Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,24 +1,13 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
import torch
|
| 3 |
from transformers import RagTokenizer, RagRetriever, RagSequenceForGeneration
|
| 4 |
-
from datasets import load_dataset
|
| 5 |
import pandas as pd
|
| 6 |
import pdfplumber
|
| 7 |
|
| 8 |
-
#
|
| 9 |
tokenizer = RagTokenizer.from_pretrained("facebook/rag-sequence-nq")
|
| 10 |
-
retriever = RagRetriever.from_pretrained("facebook/rag-sequence-nq"
|
| 11 |
-
model = RagSequenceForGeneration.from_pretrained("facebook/rag-sequence-nq"
|
| 12 |
-
|
| 13 |
-
# Load the wiki_dpr dataset with trust_remote_code=True
|
| 14 |
-
dataset = load_dataset("facebook/wiki_dpr", split="train", trust_remote_code=True)
|
| 15 |
-
|
| 16 |
-
# Function to get RAG embeddings
|
| 17 |
-
def get_rag_embeddings(question, context):
|
| 18 |
-
inputs = tokenizer(question, context, return_tensors="pt", truncation=True)
|
| 19 |
-
with torch.no_grad():
|
| 20 |
-
output = model.generate(input_ids=inputs['input_ids'], attention_mask=inputs['attention_mask'])
|
| 21 |
-
return tokenizer.batch_decode(output, skip_special_tokens=True)[0]
|
| 22 |
|
| 23 |
# Extract text from PDF
|
| 24 |
def extract_text_from_pdf(pdf_file):
|
|
@@ -26,19 +15,16 @@ def extract_text_from_pdf(pdf_file):
|
|
| 26 |
text = ""
|
| 27 |
for page in pdf.pages:
|
| 28 |
page_text = page.extract_text()
|
| 29 |
-
if page_text:
|
| 30 |
text += page_text + "\n"
|
| 31 |
-
return text.strip()
|
| 32 |
|
| 33 |
-
#
|
| 34 |
-
pdf_text = ""
|
| 35 |
-
csv_data = None
|
| 36 |
-
|
| 37 |
-
# Streamlit app UI
|
| 38 |
st.title("RAG-Powered PDF & CSV Chatbot")
|
| 39 |
|
| 40 |
# CSV file upload
|
| 41 |
csv_file = st.file_uploader("Upload a CSV file", type=["csv"])
|
|
|
|
| 42 |
if csv_file:
|
| 43 |
csv_data = pd.read_csv(csv_file)
|
| 44 |
st.write("CSV file loaded successfully!")
|
|
@@ -46,6 +32,7 @@ if csv_file:
|
|
| 46 |
|
| 47 |
# PDF file upload
|
| 48 |
pdf_file = st.file_uploader("Upload a PDF file", type=["pdf"])
|
|
|
|
| 49 |
if pdf_file:
|
| 50 |
pdf_text = extract_text_from_pdf(pdf_file)
|
| 51 |
if pdf_text:
|
|
@@ -62,15 +49,14 @@ if st.button("Get Response"):
|
|
| 62 |
if not pdf_text and csv_data is None:
|
| 63 |
st.warning("Please upload a PDF or CSV file first.")
|
| 64 |
else:
|
| 65 |
-
# Combine PDF text and CSV content for context in RAG
|
| 66 |
combined_context = pdf_text
|
| 67 |
if csv_data is not None:
|
| 68 |
combined_context += "\n" + csv_data.to_string()
|
| 69 |
|
| 70 |
-
#
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
import torch
|
| 3 |
from transformers import RagTokenizer, RagRetriever, RagSequenceForGeneration
|
|
|
|
| 4 |
import pandas as pd
|
| 5 |
import pdfplumber
|
| 6 |
|
| 7 |
+
# Initialize RAG components
|
| 8 |
tokenizer = RagTokenizer.from_pretrained("facebook/rag-sequence-nq")
|
| 9 |
+
retriever = RagRetriever.from_pretrained("facebook/rag-sequence-nq")
|
| 10 |
+
model = RagSequenceForGeneration.from_pretrained("facebook/rag-sequence-nq")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
# Extract text from PDF
|
| 13 |
def extract_text_from_pdf(pdf_file):
|
|
|
|
| 15 |
text = ""
|
| 16 |
for page in pdf.pages:
|
| 17 |
page_text = page.extract_text()
|
| 18 |
+
if page_text:
|
| 19 |
text += page_text + "\n"
|
| 20 |
+
return text.strip()
|
| 21 |
|
| 22 |
+
# Streamlit UI
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
st.title("RAG-Powered PDF & CSV Chatbot")
|
| 24 |
|
| 25 |
# CSV file upload
|
| 26 |
csv_file = st.file_uploader("Upload a CSV file", type=["csv"])
|
| 27 |
+
csv_data = None
|
| 28 |
if csv_file:
|
| 29 |
csv_data = pd.read_csv(csv_file)
|
| 30 |
st.write("CSV file loaded successfully!")
|
|
|
|
| 32 |
|
| 33 |
# PDF file upload
|
| 34 |
pdf_file = st.file_uploader("Upload a PDF file", type=["pdf"])
|
| 35 |
+
pdf_text = ""
|
| 36 |
if pdf_file:
|
| 37 |
pdf_text = extract_text_from_pdf(pdf_file)
|
| 38 |
if pdf_text:
|
|
|
|
| 49 |
if not pdf_text and csv_data is None:
|
| 50 |
st.warning("Please upload a PDF or CSV file first.")
|
| 51 |
else:
|
|
|
|
| 52 |
combined_context = pdf_text
|
| 53 |
if csv_data is not None:
|
| 54 |
combined_context += "\n" + csv_data.to_string()
|
| 55 |
|
| 56 |
+
# Generate response using RAG
|
| 57 |
+
inputs = tokenizer(user_input, combined_context, return_tensors="pt", truncation=True)
|
| 58 |
+
with torch.no_grad():
|
| 59 |
+
output = model.generate(input_ids=inputs['input_ids'], attention_mask=inputs['attention_mask'])
|
| 60 |
+
response = tokenizer.batch_decode(output, skip_special_tokens=True)[0]
|
| 61 |
+
st.write("### Response:")
|
| 62 |
+
st.write(response)
|