name
stringlengths
2
347
module
stringlengths
6
90
type
stringlengths
1
5.42M
AddAction.prodOfVAddCommClass.eq_1
Mathlib.Algebra.Group.Action.Prod
∀ (M : Type u_1) (N : Type u_2) (α : Type u_5) [inst : AddMonoid M] [inst_1 : AddMonoid N] [inst_2 : AddAction M α] [inst_3 : AddAction N α] [inst_4 : VAddCommClass M N α], AddAction.prodOfVAddCommClass M N α = { vadd := fun mn a => mn.1 +ᵥ mn.2 +ᵥ a, add_vadd := ⋯, zero_vadd := ⋯ }
Finpartition.empty._proof_1
Mathlib.Order.Partition.Finpartition
∀ (α : Type u_1) [inst : Lattice α] [inst_1 : OrderBot α], ∅.SupIndep id
IsFractionRing.ringEquivOfRingEquiv_algebraMap
Mathlib.RingTheory.Localization.FractionRing
∀ {A : Type u_8} {K : Type u_9} {B : Type u_10} {L : Type u_11} [inst : CommRing A] [inst_1 : CommRing B] [inst_2 : CommRing K] [inst_3 : CommRing L] [inst_4 : Algebra A K] [inst_5 : IsFractionRing A K] [inst_6 : Algebra B L] [inst_7 : IsFractionRing B L] (h : A ≃+* B) (a : A), (IsFractionRing.ringEquivOfRingEquiv h) ((algebraMap A K) a) = (algebraMap B L) (h a)
Matrix.nonAssocSemiring
Mathlib.Data.Matrix.Mul
{n : Type u_3} → {α : Type v} → [NonAssocSemiring α] → [Fintype n] → [DecidableEq n] → NonAssocSemiring (Matrix n n α)
_private.Mathlib.Topology.Separation.Hausdorff.0.t2_iff_nhds._simp_1_4
Mathlib.Topology.Separation.Hausdorff
∀ {a b : Prop}, (¬a → b) = (¬b → a)
_private.Mathlib.Tactic.GCongr.Core.0.Mathlib.Tactic.GCongr.initFn._proof_8._@.Mathlib.Tactic.GCongr.Core.2213018204._hygCtx._hyg.2
Mathlib.Tactic.GCongr.Core
∀ (xs : Array Lean.Expr) (i : ℕ), i + 1 ≤ xs.size → i < xs.size
Lean.Elab.Tactic.BVDecide.LRAT.trim.M.markUsed
Lean.Elab.Tactic.BVDecide.LRAT.Trim
ℕ → Lean.Elab.Tactic.BVDecide.LRAT.trim.M Unit
Lean.Lsp.instToJsonCompletionClientCapabilities.toJson
Lean.Data.Lsp.Capabilities
Lean.Lsp.CompletionClientCapabilities → Lean.Json
measurableSet_le'
Mathlib.MeasureTheory.Constructions.BorelSpace.Order
∀ {α : Type u_1} [inst : TopologicalSpace α] {mα : MeasurableSpace α} [OpensMeasurableSpace α] [inst_2 : PartialOrder α] [OrderClosedTopology α] [SecondCountableTopology α], MeasurableSet {p | p.1 ≤ p.2}
_private.Mathlib.MeasureTheory.Measure.Prokhorov.0.isCompact_setOf_finiteMeasure_mass_le_compl_isCompact_le._simp_1_6
Mathlib.MeasureTheory.Measure.Prokhorov
∀ {a : ℝ} {b : NNReal}, (ENNReal.ofReal a ≤ ↑b) = (a ≤ ↑b)
Std.TreeMap.Raw.Equiv.getElem_eq
Std.Data.TreeMap.Raw.Lemmas
∀ {α : Type u} {β : Type v} {cmp : α → α → Ordering} {t₁ t₂ : Std.TreeMap.Raw α β cmp} [inst : Std.TransCmp cmp] {k : α} {hk : k ∈ t₁} (h₁ : t₁.WF) (h₂ : t₂.WF) (h : t₁.Equiv t₂), t₁[k] = t₂[k]
CategoryTheory.SmallObject.functorMapSrc._proof_1
Mathlib.CategoryTheory.SmallObject.Construction
∀ {C : Type u_2} [inst : CategoryTheory.Category.{u_1, u_2} C] {I : Type u_3} {A B : I → C} (f : (i : I) → A i ⟶ B i) {S T X Y : C} {πX : X ⟶ S} {πY : Y ⟶ T} (τ : CategoryTheory.Arrow.mk πX ⟶ CategoryTheory.Arrow.mk πY) (x : CategoryTheory.SmallObject.FunctorObjIndex f πX), CategoryTheory.CategoryStruct.comp (CategoryTheory.CategoryStruct.comp x.t τ.left) πY = CategoryTheory.CategoryStruct.comp (f x.i) (CategoryTheory.CategoryStruct.comp x.b τ.right)
dif_eq_if
Init.ByCases
∀ (c : Prop) {h : Decidable c} {α : Sort u} (t e : α), (if x : c then t else e) = if c then t else e
List.forall_getElem
Init.Data.List.Lemmas
∀ {α : Type u_1} {l : List α} {p : α → Prop}, (∀ (i : ℕ) (h : i < l.length), p l[i]) ↔ ∀ a ∈ l, p a
Std.HashSet.Raw.get?_union
Std.Data.HashSet.RawLemmas
∀ {α : Type u} [inst : BEq α] [inst_1 : Hashable α] {m₁ m₂ : Std.HashSet.Raw α} [EquivBEq α] [LawfulHashable α], m₁.WF → m₂.WF → ∀ {k : α}, (m₁ ∪ m₂).get? k = (m₂.get? k).or (m₁.get? k)
List.mkSlice_ric_eq_mkSlice_rio
Init.Data.Slice.List.Lemmas
∀ {α : Type u_1} {xs : List α} {hi : ℕ}, (Std.Ric.Sliceable.mkSlice xs *...=hi) = Std.Rio.Sliceable.mkSlice xs *...hi + 1
AddCommGrpCat.Hom.hom.eq_1
Mathlib.Algebra.Category.Grp.Basic
∀ {X Y : AddCommGrpCat} (f : X.Hom Y), f.hom = CategoryTheory.ConcreteCategory.hom f
Lean.Data.AC.EvalInformation.arbitrary
Init.Data.AC
{α : Sort u} → {β : Sort v} → [self : Lean.Data.AC.EvalInformation α β] → α → β
_private.Init.PropLemmas.0.and_right_comm.match_1_1
Init.PropLemmas
∀ {a b c : Prop} (motive : (a ∧ b) ∧ c → Prop) (x : (a ∧ b) ∧ c), (∀ (ha : a) (hb : b) (hc : c), motive ⋯) → motive x
CommRingCat.Colimits.Prequotient.recOn
Mathlib.Algebra.Category.Ring.Colimits
{J : Type v} → [inst : CategoryTheory.SmallCategory J] → {F : CategoryTheory.Functor J CommRingCat} → {motive : CommRingCat.Colimits.Prequotient F → Sort u} → (t : CommRingCat.Colimits.Prequotient F) → ((j : J) → (x : ↑(F.obj j)) → motive (CommRingCat.Colimits.Prequotient.of j x)) → motive CommRingCat.Colimits.Prequotient.zero → motive CommRingCat.Colimits.Prequotient.one → ((a : CommRingCat.Colimits.Prequotient F) → motive a → motive a.neg) → ((a a_1 : CommRingCat.Colimits.Prequotient F) → motive a → motive a_1 → motive (a.add a_1)) → ((a a_1 : CommRingCat.Colimits.Prequotient F) → motive a → motive a_1 → motive (a.mul a_1)) → motive t
ZNum.zero.sizeOf_spec
Mathlib.Data.Num.Basic
sizeOf ZNum.zero = 1
Filter.Germ.instAddMonoidWithOne._proof_4
Mathlib.Order.Filter.Germ.Basic
∀ {α : Type u_2} {l : Filter α} {M : Type u_1} [inst : AddMonoidWithOne M] (x : ℕ), ↑↑(x + 1) = ↑fun x_1 => ↑x x_1 + 1
Pi.borelSpace
Mathlib.MeasureTheory.Constructions.BorelSpace.Basic
∀ {ι : Type u_6} {X : ι → Type u_7} [Countable ι] [inst : (i : ι) → TopologicalSpace (X i)] [inst_1 : (i : ι) → MeasurableSpace (X i)] [∀ (i : ι), SecondCountableTopology (X i)] [∀ (i : ι), BorelSpace (X i)], BorelSpace ((i : ι) → X i)
_private.Batteries.Data.RBMap.WF.0.Batteries.RBNode.Balanced.reverse.match_1_1
Batteries.Data.RBMap.WF
∀ {α : Type u_1} (motive : (n : ℕ) → (c : Batteries.RBColor) → (t : Batteries.RBNode α) → t.Balanced c n → Prop) (n : ℕ) (c : Batteries.RBColor) (t : Batteries.RBNode α) (x : t.Balanced c n), (∀ (a : Unit), motive 0 Batteries.RBColor.black Batteries.RBNode.nil ⋯) → (∀ (x : Batteries.RBNode α) (c₁ : Batteries.RBColor) (n : ℕ) (y : Batteries.RBNode α) (c₂ : Batteries.RBColor) (v : α) (hl : x.Balanced c₁ n) (hr : y.Balanced c₂ n), motive (n + 1) Batteries.RBColor.black (Batteries.RBNode.node Batteries.RBColor.black x v y) ⋯) → (∀ (n : ℕ) (x y : Batteries.RBNode α) (v : α) (hl : x.Balanced Batteries.RBColor.black n) (hr : y.Balanced Batteries.RBColor.black n), motive n Batteries.RBColor.red (Batteries.RBNode.node Batteries.RBColor.red x v y) ⋯) → motive n c t x
_private.Mathlib.FieldTheory.IntermediateField.Adjoin.Basic.0.IntermediateField.exists_finset_of_mem_adjoin._simp_1_1
Mathlib.FieldTheory.IntermediateField.Adjoin.Basic
∀ {α : Type u_1} [inst : CompleteLattice α] {ι : Type u_8} (s : Set ι) (f : ι → α), ⨆ t ∈ s, f t = ⨆ i, f ↑i
ENorm
Mathlib.Analysis.Normed.Group.Basic
Type u_8 → Type u_8
MvPowerSeries.hasSum_eval₂
Mathlib.RingTheory.MvPowerSeries.Evaluation
∀ {σ : Type u_1} {R : Type u_2} [inst : CommRing R] [inst_1 : UniformSpace R] {S : Type u_3} [inst_2 : CommRing S] [inst_3 : UniformSpace S] {φ : R →+* S} {a : σ → S} [IsTopologicalSemiring R] [IsUniformAddGroup R] [IsUniformAddGroup S] [CompleteSpace S] [T2Space S] [IsTopologicalRing S] [IsLinearTopology S S], Continuous ⇑φ → MvPowerSeries.HasEval a → ∀ (f : MvPowerSeries σ R), HasSum (fun d => φ ((MvPowerSeries.coeff d) f) * d.prod fun s e => a s ^ e) (MvPowerSeries.eval₂ φ a f)
Lean.Meta.InductionSubgoal.mk
Lean.Meta.Tactic.Induction
Lean.MVarId → Array Lean.Expr → Lean.Meta.FVarSubst → Lean.Meta.InductionSubgoal
_private.Lean.Server.CodeActions.Basic.0.Lean.Server.evalCodeActionProviderUnsafe
Lean.Server.CodeActions.Basic
{M : Type → Type} → [Lean.MonadEnv M] → [Lean.MonadOptions M] → [Lean.MonadError M] → [Monad M] → Lean.Name → M Lean.Server.CodeActionProvider
_private.Init.Data.Range.Polymorphic.Iterators.0.Std.Rio.Internal.isPlausibleIndirectOutput_iter_iff._simp_1_1
Init.Data.Range.Polymorphic.Iterators
∀ {α : Type u} {inst : Std.PRange.UpwardEnumerable α} {inst_1 : LT α} [self : Std.PRange.LawfulUpwardEnumerableLT α] (a b : α), (a < b) = Std.PRange.UpwardEnumerable.LT a b
Subalgebra.LinearDisjoint.rank_inf_eq_one_of_commute_of_flat_right_of_inj
Mathlib.RingTheory.LinearDisjoint
∀ {R : Type u} {S : Type v} [inst : CommRing R] [inst_1 : Ring S] [inst_2 : Algebra R S] {A B : Subalgebra R S}, A.LinearDisjoint B → ∀ [Module.Flat R ↥B], (∀ (a b : ↥(A ⊓ B)), Commute ↑a ↑b) → Function.Injective ⇑(algebraMap R S) → Module.rank R ↥(A ⊓ B) = 1
Subalgebra.toSubmoduleEquiv
Mathlib.Algebra.Algebra.Subalgebra.Basic
{R : Type u} → {A : Type v} → [inst : CommSemiring R] → [inst_1 : Semiring A] → [inst_2 : Algebra R A] → (S : Subalgebra R A) → ↥(Subalgebra.toSubmodule S) ≃ₗ[R] ↥S
ENat.coe_sSup
Mathlib.Data.ENat.Lattice
∀ {s : Set ℕ}, BddAbove s → ↑(sSup s) = ⨆ a ∈ s, ↑a
_private.Aesop.Util.UnorderedArraySet.0.Aesop.UnorderedArraySet.mk.inj
Aesop.Util.UnorderedArraySet
∀ {α : Type u_1} {inst : BEq α} {rep rep_1 : Array α}, { rep := rep } = { rep := rep_1 } → rep = rep_1
StandardEtalePresentation._sizeOf_inst
Mathlib.RingTheory.Etale.StandardEtale
(R : Type u_4) → (S : Type u_5) → {inst : CommRing R} → {inst_1 : CommRing S} → {inst_2 : Algebra R S} → [SizeOf R] → [SizeOf S] → SizeOf (StandardEtalePresentation R S)
_private.Lean.Environment.0.Lean.Visibility.private.elim
Lean.Environment
{motive : Lean.Visibility✝ → Sort u} → (t : Lean.Visibility✝¹) → Lean.Visibility.ctorIdx✝ t = 0 → motive Lean.Visibility.private✝ → motive t
Lean.Elab.Tactic.BVDecide.Frontend.Normalize.bv_add
Lean.Elab.Tactic.BVDecide.Frontend.Normalize.Simproc
Lean.Meta.Simp.Simproc
Equiv.Perm.extendDomain_apply_subtype
Mathlib.Logic.Equiv.Basic
∀ {α' : Type u_9} {β' : Type u_10} (e : Equiv.Perm α') {p : β' → Prop} [inst : DecidablePred p] (f : α' ≃ Subtype p) {b : β'} (h : p b), (e.extendDomain f) b = ↑(f (e (f.symm ⟨b, h⟩)))
Nat.ModEq.add_iff_left._simp_1
Mathlib.Data.Nat.ModEq
∀ {n a b c d : ℕ}, a ≡ b [MOD n] → (a + c ≡ b + d [MOD n]) = (c ≡ d [MOD n])
Int8.toInt32_neg_of_ne
Init.Data.SInt.Lemmas
∀ {x : Int8}, x ≠ -128 → (-x).toInt32 = -x.toInt32
_private.Lean.Meta.Tactic.Grind.Arith.Linear.OfNatModule.0.Lean.Meta.Grind.Arith.Linear.ofNatModule'._unsafe_rec
Lean.Meta.Tactic.Grind.Arith.Linear.OfNatModule
Lean.Expr → Lean.Meta.Grind.Arith.Linear.OfNatModuleM (Lean.Expr × Lean.Expr)
Ideal.mem_prod
Mathlib.RingTheory.Ideal.Prod
∀ {R : Type u} {S : Type v} [inst : Semiring R] [inst_1 : Semiring S] (I : Ideal R) (J : Ideal S) {x : R × S}, x ∈ I.prod J ↔ x.1 ∈ I ∧ x.2 ∈ J
MeasurableEquiv.coe_mulLeft
Mathlib.MeasureTheory.Group.MeasurableEquiv
∀ {G : Type u_1} [inst : Group G] [inst_1 : MeasurableSpace G] [inst_2 : MeasurableMul G] (g : G), ⇑(MeasurableEquiv.mulLeft g) = fun x => g * x
MeasureTheory.toOuterMeasure_eq_inducedOuterMeasure
Mathlib.MeasureTheory.Measure.MeasureSpaceDef
∀ {α : Type u_1} [inst : MeasurableSpace α] {μ : MeasureTheory.Measure α}, μ.toOuterMeasure = MeasureTheory.inducedOuterMeasure (fun s x => μ s) ⋯ ⋯
_private.Lean.Elab.CheckTactic.0.Lean.Elab.CheckTactic.elabCheckTactic._sparseCasesOn_5
Lean.Elab.CheckTactic
{α : Type u} → {motive : List α → Sort u_1} → (t : List α) → motive [] → (Nat.hasNotBit 1 t.ctorIdx → motive t) → motive t
ProofWidgets.Penrose.DiagramBuilderM.addEmbed
ProofWidgets.Component.PenroseDiagram
String → String → ProofWidgets.Html → ProofWidgets.Penrose.DiagramBuilderM Unit
String.Pos.Raw.Valid.mk
Batteries.Data.String.Lemmas
∀ (cs cs' : List Char) {p : String.Pos.Raw}, p.byteIdx = String.utf8Len cs → String.Pos.Raw.Valid (String.ofList (cs ++ cs')) p
_private.Mathlib.MeasureTheory.Measure.WithDensity.0.MeasureTheory.lintegral_withDensity_eq_lintegral_mul₀'._simp_1_2
Mathlib.MeasureTheory.Measure.WithDensity
∀ {α : Type u} (s : Set α) (x : α), (x ∈ sᶜ) = (x ∉ s)
ProbabilityTheory.condVar_of_sigmaFinite
Mathlib.Probability.CondVar
∀ {Ω : Type u_1} {m₀ m : MeasurableSpace Ω} {hm : m ≤ m₀} {X : Ω → ℝ} {μ : MeasureTheory.Measure Ω} [inst : MeasureTheory.SigmaFinite (μ.trim hm)], ProbabilityTheory.condVar m X μ = if MeasureTheory.Integrable (fun ω => (X ω - μ[X | m] ω) ^ 2) μ then if MeasureTheory.StronglyMeasurable fun ω => (X ω - μ[X | m] ω) ^ 2 then fun ω => (X ω - μ[X | m] ω) ^ 2 else MeasureTheory.AEStronglyMeasurable.mk ↑↑(MeasureTheory.condExpL1 hm μ fun ω => (X ω - μ[X | m] ω) ^ 2) ⋯ else 0
Std.DTreeMap.Internal.Impl.foldrM.eq_1
Std.Data.DTreeMap.Internal.WF.Lemmas
∀ {α : Type u} {β : α → Type v} {δ : Type w} {m : Type w → Type u_1} [inst : Monad m] (f : (a : α) → β a → δ → m δ) (init : δ), Std.DTreeMap.Internal.Impl.foldrM f init Std.DTreeMap.Internal.Impl.leaf = pure init
OrderDual.instLocallyFiniteOrderTop
Mathlib.Order.Interval.Finset.Defs
{α : Type u_1} → [inst : Preorder α] → [LocallyFiniteOrderBot α] → LocallyFiniteOrderTop αᵒᵈ
ContractingWith.edist_efixedPoint_lt_top
Mathlib.Topology.MetricSpace.Contracting
∀ {α : Type u_1} [inst : EMetricSpace α] {K : NNReal} {f : α → α} [inst_1 : CompleteSpace α] (hf : ContractingWith K f) {x : α} (hx : edist x (f x) ≠ ⊤), edist x (ContractingWith.efixedPoint f hf x hx) < ⊤
CategoryTheory.LocallyDiscrete.mkPseudofunctor._proof_1
Mathlib.CategoryTheory.Bicategory.Functor.LocallyDiscrete
∀ {B₀ : Type u_4} {C : Type u_2} [inst : CategoryTheory.Category.{u_5, u_4} B₀] [inst_1 : CategoryTheory.Bicategory C] (obj : B₀ → C) (map : {b b' : B₀} → (b ⟶ b') → (obj b ⟶ obj b')) {b₀ b₁ b₂ b₃ : CategoryTheory.LocallyDiscrete B₀} (x : b₀ ⟶ b₁) (x_1 : b₁ ⟶ b₂) (x_2 : b₂ ⟶ b₃), map (CategoryTheory.CategoryStruct.comp (CategoryTheory.CategoryStruct.comp x.as x_1.as) x_2.as) = map (CategoryTheory.CategoryStruct.comp x.as (CategoryTheory.CategoryStruct.comp x_1.as x_2.as))
CategoryTheory.Grothendieck.forget
Mathlib.CategoryTheory.Grothendieck
{C : Type u} → [inst : CategoryTheory.Category.{v, u} C] → (F : CategoryTheory.Functor C CategoryTheory.Cat) → CategoryTheory.Functor (CategoryTheory.Grothendieck F) C
Lean.Lsp.ParameterInformationLabel.range.elim
Lean.Data.Lsp.LanguageFeatures
{motive : Lean.Lsp.ParameterInformationLabel → Sort u} → (t : Lean.Lsp.ParameterInformationLabel) → t.ctorIdx = 1 → ((startUtf16Offset endUtf16Offset : ℕ) → motive (Lean.Lsp.ParameterInformationLabel.range startUtf16Offset endUtf16Offset)) → motive t
ENat.one_epow
Mathlib.Data.ENat.Pow
∀ {y : ℕ∞}, 1 ^ y = 1
AlgebraicGeometry.Scheme.OpenCover.ext_elem
Mathlib.AlgebraicGeometry.Cover.Open
∀ {X : AlgebraicGeometry.Scheme} {U : X.Opens} (f g : ↑(X.presheaf.obj (Opposite.op U))) (𝒰 : X.OpenCover), (∀ (i : 𝒰.I₀), (CategoryTheory.ConcreteCategory.hom (AlgebraicGeometry.Scheme.Hom.app (𝒰.f i) U)) f = (CategoryTheory.ConcreteCategory.hom (AlgebraicGeometry.Scheme.Hom.app (𝒰.f i) U)) g) → f = g
CompHausLike.coproductIsColimit._proof_6
Mathlib.Topology.Category.CompHausLike.Cartesian
∀ {P : TopCat → Prop} (X Y : CompHausLike P) (s : CategoryTheory.Limits.BinaryCofan X Y), CompHausLike.HasProp P ↑s.1.toTop
Std.Internal.List.containsKey_of_perm
Std.Data.Internal.List.Associative
∀ {α : Type u} {β : α → Type v} [inst : BEq α] [PartialEquivBEq α] {l l' : List ((a : α) × β a)} {k : α}, l.Perm l' → Std.Internal.List.containsKey k l = Std.Internal.List.containsKey k l'
tendsto_inv_atTop_nhds_zero_nat
Mathlib.Analysis.SpecificLimits.Basic
∀ {𝕜 : Type u_4} [inst : DivisionSemiring 𝕜] [inst_1 : CharZero 𝕜] [inst_2 : TopologicalSpace 𝕜] [ContinuousSMul ℚ≥0 𝕜], Filter.Tendsto (fun n => (↑n)⁻¹) Filter.atTop (nhds 0)
instNoMinOrderElemIoc
Mathlib.Order.Interval.Set.Basic
∀ (α : Type u_1) [inst : Preorder α] [DenselyOrdered α] {x y : α}, NoMinOrder ↑(Set.Ioc x y)
_private.Mathlib.NumberTheory.DiophantineApproximation.Basic.0.Real.invariant._simp_1_3
Mathlib.NumberTheory.DiophantineApproximation.Basic
∀ {α : Type u_2} [inst : Zero α] [inst_1 : OfNat α 4] [NeZero 4], (4 = 0) = False
CommGroupWithZero.zpow._inherited_default
Mathlib.Algebra.GroupWithZero.Defs
{G₀ : Type u_2} → (G₀ → G₀ → G₀) → G₀ → (G₀ → G₀) → ℤ → G₀ → G₀
MvPolynomial.renameEquiv_trans
Mathlib.Algebra.MvPolynomial.Rename
∀ {σ : Type u_1} {τ : Type u_2} {α : Type u_3} (R : Type u_4) [inst : CommSemiring R] (e : σ ≃ τ) (f : τ ≃ α), (MvPolynomial.renameEquiv R e).trans (MvPolynomial.renameEquiv R f) = MvPolynomial.renameEquiv R (e.trans f)
Units.instMulDistribMulAction._proof_1
Mathlib.Algebra.GroupWithZero.Action.Units
∀ {M : Type u_1} {α : Type u_2} [inst : Monoid M] [inst_1 : Monoid α] [inst_2 : MulDistribMulAction M α] (m : Mˣ) (b₁ b₂ : α), ↑m • (b₁ * b₂) = ↑m • b₁ * ↑m • b₂
Polynomial.isOpenMap_comap_C
Mathlib.RingTheory.Spectrum.Prime.Polynomial
∀ {R : Type u_1} [inst : CommRing R], IsOpenMap (PrimeSpectrum.comap Polynomial.C)
_private.Mathlib.Data.Fintype.EquivFin.0.Function.Embedding.exists_of_card_eq_finset._simp_1_1
Mathlib.Data.Fintype.EquivFin
∀ {α : Type u_1} {s₁ s₂ : Finset α}, (s₁ ⊆ s₂) = (↑s₁ ⊆ ↑s₂)
_private.Lean.Elab.Tactic.Simp.0.Lean.Elab.Tactic.elabSimpArgs.match_11
Lean.Elab.Tactic.Simp
(motive : Lean.Elab.Tactic.ElabSimpArgResult → Sort u_1) → (arg : Lean.Elab.Tactic.ElabSimpArgResult) → ((entries : Array Lean.Meta.SimpEntry) → motive (Lean.Elab.Tactic.ElabSimpArgResult.addEntries entries)) → ((fvarId : Lean.FVarId) → motive (Lean.Elab.Tactic.ElabSimpArgResult.addLetToUnfold fvarId)) → ((declName : Lean.Name) → (post : Bool) → motive (Lean.Elab.Tactic.ElabSimpArgResult.addSimproc declName post)) → ((origin : Lean.Meta.Origin) → motive (Lean.Elab.Tactic.ElabSimpArgResult.erase origin)) → ((name : Lean.Name) → motive (Lean.Elab.Tactic.ElabSimpArgResult.eraseSimproc name)) → ((simpExt? : Option Lean.Meta.SimpExtension) → (simprocExt? : Option Lean.Meta.Simp.SimprocExtension) → (h : (simpExt?.isSome || simprocExt?.isSome) = true) → motive (Lean.Elab.Tactic.ElabSimpArgResult.ext simpExt? simprocExt? h)) → (Unit → motive Lean.Elab.Tactic.ElabSimpArgResult.star) → (Unit → motive Lean.Elab.Tactic.ElabSimpArgResult.none) → motive arg
Module.Presentation.cokernelRelations_R
Mathlib.Algebra.Module.Presentation.Cokernel
∀ {A : Type u} [inst : Ring A] {M₁ : Type v₁} {M₂ : Type v₂} [inst_1 : AddCommGroup M₁] [inst_2 : Module A M₁] [inst_3 : AddCommGroup M₂] [inst_4 : Module A M₂] (pres₂ : Module.Presentation A M₂) {f : M₁ →ₗ[A] M₂} {ι : Type w₁} {g₁ : ι → M₁} (data : pres₂.CokernelData f g₁), (pres₂.cokernelRelations data).R = (pres₂.R ⊕ ι)
ValuativeRel._aux_Mathlib_RingTheory_Valuation_ValuativeRel_Basic___unexpand_ValuativeRel_vlt_1
Mathlib.RingTheory.Valuation.ValuativeRel.Basic
Lean.PrettyPrinter.Unexpander
BooleanAlgebra.toHImp
Mathlib.Order.BooleanAlgebra.Defs
{α : Type u} → [self : BooleanAlgebra α] → HImp α
DiscreteQuotient.map_continuous
Mathlib.Topology.DiscreteQuotient
∀ {X : Type u_2} {Y : Type u_3} [inst : TopologicalSpace X] [inst_1 : TopologicalSpace Y] {f : C(X, Y)} {A : DiscreteQuotient X} {B : DiscreteQuotient Y} (cond : DiscreteQuotient.LEComap f A B), Continuous (DiscreteQuotient.map f cond)
instIsCancelVAdd
Mathlib.Algebra.Group.Action.Defs
∀ (G : Type u_9) [inst : AddCancelMonoid G], IsCancelVAdd G G
AddCommMonCat.Hom.recOn
Mathlib.Algebra.Category.MonCat.Basic
{A B : AddCommMonCat} → {motive : A.Hom B → Sort u_1} → (t : A.Hom B) → ((hom' : ↑A →+ ↑B) → motive { hom' := hom' }) → motive t
_private.Mathlib.Data.Multiset.ZeroCons.0.Multiset.le_singleton._simp_1_1
Mathlib.Data.Multiset.ZeroCons
∀ {α : Type u_1} (a : α), {a} = ↑[a]
Lean.Syntax.topDown
Lean.Syntax
Lean.Syntax → optParam Bool false → Lean.Syntax.TopDown
MultilinearMap.uncurry_curryRight
Mathlib.LinearAlgebra.Multilinear.Curry
∀ {R : Type uR} {n : ℕ} {M : Fin n.succ → Type v} {M₂ : Type v₂} [inst : CommSemiring R] [inst_1 : (i : Fin n.succ) → AddCommMonoid (M i)] [inst_2 : AddCommMonoid M₂] [inst_3 : (i : Fin n.succ) → Module R (M i)] [inst_4 : Module R M₂] (f : MultilinearMap R M M₂), f.curryRight.uncurryRight = f
Lean.Grind.IntModule.OfNatModule.r
Init.Grind.Module.Envelope
(α : Type u) → [Lean.Grind.NatModule α] → α × α → α × α → Prop
SeparationQuotient.surjective_mk
Mathlib.Topology.Inseparable
∀ {X : Type u_1} [inst : TopologicalSpace X], Function.Surjective SeparationQuotient.mk
Std.Tactic.BVDecide.BVExpr.bitblast.instLawfulVecOperatorRefVecBlastClz
Std.Tactic.BVDecide.Bitblast.BVExpr.Circuit.Impl.Operations.Clz
∀ {α : Type} [inst : Hashable α] [inst_1 : DecidableEq α], Std.Sat.AIG.LawfulVecOperator α Std.Sat.AIG.RefVec fun {len} => Std.Tactic.BVDecide.BVExpr.bitblast.blastClz
_private.Mathlib.Computability.PostTuringMachine.0.Turing.TM1to0.trAux.match_1.eq_1
Mathlib.Computability.PostTuringMachine
∀ {Γ : Type u_1} {Λ : Type u_2} {σ : Type u_3} (motive : Turing.TM1.Stmt Γ Λ σ → σ → Sort u_4) (d : Turing.Dir) (q : Turing.TM1.Stmt Γ Λ σ) (v : σ) (h_1 : (d : Turing.Dir) → (q : Turing.TM1.Stmt Γ Λ σ) → (v : σ) → motive (Turing.TM1.Stmt.move d q) v) (h_2 : (a : Γ → σ → Γ) → (q : Turing.TM1.Stmt Γ Λ σ) → (v : σ) → motive (Turing.TM1.Stmt.write a q) v) (h_3 : (a : Γ → σ → σ) → (q : Turing.TM1.Stmt Γ Λ σ) → (v : σ) → motive (Turing.TM1.Stmt.load a q) v) (h_4 : (p : Γ → σ → Bool) → (q₁ q₂ : Turing.TM1.Stmt Γ Λ σ) → (v : σ) → motive (Turing.TM1.Stmt.branch p q₁ q₂) v) (h_5 : (l : Γ → σ → Λ) → (v : σ) → motive (Turing.TM1.Stmt.goto l) v) (h_6 : (v : σ) → motive Turing.TM1.Stmt.halt v), (match Turing.TM1.Stmt.move d q, v with | Turing.TM1.Stmt.move d q, v => h_1 d q v | Turing.TM1.Stmt.write a q, v => h_2 a q v | Turing.TM1.Stmt.load a q, v => h_3 a q v | Turing.TM1.Stmt.branch p q₁ q₂, v => h_4 p q₁ q₂ v | Turing.TM1.Stmt.goto l, v => h_5 l v | Turing.TM1.Stmt.halt, v => h_6 v) = h_1 d q v
Std.DTreeMap.Internal.Impl.minKeyD_erase_eq_of_not_compare_minKeyD_eq
Std.Data.DTreeMap.Internal.Lemmas
∀ {α : Type u} {β : α → Type v} {instOrd : Ord α} {t : Std.DTreeMap.Internal.Impl α β} [Std.TransOrd α] (h : t.WF) {k fallback : α}, (Std.DTreeMap.Internal.Impl.erase k t ⋯).impl.isEmpty = false → ¬compare k (t.minKeyD fallback) = Ordering.eq → (Std.DTreeMap.Internal.Impl.erase k t ⋯).impl.minKeyD fallback = t.minKeyD fallback
_private.Mathlib.Tactic.Linter.FlexibleLinter.0.Mathlib.Linter.Flexible.generateSimpSuggestion
Mathlib.Tactic.Linter.FlexibleLinter
Mathlib.Linter.Flexible.StainData✝ → Lean.Syntax → Lean.CoreM (Option Lean.Syntax)
CochainComplex.HomComplex.Cochain.single_v
Mathlib.Algebra.Homology.HomotopyCategory.HomComplex
∀ {C : Type u} [inst : CategoryTheory.Category.{v, u} C] [inst_1 : CategoryTheory.Preadditive C] {K L : CochainComplex C ℤ} {p q : ℤ} (f : K.X p ⟶ L.X q) (n : ℤ) (hpq : p + n = q), (CochainComplex.HomComplex.Cochain.single f n).v p q hpq = f
LLVM.CodegenFileType.ctorIdx
Lean.Compiler.IR.LLVMBindings
LLVM.CodegenFileType → ℕ
HeytingAlgebra.ctorIdx
Mathlib.Order.Heyting.Basic
{α : Type u_4} → HeytingAlgebra α → ℕ
frequently_gt_nhds
Mathlib.Topology.Order.LeftRight
∀ {α : Type u_1} [inst : TopologicalSpace α] [inst_1 : Preorder α] (a : α) [(nhdsWithin a (Set.Ioi a)).NeBot], ∃ᶠ (x : α) in nhds a, a < x
_private.Init.Data.SInt.Bitwise.0.Int8.not_eq_comm._simp_1_1
Init.Data.SInt.Bitwise
∀ {a b : Int8}, (a = b) = (a.toBitVec = b.toBitVec)
Set.biUnionEqSigmaOfDisjoint.eq_1
Mathlib.Data.Set.Pairwise.Lattice
∀ {α : Type u_1} {ι : Type u_2} {s : Set ι} {f : ι → Set α} (h : s.PairwiseDisjoint f), Set.biUnionEqSigmaOfDisjoint h = (Equiv.setCongr ⋯).trans (Set.unionEqSigmaOfDisjoint ⋯)
Relation.map_map
Mathlib.Logic.Relation
∀ {α : Sort u_1} {β : Sort u_2} {γ : Sort u_3} {δ : Sort u_4} {ε : Sort u_5} {ζ : Sort u_6} (r : α → β → Prop) (f₁ : α → γ) (g₁ : β → δ) (f₂ : γ → ε) (g₂ : δ → ζ), Relation.Map (Relation.Map r f₁ g₁) f₂ g₂ = Relation.Map r (f₂ ∘ f₁) (g₂ ∘ g₁)
MeasureTheory.measure_eq_measure_smaller_of_between_null_diff
Mathlib.MeasureTheory.Measure.MeasureSpace
∀ {α : Type u_1} {m : MeasurableSpace α} {μ : MeasureTheory.Measure α} {s₁ s₂ s₃ : Set α}, s₁ ⊆ s₂ → s₂ ⊆ s₃ → μ (s₃ \ s₁) = 0 → μ s₁ = μ s₂
Subgroup.orderIsoCon
Mathlib.GroupTheory.QuotientGroup.Defs
{G : Type u_1} → [inst : Group G] → { N // N.Normal } ≃o Con G
CommMonCat.forget₂CreatesLimit._proof_11
Mathlib.Algebra.Category.MonCat.Limits
∀ {J : Type u_3} [inst : CategoryTheory.Category.{u_1, u_3} J] (F : CategoryTheory.Functor J CommMonCat) [inst_1 : Small.{u_2, max u_2 u_3} ↑(F.comp (CategoryTheory.forget CommMonCat)).sections] (x : CategoryTheory.Limits.Cone F), (CategoryTheory.forget₂ CommMonCat MonCat).map { hom' := { toFun := fun v => EquivLike.coe (equivShrink ↑((F.comp (CategoryTheory.forget₂ CommMonCat MonCat)).comp (CategoryTheory.forget MonCat)).sections) ⟨fun j => ((CategoryTheory.forget MonCat).mapCone ((CategoryTheory.forget₂ CommMonCat MonCat).mapCone x)).π.app j v, ⋯⟩, map_one' := ⋯, map_mul' := ⋯ } } = (CategoryTheory.forget₂ CommMonCat MonCat).map { hom' := { toFun := fun v => EquivLike.coe (equivShrink ↑((F.comp (CategoryTheory.forget₂ CommMonCat MonCat)).comp (CategoryTheory.forget MonCat)).sections) ⟨fun j => ((CategoryTheory.forget MonCat).mapCone ((CategoryTheory.forget₂ CommMonCat MonCat).mapCone x)).π.app j v, ⋯⟩, map_one' := ⋯, map_mul' := ⋯ } }
_private.Std.Data.DHashMap.Internal.Defs.0.Std.DHashMap.Internal.Raw₀.expand.go.induct
Std.Data.DHashMap.Internal.WF
∀ {α : Type u} {β : α → Type v} [inst : Hashable α] (motive : ℕ → Array (Std.DHashMap.Internal.AssocList α β) → { d // 0 < d.size } → Prop), (∀ (i : ℕ) (source : Array (Std.DHashMap.Internal.AssocList α β)) (target : { d // 0 < d.size }) (h : i < source.size), have es := source[i]; have source_1 := source.set i Std.DHashMap.Internal.AssocList.nil h; have target_1 := Std.DHashMap.Internal.AssocList.foldl (Std.DHashMap.Internal.Raw₀.reinsertAux hash) target es; motive (i + 1) source_1 target_1 → motive i source target) → (∀ (i : ℕ) (source : Array (Std.DHashMap.Internal.AssocList α β)) (target : { d // 0 < d.size }), ¬i < source.size → motive i source target) → ∀ (i : ℕ) (source : Array (Std.DHashMap.Internal.AssocList α β)) (target : { d // 0 < d.size }), motive i source target
_private.Batteries.Data.RBMap.Lemmas.0.Batteries.RBNode.Ordered.memP_iff_lowerBound?.match_1_5
Batteries.Data.RBMap.Lemmas
∀ (motive : Ordering.eq = Ordering.lt → Prop) (x : Ordering.eq = Ordering.lt), motive x
ContinuousLinearMap.equivProdOfSurjectiveOfIsCompl.congr_simp
Mathlib.Analysis.Calculus.Implicit
∀ {𝕜 : Type u_1} {E : Type u_2} {F : Type u_3} {G : Type u_4} [inst : NontriviallyNormedField 𝕜] [inst_1 : NormedAddCommGroup E] [inst_2 : NormedSpace 𝕜 E] [inst_3 : NormedAddCommGroup F] [inst_4 : NormedSpace 𝕜 F] [inst_5 : NormedAddCommGroup G] [inst_6 : NormedSpace 𝕜 G] [inst_7 : CompleteSpace E] [inst_8 : CompleteSpace (F × G)] (f f_1 : E →L[𝕜] F) (e_f : f = f_1) (g g_1 : E →L[𝕜] G) (e_g : g = g_1) (hf : (↑f).range = ⊤) (hg : (↑g).range = ⊤) (hfg : IsCompl (↑f).ker (↑g).ker), f.equivProdOfSurjectiveOfIsCompl g hf hg hfg = f_1.equivProdOfSurjectiveOfIsCompl g_1 ⋯ ⋯ ⋯
Std.Sat.AIG.RelabelNat.State.noConfusionType
Std.Sat.AIG.RelabelNat
Sort u → {α : Type} → [inst : DecidableEq α] → [inst_1 : Hashable α] → {decls : Array (Std.Sat.AIG.Decl α)} → {idx : ℕ} → Std.Sat.AIG.RelabelNat.State α decls idx → {α' : Type} → [inst' : DecidableEq α'] → [inst'_1 : Hashable α'] → {decls' : Array (Std.Sat.AIG.Decl α')} → {idx' : ℕ} → Std.Sat.AIG.RelabelNat.State α' decls' idx' → Sort u
_private.Mathlib.RingTheory.OrderOfVanishing.0.Ring.ordFrac._simp_1
Mathlib.RingTheory.OrderOfVanishing
∀ {G₀ : Type u_3} [inst : GroupWithZero G₀] {a : G₀}, IsUnit a = (a ≠ 0)
WellFounded.Nat.fix.go.congr_simp
Init.WF
∀ {α : Sort u} {motive : α → Sort v} (h : α → ℕ) (F F_1 : (x : α) → ((y : α) → InvImage (fun x1 x2 => x1 < x2) h y x → motive y) → motive x), F = F_1 → ∀ (fuel fuel_1 : ℕ) (e_fuel : fuel = fuel_1) (x : α) (a : h x < fuel), WellFounded.Nat.fix.go h F fuel x a = WellFounded.Nat.fix.go h F_1 fuel_1 x ⋯
hasSum_nat_jacobiTheta
Mathlib.NumberTheory.ModularForms.JacobiTheta.OneVariable
∀ {τ : ℂ}, 0 < τ.im → HasSum (fun n => Complex.exp (↑Real.pi * Complex.I * (↑n + 1) ^ 2 * τ)) ((jacobiTheta τ - 1) / 2)