train_multirc_456_1767437476

This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B-Instruct on the multirc dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1345
  • Num Input Tokens Seen: 264580656

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 456
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Input Tokens Seen
0.2259 1.0 6130 0.1345 13210560
0.0277 2.0 12260 0.1371 26427632
0.0134 3.0 18390 0.1444 39656608
0.0069 4.0 24520 0.1434 52911264
0.0022 5.0 30650 0.2154 66151456
0.2126 6.0 36780 0.2699 79368416
0.0025 7.0 42910 0.3077 92601264
0.0 8.0 49040 0.3135 105825424
0.0051 9.0 55170 0.3736 119051808
0.1258 10.0 61300 0.3859 132282512
0.0002 11.0 67430 0.3017 145503424
0.0 12.0 73560 0.4880 158718688
0.0 13.0 79690 0.3862 171968272
0.0 14.0 85820 0.4405 185192912
0.0 15.0 91950 0.4823 198406496
0.0 16.0 98080 0.5583 211654512
0.0 17.0 104210 0.5550 224875552
0.0 18.0 110340 0.5691 238097088
0.0 19.0 116470 0.5758 251336240
0.0 20.0 122600 0.5760 264580656

Framework versions

  • PEFT 0.15.2
  • Transformers 4.51.3
  • Pytorch 2.8.0+cu128
  • Datasets 3.6.0
  • Tokenizers 0.21.1
Downloads last month
86
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for rbelanec/train_multirc_456_1767437476

Adapter
(2156)
this model

Evaluation results