Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -6,8 +6,8 @@ import pdfplumber
|
|
| 6 |
|
| 7 |
# Initialize RAG components
|
| 8 |
tokenizer = RagTokenizer.from_pretrained("facebook/rag-sequence-nq")
|
| 9 |
-
retriever = RagRetriever.from_pretrained("facebook/
|
| 10 |
-
model = RagSequenceForGeneration.from_pretrained("facebook/rag-sequence-nq")
|
| 11 |
|
| 12 |
# Extract text from PDF
|
| 13 |
def extract_text_from_pdf(pdf_file):
|
|
@@ -54,7 +54,7 @@ if st.button("Get Response"):
|
|
| 54 |
combined_context += "\n" + csv_data.to_string()
|
| 55 |
|
| 56 |
# Generate response using RAG
|
| 57 |
-
inputs = tokenizer(user_input,
|
| 58 |
with torch.no_grad():
|
| 59 |
output = model.generate(input_ids=inputs['input_ids'], attention_mask=inputs['attention_mask'])
|
| 60 |
response = tokenizer.batch_decode(output, skip_special_tokens=True)[0]
|
|
|
|
| 6 |
|
| 7 |
# Initialize RAG components
|
| 8 |
tokenizer = RagTokenizer.from_pretrained("facebook/rag-sequence-nq")
|
| 9 |
+
retriever = RagRetriever.from_pretrained("facebook/wiki_dpr", use_dummy_dataset=True) # Correct usage of dataset
|
| 10 |
+
model = RagSequenceForGeneration.from_pretrained("facebook/rag-sequence-nq", retriever=retriever)
|
| 11 |
|
| 12 |
# Extract text from PDF
|
| 13 |
def extract_text_from_pdf(pdf_file):
|
|
|
|
| 54 |
combined_context += "\n" + csv_data.to_string()
|
| 55 |
|
| 56 |
# Generate response using RAG
|
| 57 |
+
inputs = tokenizer(user_input, return_tensors="pt", truncation=True)
|
| 58 |
with torch.no_grad():
|
| 59 |
output = model.generate(input_ids=inputs['input_ids'], attention_mask=inputs['attention_mask'])
|
| 60 |
response = tokenizer.batch_decode(output, skip_special_tokens=True)[0]
|