_pulse_shape']) qc_pi_pulse = Pulse(start, duration, amplitude, frequency, phase, shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pi_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['t1'] delay_before_readout_start = ds['delay_before_readout_start'] delay_before_readout_end = ds['delay_before_readout_end'] delay_before_readout_step = ds['delay_before_readout_step'] mc.settables(Settable(T1WaitParameter(ro_pulse, qc_pi_pulse))) mc.setpoints(np.arange(delay_before_readout_start, delay_before_readout_end, delay_before_readout_step)) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run('T1', soft_avg = software_averages) platform.stop() # Fitting smooth_dataset, t1 = fitting.t1_fit(dataset) utils.plot(smooth_dataset, dataset, "t1", 1) print(f'\nT1 = {t1}') return t1, smooth_dataset, dataset def callibrate_qubit_states(self): platform = self.platform platform.reload_settings() ps = platform.settings['settings'] niter=10 nshots=1 #create exc and gnd pulses start = 0 frequency = ps['pi_pulse_frequency'] amplitude = ps['pi_pulse_amplitude'] duration = ps['pi_pulse_duration'] phase = 0 shape = eval(ps['pi_pulse_shape']) qc_pi_pulse = Pulse(start, duration, amplitude, frequency, phase, shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) exc_sequence = PulseSequence() exc_sequence.add(qc_pi_pulse) gnd_sequence.add(ro_pulse) gnd_sequence = PulseSequence() #ro_pulse.start=0 gnd_sequence.add(ro_pulse) platform.LO_qrm.set_frequency(ps['resonator_freq'] - ro_pulse.frequency) platform.LO_qcm.set_frequency(ps['qubit_freq'] + qc_pi_pulse.frequency) platform.start() #Exectue niter single gnd shots platform.LO_qcm.off() all_gnd_states = [] for i in range(niter): qubit_state = platform.execute(gnd_sequence, nshots) #Compose complex point from i, q obtained from execution point = complex(qubit_state[2], qubit_state[3]) all_gnd_states.add(point) #Exectue niter single exc shots platform.LO_qcm.on() all_exc_states = [] for i in range(niter): qubit_state = platform.execute(exc_sequence, nshots) #Compose complex point from i, q obtained from execution point = complex(qubit_state[2], qubit_state[3]) all_exc_states.add(point) platform.stop() return all_gnd_states, np.mean(all_gnd_states), all_exc_states, np.mean(all_exc_states) def auto_calibrate_plaform(self): platform = self.platform #backup latest platform runcard utils.backup_config_file(platform) #run and save cavity spectroscopy calibration resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset = self.run_resonator_spectroscopy() print(utils.get_config_parameter("settings", "", "resonator_freq")) print(utils.get_config_parameter("settings", "", "resonator_spectroscopy_avg_min_ro_voltage")) print(utils.get_config_parameter("settings", "", "resonator_spectroscopy_max_ro_voltage")) print(utils.get_config_parameter("LO_QRM_settings", "", "frequency")) # utils.save_config_parameter("settings", "", "resonator_freq", float(resonator_freq)) # utils.save_config_parameter("settings", "", "resonator_spectroscopy_avg_min_ro_voltage", float(avg_min_voltage)) # utils.save_config_parameter("settings", "", "resonator_spectroscopy_max_ro_voltage", float(max_ro_voltage)) # utils.save_config_parameter("LO_QRM_settings", "", "frequency", float(resonator_freq - 20_000_000)) #run and save qubit spectroscopy calibration qubit_freq, min_ro_voltage, smooth_dataset, dataset = self.run_qubit_spectroscopy() print(utils.get_config_parameter("settings", "", "qubit_freq")) print(utils.get_config_parameter("LO_QCM_settings", "", "frequency")) print(utils.get_config_parameter("settings", "", "qubit_spectroscopy_min_ro_voltage")) # utils.save_config_parameter("settings", "", "qubit_freq", float(qubit_freq)) # utils.save_config_parameter("LO_QCM_settings", "", "frequency", float(qubit_freq + 200_000_000)) # utils.save_config_parameter("settings", "", "qubit_spectroscopy_min_ro_voltage", float(min_ro_voltage)) # #run Rabi and save Pi pulse params from calibration dataset, pi_pulse_duration, pi_pulse_amplitude, pi_pulse_gain, rabi_oscillations_pi_pulse_min_voltage, t1 = self.run_rabi_pulse_length() print(utils.get_config_parameter("settings", "", "pi_pulse_duration")) print(utils.get_config_parameter("settings", "", "pi_pulse_amplitude")) print(utils.get_config_parameter("settings", "", "pi_pulse_gain")) print(utils.get_config_parameter("settings", "", "rabi_oscillations_pi_pulse_min_voltage")) # utils.save_config_parameter("settings", "", "pi_pulse_duration", int(pi_pulse_duration)) # utils.save_config_parameter("settings", "", "pi_pulse_amplitude", float(pi_pulse_amplitude)) # utils.save_config_parameter("settings", "", "pi_pulse_gain", float(pi_pulse_gain)) # utils.save_config_parameter("settings", "", "rabi_oscillations_pi_pulse_min_voltage", float(rabi_oscillations_pi_pulse_min_voltage)) # #run calibration_qubit_states all_gnd_states, mean_gnd_states, all_exc_states, mean_exc_states = self.
[ "platform", "mc", "pl", "load_settings", "ins", "auto_calibrate_plaform", "callibrate_qubit_states", "run_qubit_spectroscopy", "run_rabi_pulse_length", "run_resonator_spectroscopy", "run_t1" ]
oltage)) # utils.save_config_parameter("LO_QRM_settings", "", "frequency", float(resonator_freq - 20_000_000)) #run and save qubit spectroscopy calibration qubit_freq, min_ro_voltage, smooth_dataset, dataset = self.run_qubit_spectroscopy() print(utils.get_config_parameter("settings", "", "qubit_freq")) print(utils.get_config_parameter("LO_QCM_settings", "", "frequency")) print(utils.get_config_parameter("settings", "", "qubit_spectroscopy_min_ro_voltage")) # utils.save_config_parameter("settings", "", "qubit_freq", float(qubit_freq)) # utils.save_config_parameter("LO_QCM_settings", "", "frequency", float(qubit_freq + 200_000_000)) # utils.save_config_parameter("settings", "", "qubit_spectroscopy_min_ro_voltage", float(min_ro_voltage)) # #run Rabi and save Pi pulse params from calibration dataset, pi_pulse_duration, pi_pulse_amplitude, pi_pulse_gain, rabi_oscillations_pi_pulse_min_voltage, t1 = self.run_rabi_pulse_length() print(utils.get_config_parameter("settings", "", "pi_pulse_duration")) print(utils.get_config_parameter("settings", "", "pi_pulse_amplitude")) print(utils.get_config_parameter("settings", "", "pi_pulse_gain")) print(utils.get_config_parameter("settings", "", "rabi_oscillations_pi_pulse_min_voltage")) # utils.save_config_parameter("settings", "", "pi_pulse_duration", int(pi_pulse_duration)) # utils.save_config_parameter("settings", "", "pi_pulse_amplitude", float(pi_pulse_amplitude)) # utils.save_config_parameter("settings", "", "pi_pulse_gain", float(pi_pulse_gain)) # utils.save_config_parameter("settings", "", "rabi_oscillations_pi_pulse_min_voltage", float(rabi_oscillations_pi_pulse_min_voltage)) # #run calibration_qubit_states all_gnd_states, mean_gnd_states, all_exc_states, mean_exc_states = self.
5,524
7,844
223
16,579
qiboteam__qibolab
e4b0e8e6dd612e696a161da9972f4bb9b6bf8cd0
src/qibolab/calibration/calibration.py
common
ro_pulse
true
statement
6
6
false
true
[ "ro_pulse", "qc_pulse", "name", "unit", "label", "__init__", "set", "__annotations__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "label", "type": "statement" }, { "name": "name", "type": "statement" }, { "name": "qc_pulse", "type": "statement" }, { "name": "ro_pulse", "type": "statement" }, { "name": "set", "type": "function" }, { "name": "unit", "type": "statement" }, { "name": "__annotations__", "type": "statement" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
import pathlib import numpy as np #import matplotlib.pyplot as plt import utils import yaml import fitting from qibolab import Platform # TODO: Have a look in the documentation of ``MeasurementControl`` #from quantify_core.measurement import MeasurementControl from quantify_core.measurement.control import Gettable, Settable from quantify_core.data.handling import set_datadir from scipy.signal import savgol_filter from qibolab.pulses import Pulse, ReadoutPulse from qibolab.circuit import PulseSequence from qibolab.pulse_shapes import Rectangular, Gaussian # TODO: Check why this set_datadir is needed #set_datadir(pathlib.Path("data") / "quantify") set_datadir(pathlib.Path(__file__).parent / "data" / "quantify") class Calibration(): def __init__(self, platform: Platform): self.platform = platform self.mc, self.pl, self.ins = utils.create_measurement_control('Calibration') def load_settings(self): # Load diagnostics settings with open("calibration.yml", "r") as file: return yaml.safe_load(file) def run_resonator_spectroscopy(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['resonator_spectroscopy'] lowres_width = ds['lowres_width'] lowres_step = ds['lowres_step'] highres_width = ds['highres_width'] highres_step = ds['highres_step'] precision_width = ds['precision_width'] precision_step = ds['precision_step'] #Fast Sweep scanrange = utils.variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step) mc.settables(platform.LO_qrm.device.frequency) mc.setpoints(scanrange + platform.LO_qrm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() platform.LO_qcm.off() dataset = mc.run("Resonator Spectroscopy Fast", soft_avg=1) platform.stop() platform.LO_qrm.set_frequency(dataset['x0'].values[dataset['y0'].argmax().values]) avg_min_voltage = np.mean(dataset['y0'].values[:(lowres_width//lowres_step)]) * 1e6 # Precision Sweep scanrange = np.arange(-precision_width, precision_width, precision_step) mc.settables(platform.LO_qrm.device.frequency) mc.setpoints(scanrange + platform.LO_qrm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() platform.LO_qcm.off() dataset = mc.run("Resonator Spectroscopy Precision", soft_avg=software_averages) platform.stop() # Fitting smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2) # resonator_freq = dataset['x0'].values[smooth_dataset.argmax()] + ro_pulse.frequency max_ro_voltage = smooth_dataset.max() * 1e6 f0, BW, Q = fitting.lorentzian_fit("last", max, "Resonator_spectroscopy") resonator_freq = (f0*1e9 + ro_pulse.frequency) print(f"\nResonator Frequency = {resonator_freq}") return resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset def run_qubit_spectroscopy(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['qubit_spectroscopy'] fast_start = ds['fast_start'] fast_end = ds['fast_end'] fast_step = ds['fast_step'] precision_start = ds['precision_start'] precision_end = ds['precision_end'] precision_step = ds['precision_step'] # Fast Sweep fast_sweep_scan_range = np.arange(fast_start, fast_end, fast_step) mc.settables(platform.LO_qcm.device.frequency) mc.setpoints(fast_sweep_scan_range + platform.LO_qcm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run("Qubit Spectroscopy Fast", soft_avg=1) platform.stop() # Precision Sweep platform.software_averages = 1 precision_sweep_scan_range = np.arange(precision_start, precision_end, precision_step) mc.settables(platform.LO_qcm.device.frequency) mc.setpoints(precision_sweep_scan_range + platform.LO_qcm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run("Qubit Spectroscopy Precision", soft_avg=software_averages) platform.stop() # Fitting smooth_dataset = savgol_filter(dataset['y0'].values, 11, 2) qubit_freq = dataset['x0'].values[smooth_dataset.argmin()] - qc_pulse.frequency min_ro_voltage = smooth_dataset.min() * 1e6 print(f"\nQubit Frequency = {qubit_freq}") utils.plot(smooth_dataset, dataset, "Qubit_Spectroscopy", 1) print("Qubit freq ontained from MC results: ", qubit_freq) f0, BW, Q = fitting.lorentzian_fit("last", min, "Qubit_Spectroscopy") qubit_freq = (f0*1e9 - qc_pulse.frequency) print("Qubit freq ontained from fitting: ", qubit_freq) return qubit_freq, min_ro_voltage, smooth_dataset, dataset def run_rabi_pulse_length(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['rabi_pulse_length'] pulse_duration_start = ds['pulse_duration_start'] pulse_duration_end = ds['pulse_duration_end'] pulse_duration_step = ds['pulse_duration_step'] mc.settables(Settable(QCPulseLengthParameter(ro_pulse, qc_pulse))) mc.setpoints(np.arange(pulse_duration_start, pulse_duration_end, pulse_duration_step)) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run('Rabi Pulse Length', soft_avg = software_averages) platform.stop() # Fitting pi_pulse_amplitude = qc_pulse.amplitude smooth_dataset, pi_pulse_duration, rabi_oscillations_pi_pulse_min_voltage, t1 = fitting.rabi_fit(dataset) pi_pulse_gain = platform.qcm.gain utils.plot(smooth_dataset, dataset, "Rabi_pulse_length", 1) print(f"\nPi pulse duration = {pi_pulse_duration}") print(f"\nPi pulse amplitude = {pi_pulse_amplitude}") #Check if the returned value from fitting is correct. print(f"\nPi pulse gain = {pi_pulse_gain}") #Needed? It is equal to the QCM gain when performing a Rabi. print(f"\nrabi oscillation min voltage = {rabi_oscillations_pi_pulse_min_voltage}") print(f"\nT1 = {t1}") return dataset, pi_pulse_duration, pi_pulse_amplitude, pi_pulse_gain, rabi_oscillations_pi_pulse_min_voltage, t1 # T1: RX(pi) - wait t(rotates z) - readout def run_t1(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] start = 0 frequency = ps['pi_pulse_frequency'] amplitude = ps['pi_pulse_amplitude'] duration = ps['pi_pulse_duration'] phase = 0 shape = eval(ps['pi_pulse_shape']) qc_pi_pulse = Pulse(start, duration, amplitude, frequency, phase, shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pi_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['t1'] delay_before_readout_start = ds['delay_before_readout_start'] delay_before_readout_end = ds['delay_before_readout_end'] delay_before_readout_step = ds['delay_before_readout_step'] mc.settables(Settable(T1WaitParameter(ro_pulse, qc_pi_pulse))) mc.setpoints(np.arange(delay_before_readout_start, delay_before_readout_end, delay_before_readout_step)) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run('T1', soft_avg = software_averages) platform.stop() # Fitting smooth_dataset, t1 = fitting.t1_fit(dataset) utils.plot(smooth_dataset, dataset, "t1", 1) print(f'\nT1 = {t1}') return t1, smooth_dataset, dataset def callibrate_qubit_states(self): platform = self.platform platform.reload_settings() ps = platform.settings['settings'] niter=10 nshots=1 #create exc and gnd pulses start = 0 frequency = ps['pi_pulse_frequency'] amplitude = ps['pi_pulse_amplitude'] duration = ps['pi_pulse_duration'] phase = 0 shape = eval(ps['pi_pulse_shape']) qc_pi_pulse = Pulse(start, duration, amplitude, frequency, phase, shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) exc_sequence = PulseSequence() exc_sequence.add(qc_pi_pulse) gnd_sequence.add(ro_pulse) gnd_sequence = PulseSequence() #ro_pulse.start=0 gnd_sequence.add(ro_pulse) platform.LO_qrm.set_frequency(ps['resonator_freq'] - ro_pulse.frequency) platform.LO_qcm.set_frequency(ps['qubit_freq'] + qc_pi_pulse.frequency) platform.start() #Exectue niter single gnd shots platform.LO_qcm.off() all_gnd_states = [] for i in range(niter): qubit_state = platform.execute(gnd_sequence, nshots) #Compose complex point from i, q obtained from execution point = complex(qubit_state[2], qubit_state[3]) all_gnd_states.add(point) #Exectue niter single exc shots platform.LO_qcm.on() all_exc_states = [] for i in range(niter): qubit_state = platform.execute(exc_sequence, nshots) #Compose complex point from i, q obtained from execution point = complex(qubit_state[2], qubit_state[3]) all_exc_states.add(point) platform.stop() return all_gnd_states, np.mean(all_gnd_states), all_exc_states, np.mean(all_exc_states) def auto_calibrate_plaform(self): platform = self.platform #backup latest platform runcard utils.backup_config_file(platform) #run and save cavity spectroscopy calibration resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset = self.run_resonator_spectroscopy() print(utils.get_config_parameter("settings", "", "resonator_freq")) print(utils.get_config_parameter("settings", "", "resonator_spectroscopy_avg_min_ro_voltage")) print(utils.get_config_parameter("settings", "", "resonator_spectroscopy_max_ro_voltage")) print(utils.get_config_parameter("LO_QRM_settings", "", "frequency")) # utils.save_config_parameter("settings", "", "resonator_freq", float(resonator_freq)) # utils.save_config_parameter("settings", "", "resonator_spectroscopy_avg_min_ro_voltage", float(avg_min_voltage)) # utils.save_config_parameter("settings", "", "resonator_spectroscopy_max_ro_voltage", float(max_ro_voltage)) # utils.save_config_parameter("LO_QRM_settings", "", "frequency", float(resonator_freq - 20_000_000)) #run and save qubit spectroscopy calibration qubit_freq, min_ro_voltage, smooth_dataset, dataset = self.run_qubit_spectroscopy() print(utils.get_config_parameter("settings", "", "qubit_freq")) print(utils.get_config_parameter("LO_QCM_settings", "", "frequency")) print(utils.get_config_parameter("settings", "", "qubit_spectroscopy_min_ro_voltage")) # utils.save_config_parameter("settings", "", "qubit_freq", float(qubit_freq)) # utils.save_config_parameter("LO_QCM_settings", "", "frequency", float(qubit_freq + 200_000_000)) # utils.save_config_parameter("settings", "", "qubit_spectroscopy_min_ro_voltage", float(min_ro_voltage)) # #run Rabi and save Pi pulse params from calibration dataset, pi_pulse_duration, pi_pulse_amplitude, pi_pulse_gain, rabi_oscillations_pi_pulse_min_voltage, t1 = self.run_rabi_pulse_length() print(utils.get_config_parameter("settings", "", "pi_pulse_duration")) print(utils.get_config_parameter("settings", "", "pi_pulse_amplitude")) print(utils.get_config_parameter("settings", "", "pi_pulse_gain")) print(utils.get_config_parameter("settings", "", "rabi_oscillations_pi_pulse_min_voltage")) # utils.save_config_parameter("settings", "", "pi_pulse_duration", int(pi_pulse_duration)) # utils.save_config_parameter("settings", "", "pi_pulse_amplitude", float(pi_pulse_amplitude)) # utils.save_config_parameter("settings", "", "pi_pulse_gain", float(pi_pulse_gain)) # utils.save_config_parameter("settings", "", "rabi_oscillations_pi_pulse_min_voltage", float(rabi_oscillations_pi_pulse_min_voltage)) # #run calibration_qubit_states all_gnd_states, mean_gnd_states, all_exc_states, mean_exc_states = self.callibrate_qubit_states() # #TODO: save in runcard mean_gnd_states and mean_exc_states print(all_gnd_states) print(mean_gnd_states) print(all_exc_states) print(mean_exc_states) # #TODO: Remove plot qubit states results when tested utils.plot_qubit_states(all_gnd_states, all_exc_states) #TODO: Remove 0 and 1 classification from auto calibration when tested #Classify all points into 0 and 1 classified_gnd_results = [] for point in all_gnd_states: classified_gnd_results.add(utils.classify(point, mean_gnd_states, mean_exc_states)) classified_exc_results = [] for point in all_exc_states: classified_exc_results.add(utils.classify(point, mean_gnd_states, mean_exc_states)) print(classified_gnd_results) print(classified_exc_results) # help classes class QCPulseLengthParameter(): label = 'Qubit Control Pulse Length' unit = 'ns' name = 'qc_pulse_length' def __init__(self, ro_pulse, qc_pulse): self.ro_pulse = ro_pulse self.qc_pulse = qc_pulse def set(self, value): self.qc_pulse.duration = value self.
[ "ro_pulse", "qc_pulse", "name", "unit", "label", "set" ]
onfig_parameter("settings", "", "pi_pulse_gain")) print(utils.get_config_parameter("settings", "", "rabi_oscillations_pi_pulse_min_voltage")) # utils.save_config_parameter("settings", "", "pi_pulse_duration", int(pi_pulse_duration)) # utils.save_config_parameter("settings", "", "pi_pulse_amplitude", float(pi_pulse_amplitude)) # utils.save_config_parameter("settings", "", "pi_pulse_gain", float(pi_pulse_gain)) # utils.save_config_parameter("settings", "", "rabi_oscillations_pi_pulse_min_voltage", float(rabi_oscillations_pi_pulse_min_voltage)) # #run calibration_qubit_states all_gnd_states, mean_gnd_states, all_exc_states, mean_exc_states = self.callibrate_qubit_states() # #TODO: save in runcard mean_gnd_states and mean_exc_states print(all_gnd_states) print(mean_gnd_states) print(all_exc_states) print(mean_exc_states) # #TODO: Remove plot qubit states results when tested utils.plot_qubit_states(all_gnd_states, all_exc_states) #TODO: Remove 0 and 1 classification from auto calibration when tested #Classify all points into 0 and 1 classified_gnd_results = [] for point in all_gnd_states: classified_gnd_results.add(utils.classify(point, mean_gnd_states, mean_exc_states)) classified_exc_results = [] for point in all_exc_states: classified_exc_results.add(utils.classify(point, mean_gnd_states, mean_exc_states)) print(classified_gnd_results) print(classified_exc_results) # help classes class QCPulseLengthParameter(): label = 'Qubit Control Pulse Length' unit = 'ns' name = 'qc_pulse_length' def __init__(self, ro_pulse, qc_pulse): self.ro_pulse = ro_pulse self.qc_pulse = qc_pulse def set(self, value): self.qc_pulse.duration = value self.
5,526
7,848
223
17,001
qiboteam__qibolab
e4b0e8e6dd612e696a161da9972f4bb9b6bf8cd0
src/qibolab/calibration/calibration.py
common
ro_pulse
true
statement
7
7
false
false
[ "ro_pulse", "name", "unit", "label", "initial_value", "__init__", "base_duration", "set", "__annotations__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "base_duration", "type": "statement" }, { "name": "initial_value", "type": "statement" }, { "name": "label", "type": "statement" }, { "name": "name", "type": "statement" }, { "name": "ro_pulse", "type": "statement" }, { "name": "set", "type": "function" }, { "name": "unit", "type": "statement" }, { "name": "__annotations__", "type": "statement" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
import pathlib import numpy as np #import matplotlib.pyplot as plt import utils import yaml import fitting from qibolab import Platform # TODO: Have a look in the documentation of ``MeasurementControl`` #from quantify_core.measurement import MeasurementControl from quantify_core.measurement.control import Gettable, Settable from quantify_core.data.handling import set_datadir from scipy.signal import savgol_filter from qibolab.pulses import Pulse, ReadoutPulse from qibolab.circuit import PulseSequence from qibolab.pulse_shapes import Rectangular, Gaussian # TODO: Check why this set_datadir is needed #set_datadir(pathlib.Path("data") / "quantify") set_datadir(pathlib.Path(__file__).parent / "data" / "quantify") class Calibration(): def __init__(self, platform: Platform): self.platform = platform self.mc, self.pl, self.ins = utils.create_measurement_control('Calibration') def load_settings(self): # Load diagnostics settings with open("calibration.yml", "r") as file: return yaml.safe_load(file) def run_resonator_spectroscopy(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['resonator_spectroscopy'] lowres_width = ds['lowres_width'] lowres_step = ds['lowres_step'] highres_width = ds['highres_width'] highres_step = ds['highres_step'] precision_width = ds['precision_width'] precision_step = ds['precision_step'] #Fast Sweep scanrange = utils.variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step) mc.settables(platform.LO_qrm.device.frequency) mc.setpoints(scanrange + platform.LO_qrm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() platform.LO_qcm.off() dataset = mc.run("Resonator Spectroscopy Fast", soft_avg=1) platform.stop() platform.LO_qrm.set_frequency(dataset['x0'].values[dataset['y0'].argmax().values]) avg_min_voltage = np.mean(dataset['y0'].values[:(lowres_width//lowres_step)]) * 1e6 # Precision Sweep scanrange = np.arange(-precision_width, precision_width, precision_step) mc.settables(platform.LO_qrm.device.frequency) mc.setpoints(scanrange + platform.LO_qrm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() platform.LO_qcm.off() dataset = mc.run("Resonator Spectroscopy Precision", soft_avg=software_averages) platform.stop() # Fitting smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2) # resonator_freq = dataset['x0'].values[smooth_dataset.argmax()] + ro_pulse.frequency max_ro_voltage = smooth_dataset.max() * 1e6 f0, BW, Q = fitting.lorentzian_fit("last", max, "Resonator_spectroscopy") resonator_freq = (f0*1e9 + ro_pulse.frequency) print(f"\nResonator Frequency = {resonator_freq}") return resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset def run_qubit_spectroscopy(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['qubit_spectroscopy'] fast_start = ds['fast_start'] fast_end = ds['fast_end'] fast_step = ds['fast_step'] precision_start = ds['precision_start'] precision_end = ds['precision_end'] precision_step = ds['precision_step'] # Fast Sweep fast_sweep_scan_range = np.arange(fast_start, fast_end, fast_step) mc.settables(platform.LO_qcm.device.frequency) mc.setpoints(fast_sweep_scan_range + platform.LO_qcm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run("Qubit Spectroscopy Fast", soft_avg=1) platform.stop() # Precision Sweep platform.software_averages = 1 precision_sweep_scan_range = np.arange(precision_start, precision_end, precision_step) mc.settables(platform.LO_qcm.device.frequency) mc.setpoints(precision_sweep_scan_range + platform.LO_qcm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run("Qubit Spectroscopy Precision", soft_avg=software_averages) platform.stop() # Fitting smooth_dataset = savgol_filter(dataset['y0'].values, 11, 2) qubit_freq = dataset['x0'].values[smooth_dataset.argmin()] - qc_pulse.frequency min_ro_voltage = smooth_dataset.min() * 1e6 print(f"\nQubit Frequency = {qubit_freq}") utils.plot(smooth_dataset, dataset, "Qubit_Spectroscopy", 1) print("Qubit freq ontained from MC results: ", qubit_freq) f0, BW, Q = fitting.lorentzian_fit("last", min, "Qubit_Spectroscopy") qubit_freq = (f0*1e9 - qc_pulse.frequency) print("Qubit freq ontained from fitting: ", qubit_freq) return qubit_freq, min_ro_voltage, smooth_dataset, dataset def run_rabi_pulse_length(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['rabi_pulse_length'] pulse_duration_start = ds['pulse_duration_start'] pulse_duration_end = ds['pulse_duration_end'] pulse_duration_step = ds['pulse_duration_step'] mc.settables(Settable(QCPulseLengthParameter(ro_pulse, qc_pulse))) mc.setpoints(np.arange(pulse_duration_start, pulse_duration_end, pulse_duration_step)) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run('Rabi Pulse Length', soft_avg = software_averages) platform.stop() # Fitting pi_pulse_amplitude = qc_pulse.amplitude smooth_dataset, pi_pulse_duration, rabi_oscillations_pi_pulse_min_voltage, t1 = fitting.rabi_fit(dataset) pi_pulse_gain = platform.qcm.gain utils.plot(smooth_dataset, dataset, "Rabi_pulse_length", 1) print(f"\nPi pulse duration = {pi_pulse_duration}") print(f"\nPi pulse amplitude = {pi_pulse_amplitude}") #Check if the returned value from fitting is correct. print(f"\nPi pulse gain = {pi_pulse_gain}") #Needed? It is equal to the QCM gain when performing a Rabi. print(f"\nrabi oscillation min voltage = {rabi_oscillations_pi_pulse_min_voltage}") print(f"\nT1 = {t1}") return dataset, pi_pulse_duration, pi_pulse_amplitude, pi_pulse_gain, rabi_oscillations_pi_pulse_min_voltage, t1 # T1: RX(pi) - wait t(rotates z) - readout def run_t1(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] start = 0 frequency = ps['pi_pulse_frequency'] amplitude = ps['pi_pulse_amplitude'] duration = ps['pi_pulse_duration'] phase = 0 shape = eval(ps['pi_pulse_shape']) qc_pi_pulse = Pulse(start, duration, amplitude, frequency, phase, shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pi_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['t1'] delay_before_readout_start = ds['delay_before_readout_start'] delay_before_readout_end = ds['delay_before_readout_end'] delay_before_readout_step = ds['delay_before_readout_step'] mc.settables(Settable(T1WaitParameter(ro_pulse, qc_pi_pulse))) mc.setpoints(np.arange(delay_before_readout_start, delay_before_readout_end, delay_before_readout_step)) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run('T1', soft_avg = software_averages) platform.stop() # Fitting smooth_dataset, t1 = fitting.t1_fit(dataset) utils.plot(smooth_dataset, dataset, "t1", 1) print(f'\nT1 = {t1}') return t1, smooth_dataset, dataset def callibrate_qubit_states(self): platform = self.platform platform.reload_settings() ps = platform.settings['settings'] niter=10 nshots=1 #create exc and gnd pulses start = 0 frequency = ps['pi_pulse_frequency'] amplitude = ps['pi_pulse_amplitude'] duration = ps['pi_pulse_duration'] phase = 0 shape = eval(ps['pi_pulse_shape']) qc_pi_pulse = Pulse(start, duration, amplitude, frequency, phase, shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) exc_sequence = PulseSequence() exc_sequence.add(qc_pi_pulse) gnd_sequence.add(ro_pulse) gnd_sequence = PulseSequence() #ro_pulse.start=0 gnd_sequence.add(ro_pulse) platform.LO_qrm.set_frequency(ps['resonator_freq'] - ro_pulse.frequency) platform.LO_qcm.set_frequency(ps['qubit_freq'] + qc_pi_pulse.frequency) platform.start() #Exectue niter single gnd shots platform.LO_qcm.off() all_gnd_states = [] for i in range(niter): qubit_state = platform.execute(gnd_sequence, nshots) #Compose complex point from i, q obtained from execution point = complex(qubit_state[2], qubit_state[3]) all_gnd_states.add(point) #Exectue niter single exc shots platform.LO_qcm.on() all_exc_states = [] for i in range(niter): qubit_state = platform.execute(exc_sequence, nshots) #Compose complex point from i, q obtained from execution point = complex(qubit_state[2], qubit_state[3]) all_exc_states.add(point) platform.stop() return all_gnd_states, np.mean(all_gnd_states), all_exc_states, np.mean(all_exc_states) def auto_calibrate_plaform(self): platform = self.platform #backup latest platform runcard utils.backup_config_file(platform) #run and save cavity spectroscopy calibration resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset = self.run_resonator_spectroscopy() print(utils.get_config_parameter("settings", "", "resonator_freq")) print(utils.get_config_parameter("settings", "", "resonator_spectroscopy_avg_min_ro_voltage")) print(utils.get_config_parameter("settings", "", "resonator_spectroscopy_max_ro_voltage")) print(utils.get_config_parameter("LO_QRM_settings", "", "frequency")) # utils.save_config_parameter("settings", "", "resonator_freq", float(resonator_freq)) # utils.save_config_parameter("settings", "", "resonator_spectroscopy_avg_min_ro_voltage", float(avg_min_voltage)) # utils.save_config_parameter("settings", "", "resonator_spectroscopy_max_ro_voltage", float(max_ro_voltage)) # utils.save_config_parameter("LO_QRM_settings", "", "frequency", float(resonator_freq - 20_000_000)) #run and save qubit spectroscopy calibration qubit_freq, min_ro_voltage, smooth_dataset, dataset = self.run_qubit_spectroscopy() print(utils.get_config_parameter("settings", "", "qubit_freq")) print(utils.get_config_parameter("LO_QCM_settings", "", "frequency")) print(utils.get_config_parameter("settings", "", "qubit_spectroscopy_min_ro_voltage")) # utils.save_config_parameter("settings", "", "qubit_freq", float(qubit_freq)) # utils.save_config_parameter("LO_QCM_settings", "", "frequency", float(qubit_freq + 200_000_000)) # utils.save_config_parameter("settings", "", "qubit_spectroscopy_min_ro_voltage", float(min_ro_voltage)) # #run Rabi and save Pi pulse params from calibration dataset, pi_pulse_duration, pi_pulse_amplitude, pi_pulse_gain, rabi_oscillations_pi_pulse_min_voltage, t1 = self.run_rabi_pulse_length() print(utils.get_config_parameter("settings", "", "pi_pulse_duration")) print(utils.get_config_parameter("settings", "", "pi_pulse_amplitude")) print(utils.get_config_parameter("settings", "", "pi_pulse_gain")) print(utils.get_config_parameter("settings", "", "rabi_oscillations_pi_pulse_min_voltage")) # utils.save_config_parameter("settings", "", "pi_pulse_duration", int(pi_pulse_duration)) # utils.save_config_parameter("settings", "", "pi_pulse_amplitude", float(pi_pulse_amplitude)) # utils.save_config_parameter("settings", "", "pi_pulse_gain", float(pi_pulse_gain)) # utils.save_config_parameter("settings", "", "rabi_oscillations_pi_pulse_min_voltage", float(rabi_oscillations_pi_pulse_min_voltage)) # #run calibration_qubit_states all_gnd_states, mean_gnd_states, all_exc_states, mean_exc_states = self.callibrate_qubit_states() # #TODO: save in runcard mean_gnd_states and mean_exc_states print(all_gnd_states) print(mean_gnd_states) print(all_exc_states) print(mean_exc_states) # #TODO: Remove plot qubit states results when tested utils.plot_qubit_states(all_gnd_states, all_exc_states) #TODO: Remove 0 and 1 classification from auto calibration when tested #Classify all points into 0 and 1 classified_gnd_results = [] for point in all_gnd_states: classified_gnd_results.add(utils.classify(point, mean_gnd_states, mean_exc_states)) classified_exc_results = [] for point in all_exc_states: classified_exc_results.add(utils.classify(point, mean_gnd_states, mean_exc_states)) print(classified_gnd_results) print(classified_exc_results) # help classes class QCPulseLengthParameter(): label = 'Qubit Control Pulse Length' unit = 'ns' name = 'qc_pulse_length' def __init__(self, ro_pulse, qc_pulse): self.ro_pulse = ro_pulse self.qc_pulse = qc_pulse def set(self, value): self.qc_pulse.duration = value self.ro_pulse.start = value + 4 class T1WaitParameter(): label = 'Time' unit = 'ns' name = 't1_wait' initial_value = 0 def __init__(self, ro_pulse, qc_pulse): self.ro_pulse = ro_pulse self.base_duration = qc_pulse.duration def set(self, value): # TODO: implement following condition #must be >= 4ns <= 65535 #platform.delay_before_readout = value self.
[ "ro_pulse", "name", "unit", "label", "initial_value", "base_duration", "set" ]
, float(pi_pulse_gain)) # utils.save_config_parameter("settings", "", "rabi_oscillations_pi_pulse_min_voltage", float(rabi_oscillations_pi_pulse_min_voltage)) # #run calibration_qubit_states all_gnd_states, mean_gnd_states, all_exc_states, mean_exc_states = self.callibrate_qubit_states() # #TODO: save in runcard mean_gnd_states and mean_exc_states print(all_gnd_states) print(mean_gnd_states) print(all_exc_states) print(mean_exc_states) # #TODO: Remove plot qubit states results when tested utils.plot_qubit_states(all_gnd_states, all_exc_states) #TODO: Remove 0 and 1 classification from auto calibration when tested #Classify all points into 0 and 1 classified_gnd_results = [] for point in all_gnd_states: classified_gnd_results.add(utils.classify(point, mean_gnd_states, mean_exc_states)) classified_exc_results = [] for point in all_exc_states: classified_exc_results.add(utils.classify(point, mean_gnd_states, mean_exc_states)) print(classified_gnd_results) print(classified_exc_results) # help classes class QCPulseLengthParameter(): label = 'Qubit Control Pulse Length' unit = 'ns' name = 'qc_pulse_length' def __init__(self, ro_pulse, qc_pulse): self.ro_pulse = ro_pulse self.qc_pulse = qc_pulse def set(self, value): self.qc_pulse.duration = value self.ro_pulse.start = value + 4 class T1WaitParameter(): label = 'Time' unit = 'ns' name = 't1_wait' initial_value = 0 def __init__(self, ro_pulse, qc_pulse): self.ro_pulse = ro_pulse self.base_duration = qc_pulse.duration def set(self, value): # TODO: implement following condition #must be >= 4ns <= 65535 #platform.delay_before_readout = value self.
5,527
7,850
223
17,023
qiboteam__qibolab
e4b0e8e6dd612e696a161da9972f4bb9b6bf8cd0
src/qibolab/calibration/calibration.py
common
base_duration
true
statement
7
7
false
true
[ "ro_pulse", "base_duration", "name", "unit", "label", "__init__", "initial_value", "set", "__annotations__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "base_duration", "type": "statement" }, { "name": "initial_value", "type": "statement" }, { "name": "label", "type": "statement" }, { "name": "name", "type": "statement" }, { "name": "ro_pulse", "type": "statement" }, { "name": "set", "type": "function" }, { "name": "unit", "type": "statement" }, { "name": "__annotations__", "type": "statement" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
import pathlib import numpy as np #import matplotlib.pyplot as plt import utils import yaml import fitting from qibolab import Platform # TODO: Have a look in the documentation of ``MeasurementControl`` #from quantify_core.measurement import MeasurementControl from quantify_core.measurement.control import Gettable, Settable from quantify_core.data.handling import set_datadir from scipy.signal import savgol_filter from qibolab.pulses import Pulse, ReadoutPulse from qibolab.circuit import PulseSequence from qibolab.pulse_shapes import Rectangular, Gaussian # TODO: Check why this set_datadir is needed #set_datadir(pathlib.Path("data") / "quantify") set_datadir(pathlib.Path(__file__).parent / "data" / "quantify") class Calibration(): def __init__(self, platform: Platform): self.platform = platform self.mc, self.pl, self.ins = utils.create_measurement_control('Calibration') def load_settings(self): # Load diagnostics settings with open("calibration.yml", "r") as file: return yaml.safe_load(file) def run_resonator_spectroscopy(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['resonator_spectroscopy'] lowres_width = ds['lowres_width'] lowres_step = ds['lowres_step'] highres_width = ds['highres_width'] highres_step = ds['highres_step'] precision_width = ds['precision_width'] precision_step = ds['precision_step'] #Fast Sweep scanrange = utils.variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step) mc.settables(platform.LO_qrm.device.frequency) mc.setpoints(scanrange + platform.LO_qrm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() platform.LO_qcm.off() dataset = mc.run("Resonator Spectroscopy Fast", soft_avg=1) platform.stop() platform.LO_qrm.set_frequency(dataset['x0'].values[dataset['y0'].argmax().values]) avg_min_voltage = np.mean(dataset['y0'].values[:(lowres_width//lowres_step)]) * 1e6 # Precision Sweep scanrange = np.arange(-precision_width, precision_width, precision_step) mc.settables(platform.LO_qrm.device.frequency) mc.setpoints(scanrange + platform.LO_qrm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() platform.LO_qcm.off() dataset = mc.run("Resonator Spectroscopy Precision", soft_avg=software_averages) platform.stop() # Fitting smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2) # resonator_freq = dataset['x0'].values[smooth_dataset.argmax()] + ro_pulse.frequency max_ro_voltage = smooth_dataset.max() * 1e6 f0, BW, Q = fitting.lorentzian_fit("last", max, "Resonator_spectroscopy") resonator_freq = (f0*1e9 + ro_pulse.frequency) print(f"\nResonator Frequency = {resonator_freq}") return resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset def run_qubit_spectroscopy(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['qubit_spectroscopy'] fast_start = ds['fast_start'] fast_end = ds['fast_end'] fast_step = ds['fast_step'] precision_start = ds['precision_start'] precision_end = ds['precision_end'] precision_step = ds['precision_step'] # Fast Sweep fast_sweep_scan_range = np.arange(fast_start, fast_end, fast_step) mc.settables(platform.LO_qcm.device.frequency) mc.setpoints(fast_sweep_scan_range + platform.LO_qcm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run("Qubit Spectroscopy Fast", soft_avg=1) platform.stop() # Precision Sweep platform.software_averages = 1 precision_sweep_scan_range = np.arange(precision_start, precision_end, precision_step) mc.settables(platform.LO_qcm.device.frequency) mc.setpoints(precision_sweep_scan_range + platform.LO_qcm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run("Qubit Spectroscopy Precision", soft_avg=software_averages) platform.stop() # Fitting smooth_dataset = savgol_filter(dataset['y0'].values, 11, 2) qubit_freq = dataset['x0'].values[smooth_dataset.argmin()] - qc_pulse.frequency min_ro_voltage = smooth_dataset.min() * 1e6 print(f"\nQubit Frequency = {qubit_freq}") utils.plot(smooth_dataset, dataset, "Qubit_Spectroscopy", 1) print("Qubit freq ontained from MC results: ", qubit_freq) f0, BW, Q = fitting.lorentzian_fit("last", min, "Qubit_Spectroscopy") qubit_freq = (f0*1e9 - qc_pulse.frequency) print("Qubit freq ontained from fitting: ", qubit_freq) return qubit_freq, min_ro_voltage, smooth_dataset, dataset def run_rabi_pulse_length(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['rabi_pulse_length'] pulse_duration_start = ds['pulse_duration_start'] pulse_duration_end = ds['pulse_duration_end'] pulse_duration_step = ds['pulse_duration_step'] mc.settables(Settable(QCPulseLengthParameter(ro_pulse, qc_pulse))) mc.setpoints(np.arange(pulse_duration_start, pulse_duration_end, pulse_duration_step)) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run('Rabi Pulse Length', soft_avg = software_averages) platform.stop() # Fitting pi_pulse_amplitude = qc_pulse.amplitude smooth_dataset, pi_pulse_duration, rabi_oscillations_pi_pulse_min_voltage, t1 = fitting.rabi_fit(dataset) pi_pulse_gain = platform.qcm.gain utils.plot(smooth_dataset, dataset, "Rabi_pulse_length", 1) print(f"\nPi pulse duration = {pi_pulse_duration}") print(f"\nPi pulse amplitude = {pi_pulse_amplitude}") #Check if the returned value from fitting is correct. print(f"\nPi pulse gain = {pi_pulse_gain}") #Needed? It is equal to the QCM gain when performing a Rabi. print(f"\nrabi oscillation min voltage = {rabi_oscillations_pi_pulse_min_voltage}") print(f"\nT1 = {t1}") return dataset, pi_pulse_duration, pi_pulse_amplitude, pi_pulse_gain, rabi_oscillations_pi_pulse_min_voltage, t1 # T1: RX(pi) - wait t(rotates z) - readout def run_t1(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] start = 0 frequency = ps['pi_pulse_frequency'] amplitude = ps['pi_pulse_amplitude'] duration = ps['pi_pulse_duration'] phase = 0 shape = eval(ps['pi_pulse_shape']) qc_pi_pulse = Pulse(start, duration, amplitude, frequency, phase, shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pi_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['t1'] delay_before_readout_start = ds['delay_before_readout_start'] delay_before_readout_end = ds['delay_before_readout_end'] delay_before_readout_step = ds['delay_before_readout_step'] mc.settables(Settable(T1WaitParameter(ro_pulse, qc_pi_pulse))) mc.setpoints(np.arange(delay_before_readout_start, delay_before_readout_end, delay_before_readout_step)) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run('T1', soft_avg = software_averages) platform.stop() # Fitting smooth_dataset, t1 = fitting.t1_fit(dataset) utils.plot(smooth_dataset, dataset, "t1", 1) print(f'\nT1 = {t1}') return t1, smooth_dataset, dataset def callibrate_qubit_states(self): platform = self.platform platform.reload_settings() ps = platform.settings['settings'] niter=10 nshots=1 #create exc and gnd pulses start = 0 frequency = ps['pi_pulse_frequency'] amplitude = ps['pi_pulse_amplitude'] duration = ps['pi_pulse_duration'] phase = 0 shape = eval(ps['pi_pulse_shape']) qc_pi_pulse = Pulse(start, duration, amplitude, frequency, phase, shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) exc_sequence = PulseSequence() exc_sequence.add(qc_pi_pulse) gnd_sequence.add(ro_pulse) gnd_sequence = PulseSequence() #ro_pulse.start=0 gnd_sequence.add(ro_pulse) platform.LO_qrm.set_frequency(ps['resonator_freq'] - ro_pulse.frequency) platform.LO_qcm.set_frequency(ps['qubit_freq'] + qc_pi_pulse.frequency) platform.start() #Exectue niter single gnd shots platform.LO_qcm.off() all_gnd_states = [] for i in range(niter): qubit_state = platform.execute(gnd_sequence, nshots) #Compose complex point from i, q obtained from execution point = complex(qubit_state[2], qubit_state[3]) all_gnd_states.add(point) #Exectue niter single exc shots platform.LO_qcm.on() all_exc_states = [] for i in range(niter): qubit_state = platform.execute(exc_sequence, nshots) #Compose complex point from i, q obtained from execution point = complex(qubit_state[2], qubit_state[3]) all_exc_states.add(point) platform.stop() return all_gnd_states, np.mean(all_gnd_states), all_exc_states, np.mean(all_exc_states) def auto_calibrate_plaform(self): platform = self.platform #backup latest platform runcard utils.backup_config_file(platform) #run and save cavity spectroscopy calibration resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset = self.run_resonator_spectroscopy() print(utils.get_config_parameter("settings", "", "resonator_freq")) print(utils.get_config_parameter("settings", "", "resonator_spectroscopy_avg_min_ro_voltage")) print(utils.get_config_parameter("settings", "", "resonator_spectroscopy_max_ro_voltage")) print(utils.get_config_parameter("LO_QRM_settings", "", "frequency")) # utils.save_config_parameter("settings", "", "resonator_freq", float(resonator_freq)) # utils.save_config_parameter("settings", "", "resonator_spectroscopy_avg_min_ro_voltage", float(avg_min_voltage)) # utils.save_config_parameter("settings", "", "resonator_spectroscopy_max_ro_voltage", float(max_ro_voltage)) # utils.save_config_parameter("LO_QRM_settings", "", "frequency", float(resonator_freq - 20_000_000)) #run and save qubit spectroscopy calibration qubit_freq, min_ro_voltage, smooth_dataset, dataset = self.run_qubit_spectroscopy() print(utils.get_config_parameter("settings", "", "qubit_freq")) print(utils.get_config_parameter("LO_QCM_settings", "", "frequency")) print(utils.get_config_parameter("settings", "", "qubit_spectroscopy_min_ro_voltage")) # utils.save_config_parameter("settings", "", "qubit_freq", float(qubit_freq)) # utils.save_config_parameter("LO_QCM_settings", "", "frequency", float(qubit_freq + 200_000_000)) # utils.save_config_parameter("settings", "", "qubit_spectroscopy_min_ro_voltage", float(min_ro_voltage)) # #run Rabi and save Pi pulse params from calibration dataset, pi_pulse_duration, pi_pulse_amplitude, pi_pulse_gain, rabi_oscillations_pi_pulse_min_voltage, t1 = self.run_rabi_pulse_length() print(utils.get_config_parameter("settings", "", "pi_pulse_duration")) print(utils.get_config_parameter("settings", "", "pi_pulse_amplitude")) print(utils.get_config_parameter("settings", "", "pi_pulse_gain")) print(utils.get_config_parameter("settings", "", "rabi_oscillations_pi_pulse_min_voltage")) # utils.save_config_parameter("settings", "", "pi_pulse_duration", int(pi_pulse_duration)) # utils.save_config_parameter("settings", "", "pi_pulse_amplitude", float(pi_pulse_amplitude)) # utils.save_config_parameter("settings", "", "pi_pulse_gain", float(pi_pulse_gain)) # utils.save_config_parameter("settings", "", "rabi_oscillations_pi_pulse_min_voltage", float(rabi_oscillations_pi_pulse_min_voltage)) # #run calibration_qubit_states all_gnd_states, mean_gnd_states, all_exc_states, mean_exc_states = self.callibrate_qubit_states() # #TODO: save in runcard mean_gnd_states and mean_exc_states print(all_gnd_states) print(mean_gnd_states) print(all_exc_states) print(mean_exc_states) # #TODO: Remove plot qubit states results when tested utils.plot_qubit_states(all_gnd_states, all_exc_states) #TODO: Remove 0 and 1 classification from auto calibration when tested #Classify all points into 0 and 1 classified_gnd_results = [] for point in all_gnd_states: classified_gnd_results.add(utils.classify(point, mean_gnd_states, mean_exc_states)) classified_exc_results = [] for point in all_exc_states: classified_exc_results.add(utils.classify(point, mean_gnd_states, mean_exc_states)) print(classified_gnd_results) print(classified_exc_results) # help classes class QCPulseLengthParameter(): label = 'Qubit Control Pulse Length' unit = 'ns' name = 'qc_pulse_length' def __init__(self, ro_pulse, qc_pulse): self.ro_pulse = ro_pulse self.qc_pulse = qc_pulse def set(self, value): self.qc_pulse.duration = value self.ro_pulse.start = value + 4 class T1WaitParameter(): label = 'Time' unit = 'ns' name = 't1_wait' initial_value = 0 def __init__(self, ro_pulse, qc_pulse): self.ro_pulse = ro_pulse self.base_duration = qc_pulse.duration def set(self, value): # TODO: implement following condition #must be >= 4ns <= 65535 #platform.delay_before_readout = value self.ro_pulse.start = self.
[ "ro_pulse", "base_duration", "name", "unit", "label", "initial_value", "set" ]
) # utils.save_config_parameter("settings", "", "rabi_oscillations_pi_pulse_min_voltage", float(rabi_oscillations_pi_pulse_min_voltage)) # #run calibration_qubit_states all_gnd_states, mean_gnd_states, all_exc_states, mean_exc_states = self.callibrate_qubit_states() # #TODO: save in runcard mean_gnd_states and mean_exc_states print(all_gnd_states) print(mean_gnd_states) print(all_exc_states) print(mean_exc_states) # #TODO: Remove plot qubit states results when tested utils.plot_qubit_states(all_gnd_states, all_exc_states) #TODO: Remove 0 and 1 classification from auto calibration when tested #Classify all points into 0 and 1 classified_gnd_results = [] for point in all_gnd_states: classified_gnd_results.add(utils.classify(point, mean_gnd_states, mean_exc_states)) classified_exc_results = [] for point in all_exc_states: classified_exc_results.add(utils.classify(point, mean_gnd_states, mean_exc_states)) print(classified_gnd_results) print(classified_exc_results) # help classes class QCPulseLengthParameter(): label = 'Qubit Control Pulse Length' unit = 'ns' name = 'qc_pulse_length' def __init__(self, ro_pulse, qc_pulse): self.ro_pulse = ro_pulse self.qc_pulse = qc_pulse def set(self, value): self.qc_pulse.duration = value self.ro_pulse.start = value + 4 class T1WaitParameter(): label = 'Time' unit = 'ns' name = 't1_wait' initial_value = 0 def __init__(self, ro_pulse, qc_pulse): self.ro_pulse = ro_pulse self.base_duration = qc_pulse.duration def set(self, value): # TODO: implement following condition #must be >= 4ns <= 65535 #platform.delay_before_readout = value self.ro_pulse.start = self.
5,528
7,853
223
17,383
qiboteam__qibolab
e4b0e8e6dd612e696a161da9972f4bb9b6bf8cd0
src/qibolab/calibration/calibration.py
common
platform
true
statement
6
6
false
false
[ "platform", "sequence", "name", "unit", "label", "__init__", "get", "__annotations__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "get", "type": "function" }, { "name": "label", "type": "statement" }, { "name": "name", "type": "statement" }, { "name": "platform", "type": "statement" }, { "name": "sequence", "type": "statement" }, { "name": "unit", "type": "statement" }, { "name": "__annotations__", "type": "statement" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
import pathlib import numpy as np #import matplotlib.pyplot as plt import utils import yaml import fitting from qibolab import Platform # TODO: Have a look in the documentation of ``MeasurementControl`` #from quantify_core.measurement import MeasurementControl from quantify_core.measurement.control import Gettable, Settable from quantify_core.data.handling import set_datadir from scipy.signal import savgol_filter from qibolab.pulses import Pulse, ReadoutPulse from qibolab.circuit import PulseSequence from qibolab.pulse_shapes import Rectangular, Gaussian # TODO: Check why this set_datadir is needed #set_datadir(pathlib.Path("data") / "quantify") set_datadir(pathlib.Path(__file__).parent / "data" / "quantify") class Calibration(): def __init__(self, platform: Platform): self.platform = platform self.mc, self.pl, self.ins = utils.create_measurement_control('Calibration') def load_settings(self): # Load diagnostics settings with open("calibration.yml", "r") as file: return yaml.safe_load(file) def run_resonator_spectroscopy(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['resonator_spectroscopy'] lowres_width = ds['lowres_width'] lowres_step = ds['lowres_step'] highres_width = ds['highres_width'] highres_step = ds['highres_step'] precision_width = ds['precision_width'] precision_step = ds['precision_step'] #Fast Sweep scanrange = utils.variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step) mc.settables(platform.LO_qrm.device.frequency) mc.setpoints(scanrange + platform.LO_qrm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() platform.LO_qcm.off() dataset = mc.run("Resonator Spectroscopy Fast", soft_avg=1) platform.stop() platform.LO_qrm.set_frequency(dataset['x0'].values[dataset['y0'].argmax().values]) avg_min_voltage = np.mean(dataset['y0'].values[:(lowres_width//lowres_step)]) * 1e6 # Precision Sweep scanrange = np.arange(-precision_width, precision_width, precision_step) mc.settables(platform.LO_qrm.device.frequency) mc.setpoints(scanrange + platform.LO_qrm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() platform.LO_qcm.off() dataset = mc.run("Resonator Spectroscopy Precision", soft_avg=software_averages) platform.stop() # Fitting smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2) # resonator_freq = dataset['x0'].values[smooth_dataset.argmax()] + ro_pulse.frequency max_ro_voltage = smooth_dataset.max() * 1e6 f0, BW, Q = fitting.lorentzian_fit("last", max, "Resonator_spectroscopy") resonator_freq = (f0*1e9 + ro_pulse.frequency) print(f"\nResonator Frequency = {resonator_freq}") return resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset def run_qubit_spectroscopy(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['qubit_spectroscopy'] fast_start = ds['fast_start'] fast_end = ds['fast_end'] fast_step = ds['fast_step'] precision_start = ds['precision_start'] precision_end = ds['precision_end'] precision_step = ds['precision_step'] # Fast Sweep fast_sweep_scan_range = np.arange(fast_start, fast_end, fast_step) mc.settables(platform.LO_qcm.device.frequency) mc.setpoints(fast_sweep_scan_range + platform.LO_qcm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run("Qubit Spectroscopy Fast", soft_avg=1) platform.stop() # Precision Sweep platform.software_averages = 1 precision_sweep_scan_range = np.arange(precision_start, precision_end, precision_step) mc.settables(platform.LO_qcm.device.frequency) mc.setpoints(precision_sweep_scan_range + platform.LO_qcm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run("Qubit Spectroscopy Precision", soft_avg=software_averages) platform.stop() # Fitting smooth_dataset = savgol_filter(dataset['y0'].values, 11, 2) qubit_freq = dataset['x0'].values[smooth_dataset.argmin()] - qc_pulse.frequency min_ro_voltage = smooth_dataset.min() * 1e6 print(f"\nQubit Frequency = {qubit_freq}") utils.plot(smooth_dataset, dataset, "Qubit_Spectroscopy", 1) print("Qubit freq ontained from MC results: ", qubit_freq) f0, BW, Q = fitting.lorentzian_fit("last", min, "Qubit_Spectroscopy") qubit_freq = (f0*1e9 - qc_pulse.frequency) print("Qubit freq ontained from fitting: ", qubit_freq) return qubit_freq, min_ro_voltage, smooth_dataset, dataset def run_rabi_pulse_length(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['rabi_pulse_length'] pulse_duration_start = ds['pulse_duration_start'] pulse_duration_end = ds['pulse_duration_end'] pulse_duration_step = ds['pulse_duration_step'] mc.settables(Settable(QCPulseLengthParameter(ro_pulse, qc_pulse))) mc.setpoints(np.arange(pulse_duration_start, pulse_duration_end, pulse_duration_step)) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run('Rabi Pulse Length', soft_avg = software_averages) platform.stop() # Fitting pi_pulse_amplitude = qc_pulse.amplitude smooth_dataset, pi_pulse_duration, rabi_oscillations_pi_pulse_min_voltage, t1 = fitting.rabi_fit(dataset) pi_pulse_gain = platform.qcm.gain utils.plot(smooth_dataset, dataset, "Rabi_pulse_length", 1) print(f"\nPi pulse duration = {pi_pulse_duration}") print(f"\nPi pulse amplitude = {pi_pulse_amplitude}") #Check if the returned value from fitting is correct. print(f"\nPi pulse gain = {pi_pulse_gain}") #Needed? It is equal to the QCM gain when performing a Rabi. print(f"\nrabi oscillation min voltage = {rabi_oscillations_pi_pulse_min_voltage}") print(f"\nT1 = {t1}") return dataset, pi_pulse_duration, pi_pulse_amplitude, pi_pulse_gain, rabi_oscillations_pi_pulse_min_voltage, t1 # T1: RX(pi) - wait t(rotates z) - readout def run_t1(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] start = 0 frequency = ps['pi_pulse_frequency'] amplitude = ps['pi_pulse_amplitude'] duration = ps['pi_pulse_duration'] phase = 0 shape = eval(ps['pi_pulse_shape']) qc_pi_pulse = Pulse(start, duration, amplitude, frequency, phase, shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pi_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['t1'] delay_before_readout_start = ds['delay_before_readout_start'] delay_before_readout_end = ds['delay_before_readout_end'] delay_before_readout_step = ds['delay_before_readout_step'] mc.settables(Settable(T1WaitParameter(ro_pulse, qc_pi_pulse))) mc.setpoints(np.arange(delay_before_readout_start, delay_before_readout_end, delay_before_readout_step)) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run('T1', soft_avg = software_averages) platform.stop() # Fitting smooth_dataset, t1 = fitting.t1_fit(dataset) utils.plot(smooth_dataset, dataset, "t1", 1) print(f'\nT1 = {t1}') return t1, smooth_dataset, dataset def callibrate_qubit_states(self): platform = self.platform platform.reload_settings() ps = platform.settings['settings'] niter=10 nshots=1 #create exc and gnd pulses start = 0 frequency = ps['pi_pulse_frequency'] amplitude = ps['pi_pulse_amplitude'] duration = ps['pi_pulse_duration'] phase = 0 shape = eval(ps['pi_pulse_shape']) qc_pi_pulse = Pulse(start, duration, amplitude, frequency, phase, shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) exc_sequence = PulseSequence() exc_sequence.add(qc_pi_pulse) gnd_sequence.add(ro_pulse) gnd_sequence = PulseSequence() #ro_pulse.start=0 gnd_sequence.add(ro_pulse) platform.LO_qrm.set_frequency(ps['resonator_freq'] - ro_pulse.frequency) platform.LO_qcm.set_frequency(ps['qubit_freq'] + qc_pi_pulse.frequency) platform.start() #Exectue niter single gnd shots platform.LO_qcm.off() all_gnd_states = [] for i in range(niter): qubit_state = platform.execute(gnd_sequence, nshots) #Compose complex point from i, q obtained from execution point = complex(qubit_state[2], qubit_state[3]) all_gnd_states.add(point) #Exectue niter single exc shots platform.LO_qcm.on() all_exc_states = [] for i in range(niter): qubit_state = platform.execute(exc_sequence, nshots) #Compose complex point from i, q obtained from execution point = complex(qubit_state[2], qubit_state[3]) all_exc_states.add(point) platform.stop() return all_gnd_states, np.mean(all_gnd_states), all_exc_states, np.mean(all_exc_states) def auto_calibrate_plaform(self): platform = self.platform #backup latest platform runcard utils.backup_config_file(platform) #run and save cavity spectroscopy calibration resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset = self.run_resonator_spectroscopy() print(utils.get_config_parameter("settings", "", "resonator_freq")) print(utils.get_config_parameter("settings", "", "resonator_spectroscopy_avg_min_ro_voltage")) print(utils.get_config_parameter("settings", "", "resonator_spectroscopy_max_ro_voltage")) print(utils.get_config_parameter("LO_QRM_settings", "", "frequency")) # utils.save_config_parameter("settings", "", "resonator_freq", float(resonator_freq)) # utils.save_config_parameter("settings", "", "resonator_spectroscopy_avg_min_ro_voltage", float(avg_min_voltage)) # utils.save_config_parameter("settings", "", "resonator_spectroscopy_max_ro_voltage", float(max_ro_voltage)) # utils.save_config_parameter("LO_QRM_settings", "", "frequency", float(resonator_freq - 20_000_000)) #run and save qubit spectroscopy calibration qubit_freq, min_ro_voltage, smooth_dataset, dataset = self.run_qubit_spectroscopy() print(utils.get_config_parameter("settings", "", "qubit_freq")) print(utils.get_config_parameter("LO_QCM_settings", "", "frequency")) print(utils.get_config_parameter("settings", "", "qubit_spectroscopy_min_ro_voltage")) # utils.save_config_parameter("settings", "", "qubit_freq", float(qubit_freq)) # utils.save_config_parameter("LO_QCM_settings", "", "frequency", float(qubit_freq + 200_000_000)) # utils.save_config_parameter("settings", "", "qubit_spectroscopy_min_ro_voltage", float(min_ro_voltage)) # #run Rabi and save Pi pulse params from calibration dataset, pi_pulse_duration, pi_pulse_amplitude, pi_pulse_gain, rabi_oscillations_pi_pulse_min_voltage, t1 = self.run_rabi_pulse_length() print(utils.get_config_parameter("settings", "", "pi_pulse_duration")) print(utils.get_config_parameter("settings", "", "pi_pulse_amplitude")) print(utils.get_config_parameter("settings", "", "pi_pulse_gain")) print(utils.get_config_parameter("settings", "", "rabi_oscillations_pi_pulse_min_voltage")) # utils.save_config_parameter("settings", "", "pi_pulse_duration", int(pi_pulse_duration)) # utils.save_config_parameter("settings", "", "pi_pulse_amplitude", float(pi_pulse_amplitude)) # utils.save_config_parameter("settings", "", "pi_pulse_gain", float(pi_pulse_gain)) # utils.save_config_parameter("settings", "", "rabi_oscillations_pi_pulse_min_voltage", float(rabi_oscillations_pi_pulse_min_voltage)) # #run calibration_qubit_states all_gnd_states, mean_gnd_states, all_exc_states, mean_exc_states = self.callibrate_qubit_states() # #TODO: save in runcard mean_gnd_states and mean_exc_states print(all_gnd_states) print(mean_gnd_states) print(all_exc_states) print(mean_exc_states) # #TODO: Remove plot qubit states results when tested utils.plot_qubit_states(all_gnd_states, all_exc_states) #TODO: Remove 0 and 1 classification from auto calibration when tested #Classify all points into 0 and 1 classified_gnd_results = [] for point in all_gnd_states: classified_gnd_results.add(utils.classify(point, mean_gnd_states, mean_exc_states)) classified_exc_results = [] for point in all_exc_states: classified_exc_results.add(utils.classify(point, mean_gnd_states, mean_exc_states)) print(classified_gnd_results) print(classified_exc_results) # help classes class QCPulseLengthParameter(): label = 'Qubit Control Pulse Length' unit = 'ns' name = 'qc_pulse_length' def __init__(self, ro_pulse, qc_pulse): self.ro_pulse = ro_pulse self.qc_pulse = qc_pulse def set(self, value): self.qc_pulse.duration = value self.ro_pulse.start = value + 4 class T1WaitParameter(): label = 'Time' unit = 'ns' name = 't1_wait' initial_value = 0 def __init__(self, ro_pulse, qc_pulse): self.ro_pulse = ro_pulse self.base_duration = qc_pulse.duration def set(self, value): # TODO: implement following condition #must be >= 4ns <= 65535 #platform.delay_before_readout = value self.ro_pulse.start = self.base_duration + 4 + value class ROController(): # Quantify Gettable Interface Implementation label = ['Amplitude', 'Phase','I','Q'] unit = ['V', 'Radians','V','V'] name = ['A', 'Phi','I','Q'] def __init__(self, platform, sequence): self.platform = platform self.sequence = sequence def get(self): return self.
[ "platform", "sequence", "name", "unit", "label", "get" ]
print(all_gnd_states) print(mean_gnd_states) print(all_exc_states) print(mean_exc_states) # #TODO: Remove plot qubit states results when tested utils.plot_qubit_states(all_gnd_states, all_exc_states) #TODO: Remove 0 and 1 classification from auto calibration when tested #Classify all points into 0 and 1 classified_gnd_results = [] for point in all_gnd_states: classified_gnd_results.add(utils.classify(point, mean_gnd_states, mean_exc_states)) classified_exc_results = [] for point in all_exc_states: classified_exc_results.add(utils.classify(point, mean_gnd_states, mean_exc_states)) print(classified_gnd_results) print(classified_exc_results) # help classes class QCPulseLengthParameter(): label = 'Qubit Control Pulse Length' unit = 'ns' name = 'qc_pulse_length' def __init__(self, ro_pulse, qc_pulse): self.ro_pulse = ro_pulse self.qc_pulse = qc_pulse def set(self, value): self.qc_pulse.duration = value self.ro_pulse.start = value + 4 class T1WaitParameter(): label = 'Time' unit = 'ns' name = 't1_wait' initial_value = 0 def __init__(self, ro_pulse, qc_pulse): self.ro_pulse = ro_pulse self.base_duration = qc_pulse.duration def set(self, value): # TODO: implement following condition #must be >= 4ns <= 65535 #platform.delay_before_readout = value self.ro_pulse.start = self.base_duration + 4 + value class ROController(): # Quantify Gettable Interface Implementation label = ['Amplitude', 'Phase','I','Q'] unit = ['V', 'Radians','V','V'] name = ['A', 'Phi','I','Q'] def __init__(self, platform, sequence): self.platform = platform self.sequence = sequence def get(self): return self.
5,529
7,854
223
17,405
qiboteam__qibolab
e4b0e8e6dd612e696a161da9972f4bb9b6bf8cd0
src/qibolab/calibration/calibration.py
common
sequence
true
statement
6
6
false
true
[ "platform", "sequence", "name", "unit", "label", "__init__", "get", "__annotations__", "__class__", "__delattr__", "__dict__", "__dir__", "__eq__", "__format__", "__getattribute__", "__hash__", "__init_subclass__", "__ne__", "__new__", "__reduce__", "__reduce_ex__", "__repr__", "__setattr__", "__sizeof__", "__str__", "__subclasshook__", "__doc__", "__module__" ]
[ { "name": "get", "type": "function" }, { "name": "label", "type": "statement" }, { "name": "name", "type": "statement" }, { "name": "platform", "type": "statement" }, { "name": "sequence", "type": "statement" }, { "name": "unit", "type": "statement" }, { "name": "__annotations__", "type": "statement" }, { "name": "__class__", "type": "property" }, { "name": "__delattr__", "type": "function" }, { "name": "__dict__", "type": "statement" }, { "name": "__dir__", "type": "function" }, { "name": "__doc__", "type": "statement" }, { "name": "__eq__", "type": "function" }, { "name": "__format__", "type": "function" }, { "name": "__getattribute__", "type": "function" }, { "name": "__hash__", "type": "function" }, { "name": "__init__", "type": "function" }, { "name": "__init_subclass__", "type": "function" }, { "name": "__module__", "type": "statement" }, { "name": "__ne__", "type": "function" }, { "name": "__new__", "type": "function" }, { "name": "__reduce__", "type": "function" }, { "name": "__reduce_ex__", "type": "function" }, { "name": "__repr__", "type": "function" }, { "name": "__setattr__", "type": "function" }, { "name": "__sizeof__", "type": "function" }, { "name": "__slots__", "type": "statement" }, { "name": "__str__", "type": "function" } ]
import pathlib import numpy as np #import matplotlib.pyplot as plt import utils import yaml import fitting from qibolab import Platform # TODO: Have a look in the documentation of ``MeasurementControl`` #from quantify_core.measurement import MeasurementControl from quantify_core.measurement.control import Gettable, Settable from quantify_core.data.handling import set_datadir from scipy.signal import savgol_filter from qibolab.pulses import Pulse, ReadoutPulse from qibolab.circuit import PulseSequence from qibolab.pulse_shapes import Rectangular, Gaussian # TODO: Check why this set_datadir is needed #set_datadir(pathlib.Path("data") / "quantify") set_datadir(pathlib.Path(__file__).parent / "data" / "quantify") class Calibration(): def __init__(self, platform: Platform): self.platform = platform self.mc, self.pl, self.ins = utils.create_measurement_control('Calibration') def load_settings(self): # Load diagnostics settings with open("calibration.yml", "r") as file: return yaml.safe_load(file) def run_resonator_spectroscopy(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['resonator_spectroscopy'] lowres_width = ds['lowres_width'] lowres_step = ds['lowres_step'] highres_width = ds['highres_width'] highres_step = ds['highres_step'] precision_width = ds['precision_width'] precision_step = ds['precision_step'] #Fast Sweep scanrange = utils.variable_resolution_scanrange(lowres_width, lowres_step, highres_width, highres_step) mc.settables(platform.LO_qrm.device.frequency) mc.setpoints(scanrange + platform.LO_qrm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() platform.LO_qcm.off() dataset = mc.run("Resonator Spectroscopy Fast", soft_avg=1) platform.stop() platform.LO_qrm.set_frequency(dataset['x0'].values[dataset['y0'].argmax().values]) avg_min_voltage = np.mean(dataset['y0'].values[:(lowres_width//lowres_step)]) * 1e6 # Precision Sweep scanrange = np.arange(-precision_width, precision_width, precision_step) mc.settables(platform.LO_qrm.device.frequency) mc.setpoints(scanrange + platform.LO_qrm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() platform.LO_qcm.off() dataset = mc.run("Resonator Spectroscopy Precision", soft_avg=software_averages) platform.stop() # Fitting smooth_dataset = savgol_filter(dataset['y0'].values, 25, 2) # resonator_freq = dataset['x0'].values[smooth_dataset.argmax()] + ro_pulse.frequency max_ro_voltage = smooth_dataset.max() * 1e6 f0, BW, Q = fitting.lorentzian_fit("last", max, "Resonator_spectroscopy") resonator_freq = (f0*1e9 + ro_pulse.frequency) print(f"\nResonator Frequency = {resonator_freq}") return resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset def run_qubit_spectroscopy(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['qubit_spectroscopy'] fast_start = ds['fast_start'] fast_end = ds['fast_end'] fast_step = ds['fast_step'] precision_start = ds['precision_start'] precision_end = ds['precision_end'] precision_step = ds['precision_step'] # Fast Sweep fast_sweep_scan_range = np.arange(fast_start, fast_end, fast_step) mc.settables(platform.LO_qcm.device.frequency) mc.setpoints(fast_sweep_scan_range + platform.LO_qcm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run("Qubit Spectroscopy Fast", soft_avg=1) platform.stop() # Precision Sweep platform.software_averages = 1 precision_sweep_scan_range = np.arange(precision_start, precision_end, precision_step) mc.settables(platform.LO_qcm.device.frequency) mc.setpoints(precision_sweep_scan_range + platform.LO_qcm.get_frequency()) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run("Qubit Spectroscopy Precision", soft_avg=software_averages) platform.stop() # Fitting smooth_dataset = savgol_filter(dataset['y0'].values, 11, 2) qubit_freq = dataset['x0'].values[smooth_dataset.argmin()] - qc_pulse.frequency min_ro_voltage = smooth_dataset.min() * 1e6 print(f"\nQubit Frequency = {qubit_freq}") utils.plot(smooth_dataset, dataset, "Qubit_Spectroscopy", 1) print("Qubit freq ontained from MC results: ", qubit_freq) f0, BW, Q = fitting.lorentzian_fit("last", min, "Qubit_Spectroscopy") qubit_freq = (f0*1e9 - qc_pulse.frequency) print("Qubit freq ontained from fitting: ", qubit_freq) return qubit_freq, min_ro_voltage, smooth_dataset, dataset def run_rabi_pulse_length(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] qc_pulse_shape = eval(ps['qc_spectroscopy_pulse'].popitem()[1]) qc_pulse_settings = ps['qc_spectroscopy_pulse'] qc_pulse = Pulse(**qc_pulse_settings, shape = qc_pulse_shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['rabi_pulse_length'] pulse_duration_start = ds['pulse_duration_start'] pulse_duration_end = ds['pulse_duration_end'] pulse_duration_step = ds['pulse_duration_step'] mc.settables(Settable(QCPulseLengthParameter(ro_pulse, qc_pulse))) mc.setpoints(np.arange(pulse_duration_start, pulse_duration_end, pulse_duration_step)) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run('Rabi Pulse Length', soft_avg = software_averages) platform.stop() # Fitting pi_pulse_amplitude = qc_pulse.amplitude smooth_dataset, pi_pulse_duration, rabi_oscillations_pi_pulse_min_voltage, t1 = fitting.rabi_fit(dataset) pi_pulse_gain = platform.qcm.gain utils.plot(smooth_dataset, dataset, "Rabi_pulse_length", 1) print(f"\nPi pulse duration = {pi_pulse_duration}") print(f"\nPi pulse amplitude = {pi_pulse_amplitude}") #Check if the returned value from fitting is correct. print(f"\nPi pulse gain = {pi_pulse_gain}") #Needed? It is equal to the QCM gain when performing a Rabi. print(f"\nrabi oscillation min voltage = {rabi_oscillations_pi_pulse_min_voltage}") print(f"\nT1 = {t1}") return dataset, pi_pulse_duration, pi_pulse_amplitude, pi_pulse_gain, rabi_oscillations_pi_pulse_min_voltage, t1 # T1: RX(pi) - wait t(rotates z) - readout def run_t1(self): platform = self.platform platform.reload_settings() mc = self.mc ps = platform.settings['settings'] start = 0 frequency = ps['pi_pulse_frequency'] amplitude = ps['pi_pulse_amplitude'] duration = ps['pi_pulse_duration'] phase = 0 shape = eval(ps['pi_pulse_shape']) qc_pi_pulse = Pulse(start, duration, amplitude, frequency, phase, shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) sequence = PulseSequence() sequence.add(qc_pi_pulse) sequence.add(ro_pulse) ds = self.load_settings() self.pl.tuids_max_num(ds['max_num_plots']) software_averages = ds['software_averages'] ds = ds['t1'] delay_before_readout_start = ds['delay_before_readout_start'] delay_before_readout_end = ds['delay_before_readout_end'] delay_before_readout_step = ds['delay_before_readout_step'] mc.settables(Settable(T1WaitParameter(ro_pulse, qc_pi_pulse))) mc.setpoints(np.arange(delay_before_readout_start, delay_before_readout_end, delay_before_readout_step)) mc.gettables(Gettable(ROController(platform, sequence))) platform.start() dataset = mc.run('T1', soft_avg = software_averages) platform.stop() # Fitting smooth_dataset, t1 = fitting.t1_fit(dataset) utils.plot(smooth_dataset, dataset, "t1", 1) print(f'\nT1 = {t1}') return t1, smooth_dataset, dataset def callibrate_qubit_states(self): platform = self.platform platform.reload_settings() ps = platform.settings['settings'] niter=10 nshots=1 #create exc and gnd pulses start = 0 frequency = ps['pi_pulse_frequency'] amplitude = ps['pi_pulse_amplitude'] duration = ps['pi_pulse_duration'] phase = 0 shape = eval(ps['pi_pulse_shape']) qc_pi_pulse = Pulse(start, duration, amplitude, frequency, phase, shape) ro_pulse_shape = eval(ps['readout_pulse'].popitem()[1]) ro_pulse_settings = ps['readout_pulse'] ro_pulse = ReadoutPulse(**ro_pulse_settings, shape = ro_pulse_shape) exc_sequence = PulseSequence() exc_sequence.add(qc_pi_pulse) gnd_sequence.add(ro_pulse) gnd_sequence = PulseSequence() #ro_pulse.start=0 gnd_sequence.add(ro_pulse) platform.LO_qrm.set_frequency(ps['resonator_freq'] - ro_pulse.frequency) platform.LO_qcm.set_frequency(ps['qubit_freq'] + qc_pi_pulse.frequency) platform.start() #Exectue niter single gnd shots platform.LO_qcm.off() all_gnd_states = [] for i in range(niter): qubit_state = platform.execute(gnd_sequence, nshots) #Compose complex point from i, q obtained from execution point = complex(qubit_state[2], qubit_state[3]) all_gnd_states.add(point) #Exectue niter single exc shots platform.LO_qcm.on() all_exc_states = [] for i in range(niter): qubit_state = platform.execute(exc_sequence, nshots) #Compose complex point from i, q obtained from execution point = complex(qubit_state[2], qubit_state[3]) all_exc_states.add(point) platform.stop() return all_gnd_states, np.mean(all_gnd_states), all_exc_states, np.mean(all_exc_states) def auto_calibrate_plaform(self): platform = self.platform #backup latest platform runcard utils.backup_config_file(platform) #run and save cavity spectroscopy calibration resonator_freq, avg_min_voltage, max_ro_voltage, smooth_dataset, dataset = self.run_resonator_spectroscopy() print(utils.get_config_parameter("settings", "", "resonator_freq")) print(utils.get_config_parameter("settings", "", "resonator_spectroscopy_avg_min_ro_voltage")) print(utils.get_config_parameter("settings", "", "resonator_spectroscopy_max_ro_voltage")) print(utils.get_config_parameter("LO_QRM_settings", "", "frequency")) # utils.save_config_parameter("settings", "", "resonator_freq", float(resonator_freq)) # utils.save_config_parameter("settings", "", "resonator_spectroscopy_avg_min_ro_voltage", float(avg_min_voltage)) # utils.save_config_parameter("settings", "", "resonator_spectroscopy_max_ro_voltage", float(max_ro_voltage)) # utils.save_config_parameter("LO_QRM_settings", "", "frequency", float(resonator_freq - 20_000_000)) #run and save qubit spectroscopy calibration qubit_freq, min_ro_voltage, smooth_dataset, dataset = self.run_qubit_spectroscopy() print(utils.get_config_parameter("settings", "", "qubit_freq")) print(utils.get_config_parameter("LO_QCM_settings", "", "frequency")) print(utils.get_config_parameter("settings", "", "qubit_spectroscopy_min_ro_voltage")) # utils.save_config_parameter("settings", "", "qubit_freq", float(qubit_freq)) # utils.save_config_parameter("LO_QCM_settings", "", "frequency", float(qubit_freq + 200_000_000)) # utils.save_config_parameter("settings", "", "qubit_spectroscopy_min_ro_voltage", float(min_ro_voltage)) # #run Rabi and save Pi pulse params from calibration dataset, pi_pulse_duration, pi_pulse_amplitude, pi_pulse_gain, rabi_oscillations_pi_pulse_min_voltage, t1 = self.run_rabi_pulse_length() print(utils.get_config_parameter("settings", "", "pi_pulse_duration")) print(utils.get_config_parameter("settings", "", "pi_pulse_amplitude")) print(utils.get_config_parameter("settings", "", "pi_pulse_gain")) print(utils.get_config_parameter("settings", "", "rabi_oscillations_pi_pulse_min_voltage")) # utils.save_config_parameter("settings", "", "pi_pulse_duration", int(pi_pulse_duration)) # utils.save_config_parameter("settings", "", "pi_pulse_amplitude", float(pi_pulse_amplitude)) # utils.save_config_parameter("settings", "", "pi_pulse_gain", float(pi_pulse_gain)) # utils.save_config_parameter("settings", "", "rabi_oscillations_pi_pulse_min_voltage", float(rabi_oscillations_pi_pulse_min_voltage)) # #run calibration_qubit_states all_gnd_states, mean_gnd_states, all_exc_states, mean_exc_states = self.callibrate_qubit_states() # #TODO: save in runcard mean_gnd_states and mean_exc_states print(all_gnd_states) print(mean_gnd_states) print(all_exc_states) print(mean_exc_states) # #TODO: Remove plot qubit states results when tested utils.plot_qubit_states(all_gnd_states, all_exc_states) #TODO: Remove 0 and 1 classification from auto calibration when tested #Classify all points into 0 and 1 classified_gnd_results = [] for point in all_gnd_states: classified_gnd_results.add(utils.classify(point, mean_gnd_states, mean_exc_states)) classified_exc_results = [] for point in all_exc_states: classified_exc_results.add(utils.classify(point, mean_gnd_states, mean_exc_states)) print(classified_gnd_results) print(classified_exc_results) # help classes class QCPulseLengthParameter(): label = 'Qubit Control Pulse Length' unit = 'ns' name = 'qc_pulse_length' def __init__(self, ro_pulse, qc_pulse): self.ro_pulse = ro_pulse self.qc_pulse = qc_pulse def set(self, value): self.qc_pulse.duration = value self.ro_pulse.start = value + 4 class T1WaitParameter(): label = 'Time' unit = 'ns' name = 't1_wait' initial_value = 0 def __init__(self, ro_pulse, qc_pulse): self.ro_pulse = ro_pulse self.base_duration = qc_pulse.duration def set(self, value): # TODO: implement following condition #must be >= 4ns <= 65535 #platform.delay_before_readout = value self.ro_pulse.start = self.base_duration + 4 + value class ROController(): # Quantify Gettable Interface Implementation label = ['Amplitude', 'Phase','I','Q'] unit = ['V', 'Radians','V','V'] name = ['A', 'Phi','I','Q'] def __init__(self, platform, sequence): self.platform = platform self.sequence = sequence def get(self): return self.platform.execute(self.
[ "platform", "sequence", "name", "unit", "label", "get" ]
_states) print(mean_gnd_states) print(all_exc_states) print(mean_exc_states) # #TODO: Remove plot qubit states results when tested utils.plot_qubit_states(all_gnd_states, all_exc_states) #TODO: Remove 0 and 1 classification from auto calibration when tested #Classify all points into 0 and 1 classified_gnd_results = [] for point in all_gnd_states: classified_gnd_results.add(utils.classify(point, mean_gnd_states, mean_exc_states)) classified_exc_results = [] for point in all_exc_states: classified_exc_results.add(utils.classify(point, mean_gnd_states, mean_exc_states)) print(classified_gnd_results) print(classified_exc_results) # help classes class QCPulseLengthParameter(): label = 'Qubit Control Pulse Length' unit = 'ns' name = 'qc_pulse_length' def __init__(self, ro_pulse, qc_pulse): self.ro_pulse = ro_pulse self.qc_pulse = qc_pulse def set(self, value): self.qc_pulse.duration = value self.ro_pulse.start = value + 4 class T1WaitParameter(): label = 'Time' unit = 'ns' name = 't1_wait' initial_value = 0 def __init__(self, ro_pulse, qc_pulse): self.ro_pulse = ro_pulse self.base_duration = qc_pulse.duration def set(self, value): # TODO: implement following condition #must be >= 4ns <= 65535 #platform.delay_before_readout = value self.ro_pulse.start = self.base_duration + 4 + value class ROController(): # Quantify Gettable Interface Implementation label = ['Amplitude', 'Phase','I','Q'] unit = ['V', 'Radians','V','V'] name = ['A', 'Phi','I','Q'] def __init__(self, platform, sequence): self.platform = platform self.sequence = sequence def get(self): return self.platform.execute(self.
5,530