Dataset Viewer
Auto-converted to Parquet Duplicate
question
stringlengths
119
936
solution
stringlengths
2
3
Every positive integer $k$ has a unique factorial base expansion $(f_1,f_2,f_3,\ldots,f_m)$ , meaning that $k=1!\cdot f_1+2!\cdot f_2+3!\cdot f_3+\cdots+m!\cdot f_m$ , where each $f_i$ is an integer, $0\le f_i\le i$ , and $0<f_m$ . Given that $(f_1,f_2,f_3,\ldots,f_j)$ is the factorial base expansion of $16!-32!+48!-64!+\cdots+1968!-1984!+2000!$ , find the value of $f_1-f_2+f_3-f_4+\cdots+(-1)^{j+1}f_j$ .
495
Ten chairs are arranged in a circle. Find the number of subsets of this set of chairs that contain at least three adjacent chairs.
581
Let $EFGH$ , $EFDC$ , and $EHBC$ be three adjacent square faces of a cube, for which $EC = 8$ , and let $A$ be the eighth vertex of the cube. Let $I$ , $J$ , and $K$ , be the points on $\overline{EF}$ , $\overline{EH}$ , and $\overline{EC}$ , respectively, so that $EI = EJ = EK = 2$ . A solid $S$ is obtained by drilling a tunnel through the cube. The sides of the tunnel are planes parallel to $\overline{AE}$ , and containing the edges, $\overline{IJ}$ , $\overline{JK}$ , and $\overline{KI}$ . The surface area of $S$ , including the walls of the tunnel, is $m + n\sqrt {p}$ , where $m$ , $n$ , and $p$ are positive integers and $p$ is not divisible by the square of any prime. Find $m + n + p$ .
417
Rectangle $ABCD$ is divided into four parts of equal area by five segments as shown in the figure, where $XY = YB + BC + CZ = ZW = WD + DA + AX$ , and $PQ$ is parallel to $AB$ . Find the length of $AB$ (in cm) if $BC = 19$ cm and $PQ = 87$ cm. AIME 1987 Problem 6.png
193
David found four sticks of different lengths that can be used to form three non-congruent convex cyclic quadrilaterals, $A,\text{ }B,\text{ }C$ , which can each be inscribed in a circle with radius $1$ . Let $\varphi_A$ denote the measure of the acute angle made by the diagonals of quadrilateral $A$ , and define $\varphi_B$ and $\varphi_C$ similarly. Suppose that $\sin\varphi_A=\frac{2}{3}$ , $\sin\varphi_B=\frac{3}{5}$ , and $\sin\varphi_C=\frac{6}{7}$ . All three quadrilaterals have the same area $K$ , which can be written in the form $\dfrac{m}{n}$ , where $m$ and $n$ are relatively prime positive integers. Find $m+n$ .
59
Define a domino to be an ordered pair of distinct positive integers. A proper sequence of dominos is a list of distinct dominos in which the first coordinate of each pair after the first equals the second coordinate of the immediately preceding pair, and in which $(i,j)$ and $(j,i)$ do not both appear for any $i$ and $j$ . Let $D_{40}$ be the set of all dominos whose coordinates are no larger than 40. Find the length of the longest proper sequence of dominos that can be formed using the dominos of $D_{40}.$
761
Two thousand points are given on a circle. Label one of the points 1. From this point, count 2 points in the clockwise direction and label this point 2. From the point labeled 2, count 3 points in the clockwise direction and label this point 3. (See figure.) Continue this process until the labels $1,2,3\dots,1993\,$ are all used. Some of the points on the circle will have more than one label and some points will not have a label. What is the smallest integer that labels the same point as 1993? AIME 1993 Problem 9.png
118
Let $S$ be the set of all polynomials of the form $z^3 + az^2 + bz + c$ , where $a$ , $b$ , and $c$ are integers. Find the number of polynomials in $S$ such that each of its roots $z$ satisfies either $|z| = 20$ or $|z| = 13$ .
540
The numbers 1, 2, 3, 4, 5, 6, 7, and 8 are randomly written on the faces of a regular octahedron so that each face contains a different number. The probability that no two consecutive numbers, where 8 and 1 are considered to be consecutive, are written on faces that share an edge is $m/n,$ where $m$ and $n$ are relatively prime positive integers. Find $m + n.$
85
Let $S_i$ be the set of all integers $n$ such that $100i\leq n < 100(i + 1)$ . For example, $S_4$ is the set ${400,401,402,\ldots,499}$ . How many of the sets $S_0, S_1, S_2, \ldots, S_{999}$ do not contain a perfect square?
708
A piecewise linear periodic function is defined by $f(x)=\begin{cases}x&\text{if }x\in[-1,1)\\2-x&\text{if }x\in[1,3)\end{cases}$ and $f(x+4)=f(x)$ for all real numbers $x$. The graph of $f(x)$ has the sawtooth pattern. The parabola $x=34y^2$ intersects the graph of $f(x)$ at finitely many points. The sum of the $y$-coordinates of these intersection points can be expressed in the form $\frac{a+b\sqrt{c}}{d}$, where $a,b,c,$ and $d$ are positive integers, $a,b,$ and $d$ have greatest common divisor equal to 1, and $c$ is not divisible by the square of any prime. Find $a+b+c+d$.
259
A long thin strip of paper is 1024 units in length, 1 unit in width, and is divided into 1024 unit squares. The paper is folded in half repeatedly. For the first fold, the right end of the paper is folded over to coincide with and lie on top of the left end. The result is a 512 by 1 strip of double thickness. Next, the right end of this strip is folded over to coincide with and lie on top of the left end, resulting in a 256 by 1 strip of quadruple thickness. This process is repeated 8 more times. After the last fold, the strip has become a stack of 1024 unit squares. How many of these squares lie below the square that was originally the 942nd square counting from the left?
593
Let $ABCDE$ be a convex pentagon with $AB || CE, BC || AD, AC || DE, \angle ABC=120^\circ, AB=3, BC=5,$ and $DE = 15.$ Given that the ratio between the area of triangle $ABC$ and the area of triangle $EBD$ is $m/n,$ where $m$ and $n$ are relatively prime positive integers, find $m+n.$
484
Let $\overline{AB}$ be a chord of a circle $\omega$ , and let $P$ be a point on the chord $\overline{AB}$ . Circle $\omega_1$ passes through $A$ and $P$ and is internally tangent to $\omega$ . Circle $\omega_2$ passes through $B$ and $P$ and is internally tangent to $\omega$ . Circles $\omega_1$ and $\omega_2$ intersect at points $P$ and $Q$ . Line $PQ$ intersects $\omega$ at $X$ and $Y$ . Assume that $AP=5$ , $PB=3$ , $XY=11$ , and $PQ^2 = \tfrac{m}{n}$ , where $m$ and $n$ are relatively prime positive integers. Find $m+n$ .
65
Patio blocks that are hexagons $1$ unit on a side are used to outline a garden by placing the blocks edge to edge with $n$ on each side. The diagram indicates the path of blocks around the garden when $n=5$ . AIME 2002 II Problem 4.gif If $n=202$ , then the area of the garden enclosed by the path, not including the path itself, is $m\left(\sqrt3/2\right)$ square units, where $m$ is a positive integer. Find the remainder when $m$ is divided by $1000$ .
803
Find the number of pairs $(m,n)$ of positive integers with $1\le m<n\le 30$ such that there exists a real number $x$ satisfying \[\sin(mx)+\sin(nx)=2.\]
63
Four ambassadors and one advisor for each of them are to be seated at a round table with $12$ chairs numbered in order $1$ to $12$ . Each ambassador must sit in an even-numbered chair. Each advisor must sit in a chair adjacent to his or her ambassador. There are $N$ ways for the $8$ people to be seated at the table under these conditions. Find the remainder when $N$ is divided by $1000$ .
520
Let $A = \{1, 2, 3, 4, 5, 6, 7\}$ , and let $N$ be the number of functions $f$ from set $A$ to set $A$ such that $f(f(x))$ is a constant function. Find the remainder when $N$ is divided by $1000$ .
399
Let $\overline{MN}$ be a diameter of a circle with diameter $1$ . Let $A$ and $B$ be points on one of the semicircular arcs determined by $\overline{MN}$ such that $A$ is the midpoint of the semicircle and $MB=\dfrac 35$ . Point $C$ lies on the other semicircular arc. Let $d$ be the length of the line segment whose endpoints are the intersections of diameter $\overline{MN}$ with the chords $\overline{AC}$ and $\overline{BC}$ . The largest possible value of $d$ can be written in the form $r-s\sqrt t$ , where $r$ , $s$ , and $t$ are positive integers and $t$ is not divisible by the square of any prime. Find $r+s+t$ .
14
Let $S$ be the set of all rational numbers that can be expressed as a repeating decimal in the form $0.\overline{abcd},$ where at least one of the digits $a,$ $b,$ $c,$ or $d$ is nonzero. Let $N$ be the number of distinct numerators obtained when numbers in $S$ are written as fractions in lowest terms. For example, both $4$ and $410$ are counted among the distinct numerators for numbers in $S$ because $0.\overline{3636} = \frac{4}{11}$ and $0.\overline{1230} = \frac{410}{3333}.$ Find the remainder when $N$ is divided by $1000.$
392
For every $m \geq 2$ , let $Q(m)$ be the least positive integer with the following property: For every $n \geq Q(m)$ , there is always a perfect cube $k^3$ in the range $n < k^3 \leq mn$ . Find the remainder when \[\sum_{m = 2}^{2017} Q(m)\] is divided by $1000$ .
59
For $n\ge1$ call a finite sequence $(a_1,a_2,\ldots,a_n)$ of positive integers progressive if $a_i<a_{i+1}$ and $a_i$ divides $a_{i+1}$ for $1\le i\le n-1$ . Find the number of progressive sequences such that the sum of the terms in the sequence is equal to $360.$
47
Find the sum of the values of $x$ such that $\cos^3 3x+ \cos^3 5x = 8 \cos^3 4x \cos^3 x,$ where $x$ is measured in degrees and $100< x< 200.$
906
Let $ABCDE$ be a convex pentagon with $AB=14, BC=7, CD=24, DE=13, EA=26,$ and $\angle B=\angle E=60^\circ$. For each point $X$ in the plane, define $f(X)=AX+BX+CX+DX+EX$. The least possible value of $f(X)$ can be expressed as $m+n\sqrt{p}$, where $m$ and $n$ are positive integers and $p$ is not divisible by the square of any prime. Find $m+n+p$.
60
Given $\triangle ABC$ and a point $P$ on one of its sides, call line $\ell$ the $\textit{splitting line}$ of $\triangle ABC$ through $P$ if $\ell$ passes through $P$ and divides $\triangle ABC$ into two polygons of equal perimeter. Let $\triangle ABC$ be a triangle where $BC = 219$ and $AB$ and $AC$ are positive integers. Let $M$ and $N$ be the midpoints of $\overline{AB}$ and $\overline{AC},$ respectively, and suppose that the splitting lines of $\triangle ABC$ through $M$ and $N$ intersect at $30^\circ.$ Find the perimeter of $\triangle ABC.$
459
Equilateral triangle $\triangle ABC$ is inscribed in circle $\omega$ with radius $18.$ Circle $\omega_A$ is tangent to sides $\overline{AB}$ and $\overline{AC}$ and is internally tangent to $\omega.$ Circles $\omega_B$ and $\omega_C$ are defined analogously. Circles $\omega_A,$ $\omega_B,$ and $\omega_C$ meet in six points---two points for each pair of circles. The three intersection points closest to the vertices of $\triangle ABC$ are the vertices of a large equilateral triangle in the interior of $\triangle ABC,$ and the other three intersection points are the vertices of a smaller equilateral triangle in the interior of $\triangle ABC.$ The side length of the smaller equilateral triangle can be written as $\sqrt{a} - \sqrt{b},$ where $a$ and $b$ are positive integers. Find $a+b.$
378
Circles $\omega_1$ and $\omega_2$ intersect at two points $P$ and $Q,$ and their common tangent line closer to $P$ intersects $\omega_1$ and $\omega_2$ at points $A$ and $B,$ respectively. The line parallel to $AB$ that passes through $P$ intersects $\omega_1$ and $\omega_2$ for the second time at points $X$ and $Y,$ respectively. Suppose $PX=10,$ $PY=14,$ and $PQ=5.$ Then the area of trapezoid $XABY$ is $m\sqrt{n},$ where $m$ and $n$ are positive integers and $n$ is not divisible by the square of any prime. Find $m+n.$
33
Let $\triangle ABC$ be an equilateral triangle with side length $55.$ Points $D,$ $E,$ and $F$ lie on $\overline{BC},$ $\overline{CA},$ and $\overline{AB},$ respectively, with $BD = 7,$ $CE=30,$ and $AF=40.$ Point $P$ inside $\triangle ABC$ has the property that \[\angle AEP = \angle BFP = \angle CDP.\] Find $\tan^2(\angle AEP).$
75
Find the number of second-degree polynomials $f(x)$ with integer coefficients and integer zeros for which $f(0)=2010$ .
163
A rectangle that is inscribed in a larger rectangle (with one vertex on each side) is called unstuck if it is possible to rotate (however slightly) the smaller rectangle about its center within the confines of the larger. Of all the rectangles that can be inscribed unstuck in a 6 by 8 rectangle, the smallest perimeter has the form $\sqrt{N}\,$ , for a positive integer $N\,$ . Find $N\,$ .
448
Given a function $f$ for which \[f(x) = f(398 - x) = f(2158 - x) = f(3214 - x)\] holds for all real $x,$ what is the largest number of different values that can appear in the list $f(0),f(1),f(2),\ldots,f(999)$ ?
177
Torus $T$ is the surface produced by revolving a circle with radius 3 around an axis in the plane of the circle that is a distance 6 from the center of the circle (so like a donut). Let $S$ be a sphere with a radius 11. When $T$ rests on the inside of $S$ , it is internally tangent to $S$ along a circle with radius $r_i$ , and when $T$ rests on the outside of $S$ , it is externally tangent to $S$ along a circle with radius $r_o$ . The difference $r_i-r_o$ can be written as $\frac{m}{n}$ , where $m$ and $n$ are relatively prime positive integers. Find $m+n$ . [asy] unitsize(0.3 inch); draw(ellipse((0,0), 3, 1.75)); draw((-1.2,0.1)..(-0.8,-0.03)..(-0.4,-0.11)..(0,-0.15)..(0.4,-0.11)..(0.8,-0.03)..(1.2,0.1)); draw((-1,0.04)..(-0.5,0.12)..(0,0.16)..(0.5,0.12)..(1,0.04)); draw((0,2.4)--(0,-0.15)); draw((0,-0.15)--(0,-1.75), dashed); draw((0,-1.75)--(0,-2.25)); draw(ellipse((2,0), 1, 0.9)); draw((2.03,-0.02)--(2.9,-0.4)); [/asy]
127
An ant makes a sequence of moves on a cube where a move consists of walking from one vertex to an adjacent vertex along an edge of the cube. Initially the ant is at a vertex of the bottom face of the cube and chooses one of the three adjacent vertices to move to as its first move. For all moves after the first move, the ant does not return to its previous vertex, but chooses to move to one of the other two adjacent vertices. All choices are selected at random so that each of the possible moves is equally likely. The probability that after exactly $8$ moves that ant is at a vertex of the top face on the cube is $\frac{m}{n}$ , where $m$ and $n$ are relatively prime positive integers. Find $m + n.$
49
Find the number of ordered pairs $(m, n)$ such that $m$ and $n$ are positive integers in the set $\{1, 2, ..., 30\}$ and the greatest common divisor of $2^m + 1$ and $2^n - 1$ is not $1$ .
295
Given $f(z) = z^2-19z$ , there are complex numbers $z$ with the property that $z$ , $f(z)$ , and $f(f(z))$ are the vertices of a right triangle in the complex plane with a right angle at $f(z)$ . There are positive integers $m$ and $n$ such that one such value of $z$ is $m+\sqrt{n}+11i$ . Find $m+n$ .
230
Triangle $AB_0C_0$ has side lengths $AB_0 = 12$ , $B_0C_0 = 17$ , and $C_0A = 25$ . For each positive integer $n$ , points $B_n$ and $C_n$ are located on $\overline{AB_{n-1}}$ and $\overline{AC_{n-1}}$ , respectively, creating three similar triangles $\triangle AB_nC_n \sim \triangle B_{n-1}C_nC_{n-1} \sim \triangle AB_{n-1}C_{n-1}$ . The area of the union of all triangles $B_{n-1}C_nB_n$ for $n\geq1$ can be expressed as $\tfrac pq$ , where $p$ and $q$ are relatively prime positive integers. Find $q$ .
961
A teacher was leading a class of four perfectly logical students. The teacher chose a set $S$ of four integers and gave a different number in $S$ to each student. Then the teacher announced to the class that the numbers in $S$ were four consecutive two-digit positive integers, that some number in $S$ was divisible by $6$ , and a different number in $S$ was divisible by $7$ . The teacher then asked if any of the students could deduce what $S$ is, but in unison, all of the students replied no. However, upon hearing that all four students replied no, each student was able to determine the elements of $S$ . Find the sum of all possible values of the greatest element of $S$ .
258
The 27 cells of a $3\times9$ grid are filled in using the numbers 1 through 9 so that each row contains 9 different numbers, and each of the three $3\times3$ blocks heavily outlined in the example below contains 9 different numbers, as in the first three rows of a Sudoku puzzle. | 4 | 2 | 8 | 9 | 6 | 3 | 1 | 7 | 5 | | 3 | 7 | 9 | 5 | 2 | 1 | 6 | 8 | 4 | | 5 | 6 | 1 | 8 | 4 | 7 | 9 | 2 | 3 | The number of different ways to fill such a grid can be written as $p^a\cdot q^b\cdot r^c\cdot s^d$, where $p,q,r,$ and $s$ are distinct prime numbers and $a,b,c,$ and $d$ are positive integers. Find $p\cdot a+q\cdot b+r\cdot c+s\cdot d$.
81
A frog is placed at the origin on the number line , and moves according to the following rule: in a given move, the frog advances to either the closest point with a greater integer coordinate that is a multiple of $3$ , or to the closest point with a greater integer coordinate that is a multiple of $13$ . A move sequence is a sequence of coordinates which correspond to valid moves, beginning with $0$ , and ending with $39$ . For example, $0,\ 3,\ 6,\ 13,\ 15,\ 26,\ 39$ is a move sequence. How many move sequences are possible for the frog?
169
Equilateral $\triangle ABC$ has side length $600$ . Points $P$ and $Q$ lie outside the plane of $\triangle ABC$ and are on opposite sides of the plane. Furthermore, $PA=PB=PC$ , and $QA=QB=QC$ , and the planes of $\triangle PAB$ and $\triangle QAB$ form a $120^{\circ}$ dihedral angle (the angle between the two planes). There is a point $O$ whose distance from each of $A,B,C,P,$ and $Q$ is $d$ . Find $d$ .
450
Find the sum of all positive integers $n$ such that, given an unlimited supply of stamps of denominations $5,n,$ and $n+1$ cents, $91$ cents is the greatest postage that cannot be formed.
71
Let $S$ be the set of positive integers $k$ such that the two parabolas \[y=x^2-k~~\text{and}~~x=2(y-20)^2-k\] intersect in four distinct points, and these four points lie on a circle with radius at most $21$ . Find the sum of the least element of $S$ and the greatest element of $S$ .
285
The rectangle $ABCD^{}_{}$ below has dimensions $AB^{}_{} = 12 \sqrt{3}$ and $BC^{}_{} = 13 \sqrt{3}$ . Diagonals $\overline{AC}$ and $\overline{BD}$ intersect at $P^{}_{}$ . If triangle $ABP^{}_{}$ is cut out and removed, edges $\overline{AP}$ and $\overline{BP}$ are joined, and the figure is then creased along segments $\overline{CP}$ and $\overline{DP}$ , we obtain a triangular pyramid, all four of whose faces are isosceles triangles. Find the volume of this pyramid. AIME 1990 Problem 14.png
594
Let $ABC$ be a triangle with sides 3, 4, and 5, and $DEFG$ be a 6-by-7 rectangle. A segment is drawn to divide triangle $ABC$ into a triangle $U_1$ and a trapezoid $V_1$ and another segment is drawn to divide rectangle $DEFG$ into a triangle $U_2$ and a trapezoid $V_2$ such that $U_1$ is similar to $U_2$ and $V_1$ is similar to $V_2.$ The minimum value of the area of $U_1$ can be written in the form $m/n,$ where $m$ and $n$ are relatively prime positive integers. Find $m+n.$
35
Find the number of cubic polynomials $p(x) = x^3 + ax^2 + bx + c,$ where $a, b,$ and $c$ are integers in $\{-20,-19,-18,\ldots,18,19,20\},$ such that there is a unique integer $m \not= 2$ with $p(m) = p(2).$
738
Let $m$ and $n$ be odd integers greater than $1.$ An $m\times n$ rectangle is made up of unit squares where the squares in the top row are numbered left to right with the integers $1$ through $n$ , those in the second row are numbered left to right with the integers $n + 1$ through $2n$ , and so on. Square $200$ is in the top row, and square $2000$ is in the bottom row. Find the number of ordered pairs $(m,n)$ of odd integers greater than $1$ with the property that, in the $m\times n$ rectangle, the line through the centers of squares $200$ and $2000$ intersects the interior of square $1099$ .
248
Let $ABCDEF$ be a convex equilateral hexagon in which all pairs of opposite sides are parallel. The triangle whose sides are extensions of segments $\overline{AB}$ , $\overline{CD}$ , and $\overline{EF}$ has side lengths $200, 240,$ and $300$ . Find the side length of the hexagon.
80
Ana, Bob, and Cao bike at constant rates of $8.6$ meters per second, $6.2$ meters per second, and $5$ meters per second, respectively. They all begin biking at the same time from the northeast corner of a rectangular field whose longer side runs due west. Ana starts biking along the edge of the field, initially heading west, Bob starts biking along the edge of the field, initially heading south, and Cao bikes in a straight line across the field to a point $D$ on the south edge of the field. Cao arrives at point $D$ at the same time that Ana and Bob arrive at $D$ for the first time. The ratio of the field's length to the field's width to the distance from point $D$ to the southeast corner of the field can be represented as $p : q : r$ , where $p$ , $q$ , and $r$ are positive integers with $p$ and $q$ relatively prime. Find $p+q+r$ .
61
Let $S^{}_{}$ be the set of all rational numbers $r^{}_{}$ , $0^{}_{}<r<1$ , that have a repeating decimal expansion in the form $0.abcabcabc\ldots=0.\overline{abc}$ , where the digits $a^{}_{}$ , $b^{}_{}$ , and $c^{}_{}$ are not necessarily distinct. To write the elements of $S^{}_{}$ as fractions in lowest terms, how many different numerators are required?
660
For all positive integers $x$ , let \[f(x)=\begin{cases}1 &\mbox{if }x = 1\\ \frac x{10} &\mbox{if }x\mbox{ is divisible by 10}\\ x+1 &\mbox{otherwise}\end{cases}\] and define a sequence as follows: $x_1=x$ and $x_{n+1}=f(x_n)$ for all positive integers $n$ . Let $d(x)$ be the smallest $n$ such that $x_n=1$ . (For example, $d(100)=3$ and $d(87)=7$ .) Let $m$ be the number of positive integers $x$ such that $d(x)=20$ . Find the sum of the distinct prime factors of $m$ .
511

No dataset card yet

Downloads last month
12