ARLBench
Collection
Data related to the ARLBench benchmark: performance data, ranking, benchmarking and so on.
•
1 item
•
Updated
config_id
int64 0
255
| training_steps
int64 5k
10M
| performance
float64 -3,734.97
34.6k
| hp_config.buffer_batch_size
int64 16
256
| hp_config.buffer_prio_sampling
bool 2
classes | hp_config.buffer_size
int64 1.1k
1,000k
| hp_config.initial_epsilon
float64 0.5
1
| hp_config.learning_rate
float64 0
0.1
| hp_config.learning_starts
int64 1
32.7k
| hp_config.target_epsilon
float64 0
0.2
| hp_config.use_target_network
bool 2
classes | hp_config.buffer_alpha
float64 0.02
0.98
⌀ | hp_config.buffer_beta
float64 0.01
1
⌀ | hp_config.buffer_epsilon
float64 0
0
⌀ | hp_config.target_update_interval
float64 1
2k
⌀ | seed
int64 0
9
|
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0
| 1,000,000
| 0
| 32
| false
| 603,170
| 0.772442
| 0.000131
| 21,527
| 0.08808
| false
| null | null | null | null | 9
|
0
| 2,000,000
| 1,523.4375
| 32
| false
| 603,170
| 0.772442
| 0.000131
| 21,527
| 0.08808
| false
| null | null | null | null | 9
|
0
| 3,000,000
| 0
| 32
| false
| 603,170
| 0.772442
| 0.000131
| 21,527
| 0.08808
| false
| null | null | null | null | 9
|
0
| 4,000,000
| 0
| 32
| false
| 603,170
| 0.772442
| 0.000131
| 21,527
| 0.08808
| false
| null | null | null | null | 9
|
0
| 5,000,000
| 546.875
| 32
| false
| 603,170
| 0.772442
| 0.000131
| 21,527
| 0.08808
| false
| null | null | null | null | 9
|
0
| 6,000,000
| 2,000
| 32
| false
| 603,170
| 0.772442
| 0.000131
| 21,527
| 0.08808
| false
| null | null | null | null | 9
|
0
| 7,000,000
| 1,000
| 32
| false
| 603,170
| 0.772442
| 0.000131
| 21,527
| 0.08808
| false
| null | null | null | null | 9
|
0
| 8,000,000
| 0
| 32
| false
| 603,170
| 0.772442
| 0.000131
| 21,527
| 0.08808
| false
| null | null | null | null | 9
|
0
| 9,000,000
| 3,000
| 32
| false
| 603,170
| 0.772442
| 0.000131
| 21,527
| 0.08808
| false
| null | null | null | null | 9
|
0
| 10,000,000
| 3,000
| 32
| false
| 603,170
| 0.772442
| 0.000131
| 21,527
| 0.08808
| false
| null | null | null | null | 9
|
1
| 1,000,000
| 1,351.5625
| 32
| false
| 71,987
| 0.543565
| 0.000001
| 27,455
| 0.155853
| false
| null | null | null | null | 9
|
1
| 2,000,000
| 3,632.8125
| 32
| false
| 71,987
| 0.543565
| 0.000001
| 27,455
| 0.155853
| false
| null | null | null | null | 9
|
1
| 3,000,000
| 2,117.1875
| 32
| false
| 71,987
| 0.543565
| 0.000001
| 27,455
| 0.155853
| false
| null | null | null | null | 9
|
1
| 4,000,000
| 2,351.5625
| 32
| false
| 71,987
| 0.543565
| 0.000001
| 27,455
| 0.155853
| false
| null | null | null | null | 9
|
1
| 5,000,000
| 7,984.375
| 32
| false
| 71,987
| 0.543565
| 0.000001
| 27,455
| 0.155853
| false
| null | null | null | null | 9
|
1
| 6,000,000
| 4,171.875
| 32
| false
| 71,987
| 0.543565
| 0.000001
| 27,455
| 0.155853
| false
| null | null | null | null | 9
|
1
| 7,000,000
| 4,828.125
| 32
| false
| 71,987
| 0.543565
| 0.000001
| 27,455
| 0.155853
| false
| null | null | null | null | 9
|
1
| 8,000,000
| 7,226.5625
| 32
| false
| 71,987
| 0.543565
| 0.000001
| 27,455
| 0.155853
| false
| null | null | null | null | 9
|
1
| 9,000,000
| 3,703.125
| 32
| false
| 71,987
| 0.543565
| 0.000001
| 27,455
| 0.155853
| false
| null | null | null | null | 9
|
1
| 10,000,000
| 10,210.9375
| 32
| false
| 71,987
| 0.543565
| 0.000001
| 27,455
| 0.155853
| false
| null | null | null | null | 9
|
2
| 1,000,000
| 257.8125
| 16
| false
| 144,230
| 0.972334
| 0.000407
| 14,187
| 0.053647
| false
| null | null | null | null | 9
|
2
| 2,000,000
| 2,937.5
| 16
| false
| 144,230
| 0.972334
| 0.000407
| 14,187
| 0.053647
| false
| null | null | null | null | 9
|
2
| 3,000,000
| 4,187.5
| 16
| false
| 144,230
| 0.972334
| 0.000407
| 14,187
| 0.053647
| false
| null | null | null | null | 9
|
2
| 4,000,000
| 4,453.125
| 16
| false
| 144,230
| 0.972334
| 0.000407
| 14,187
| 0.053647
| false
| null | null | null | null | 9
|
2
| 5,000,000
| 1,453.125
| 16
| false
| 144,230
| 0.972334
| 0.000407
| 14,187
| 0.053647
| false
| null | null | null | null | 9
|
2
| 6,000,000
| 0
| 16
| false
| 144,230
| 0.972334
| 0.000407
| 14,187
| 0.053647
| false
| null | null | null | null | 9
|
2
| 7,000,000
| 2,507.8125
| 16
| false
| 144,230
| 0.972334
| 0.000407
| 14,187
| 0.053647
| false
| null | null | null | null | 9
|
2
| 8,000,000
| 3,000
| 16
| false
| 144,230
| 0.972334
| 0.000407
| 14,187
| 0.053647
| false
| null | null | null | null | 9
|
2
| 9,000,000
| 1,421.875
| 16
| false
| 144,230
| 0.972334
| 0.000407
| 14,187
| 0.053647
| false
| null | null | null | null | 9
|
2
| 10,000,000
| 0
| 16
| false
| 144,230
| 0.972334
| 0.000407
| 14,187
| 0.053647
| false
| null | null | null | null | 9
|
3
| 1,000,000
| 4,289.0625
| 32
| false
| 943,806
| 0.84091
| 0.000063
| 14,897
| 0.139829
| true
| null | null | null | 258
| 9
|
3
| 2,000,000
| 8,835.9375
| 32
| false
| 943,806
| 0.84091
| 0.000063
| 14,897
| 0.139829
| true
| null | null | null | 258
| 9
|
3
| 3,000,000
| 5,578.125
| 32
| false
| 943,806
| 0.84091
| 0.000063
| 14,897
| 0.139829
| true
| null | null | null | 258
| 9
|
3
| 4,000,000
| 2,960.9375
| 32
| false
| 943,806
| 0.84091
| 0.000063
| 14,897
| 0.139829
| true
| null | null | null | 258
| 9
|
3
| 5,000,000
| 9,132.8125
| 32
| false
| 943,806
| 0.84091
| 0.000063
| 14,897
| 0.139829
| true
| null | null | null | 258
| 9
|
3
| 6,000,000
| 12,875
| 32
| false
| 943,806
| 0.84091
| 0.000063
| 14,897
| 0.139829
| true
| null | null | null | 258
| 9
|
3
| 7,000,000
| 14,265.625
| 32
| false
| 943,806
| 0.84091
| 0.000063
| 14,897
| 0.139829
| true
| null | null | null | 258
| 9
|
3
| 8,000,000
| 16,570.312
| 32
| false
| 943,806
| 0.84091
| 0.000063
| 14,897
| 0.139829
| true
| null | null | null | 258
| 9
|
3
| 9,000,000
| 8,593.75
| 32
| false
| 943,806
| 0.84091
| 0.000063
| 14,897
| 0.139829
| true
| null | null | null | 258
| 9
|
3
| 10,000,000
| 20,132.812
| 32
| false
| 943,806
| 0.84091
| 0.000063
| 14,897
| 0.139829
| true
| null | null | null | 258
| 9
|
4
| 1,000,000
| 554.6875
| 16
| true
| 570,637
| 0.719301
| 0.087472
| 4,263
| 0.042566
| true
| 0.656577
| 0.260759
| 0.000007
| 489
| 9
|
4
| 2,000,000
| 2,000
| 16
| true
| 570,637
| 0.719301
| 0.087472
| 4,263
| 0.042566
| true
| 0.656577
| 0.260759
| 0.000007
| 489
| 9
|
4
| 3,000,000
| 609.375
| 16
| true
| 570,637
| 0.719301
| 0.087472
| 4,263
| 0.042566
| true
| 0.656577
| 0.260759
| 0.000007
| 489
| 9
|
4
| 4,000,000
| 3,000
| 16
| true
| 570,637
| 0.719301
| 0.087472
| 4,263
| 0.042566
| true
| 0.656577
| 0.260759
| 0.000007
| 489
| 9
|
4
| 5,000,000
| 2,000
| 16
| true
| 570,637
| 0.719301
| 0.087472
| 4,263
| 0.042566
| true
| 0.656577
| 0.260759
| 0.000007
| 489
| 9
|
4
| 6,000,000
| 0
| 16
| true
| 570,637
| 0.719301
| 0.087472
| 4,263
| 0.042566
| true
| 0.656577
| 0.260759
| 0.000007
| 489
| 9
|
4
| 7,000,000
| 0
| 16
| true
| 570,637
| 0.719301
| 0.087472
| 4,263
| 0.042566
| true
| 0.656577
| 0.260759
| 0.000007
| 489
| 9
|
4
| 8,000,000
| 0
| 16
| true
| 570,637
| 0.719301
| 0.087472
| 4,263
| 0.042566
| true
| 0.656577
| 0.260759
| 0.000007
| 489
| 9
|
4
| 9,000,000
| 593.75
| 16
| true
| 570,637
| 0.719301
| 0.087472
| 4,263
| 0.042566
| true
| 0.656577
| 0.260759
| 0.000007
| 489
| 9
|
4
| 10,000,000
| 531.25
| 16
| true
| 570,637
| 0.719301
| 0.087472
| 4,263
| 0.042566
| true
| 0.656577
| 0.260759
| 0.000007
| 489
| 9
|
5
| 1,000,000
| 2,945.3125
| 16
| true
| 656,682
| 0.569091
| 0.00001
| 12,729
| 0.164378
| true
| 0.839565
| 0.105137
| 0.000805
| 938
| 9
|
5
| 2,000,000
| 5,531.25
| 16
| true
| 656,682
| 0.569091
| 0.00001
| 12,729
| 0.164378
| true
| 0.839565
| 0.105137
| 0.000805
| 938
| 9
|
5
| 3,000,000
| 8,726.5625
| 16
| true
| 656,682
| 0.569091
| 0.00001
| 12,729
| 0.164378
| true
| 0.839565
| 0.105137
| 0.000805
| 938
| 9
|
5
| 4,000,000
| 5,031.25
| 16
| true
| 656,682
| 0.569091
| 0.00001
| 12,729
| 0.164378
| true
| 0.839565
| 0.105137
| 0.000805
| 938
| 9
|
5
| 5,000,000
| 3,914.0625
| 16
| true
| 656,682
| 0.569091
| 0.00001
| 12,729
| 0.164378
| true
| 0.839565
| 0.105137
| 0.000805
| 938
| 9
|
5
| 6,000,000
| 2,335.9375
| 16
| true
| 656,682
| 0.569091
| 0.00001
| 12,729
| 0.164378
| true
| 0.839565
| 0.105137
| 0.000805
| 938
| 9
|
5
| 7,000,000
| 8,414.0625
| 16
| true
| 656,682
| 0.569091
| 0.00001
| 12,729
| 0.164378
| true
| 0.839565
| 0.105137
| 0.000805
| 938
| 9
|
5
| 8,000,000
| 7,921.875
| 16
| true
| 656,682
| 0.569091
| 0.00001
| 12,729
| 0.164378
| true
| 0.839565
| 0.105137
| 0.000805
| 938
| 9
|
5
| 9,000,000
| 11,320.3125
| 16
| true
| 656,682
| 0.569091
| 0.00001
| 12,729
| 0.164378
| true
| 0.839565
| 0.105137
| 0.000805
| 938
| 9
|
5
| 10,000,000
| 11,765.625
| 16
| true
| 656,682
| 0.569091
| 0.00001
| 12,729
| 0.164378
| true
| 0.839565
| 0.105137
| 0.000805
| 938
| 9
|
6
| 1,000,000
| 2,953.125
| 64
| false
| 739,531
| 0.519594
| 0.000026
| 4,839
| 0.059932
| true
| null | null | null | 1,385
| 9
|
6
| 2,000,000
| 7,429.6875
| 64
| false
| 739,531
| 0.519594
| 0.000026
| 4,839
| 0.059932
| true
| null | null | null | 1,385
| 9
|
6
| 3,000,000
| 5,515.625
| 64
| false
| 739,531
| 0.519594
| 0.000026
| 4,839
| 0.059932
| true
| null | null | null | 1,385
| 9
|
6
| 4,000,000
| 6,171.875
| 64
| false
| 739,531
| 0.519594
| 0.000026
| 4,839
| 0.059932
| true
| null | null | null | 1,385
| 9
|
6
| 5,000,000
| 4,859.375
| 64
| false
| 739,531
| 0.519594
| 0.000026
| 4,839
| 0.059932
| true
| null | null | null | 1,385
| 9
|
6
| 6,000,000
| 10,953.125
| 64
| false
| 739,531
| 0.519594
| 0.000026
| 4,839
| 0.059932
| true
| null | null | null | 1,385
| 9
|
6
| 7,000,000
| 7,367.1875
| 64
| false
| 739,531
| 0.519594
| 0.000026
| 4,839
| 0.059932
| true
| null | null | null | 1,385
| 9
|
6
| 8,000,000
| 17,015.625
| 64
| false
| 739,531
| 0.519594
| 0.000026
| 4,839
| 0.059932
| true
| null | null | null | 1,385
| 9
|
6
| 9,000,000
| 13,718.75
| 64
| false
| 739,531
| 0.519594
| 0.000026
| 4,839
| 0.059932
| true
| null | null | null | 1,385
| 9
|
6
| 10,000,000
| 16,390.625
| 64
| false
| 739,531
| 0.519594
| 0.000026
| 4,839
| 0.059932
| true
| null | null | null | 1,385
| 9
|
7
| 1,000,000
| 1,000
| 32
| true
| 523,736
| 0.54697
| 0.000758
| 30,524
| 0.064395
| false
| 0.14048
| 0.719164
| 0.000001
| null | 9
|
7
| 2,000,000
| 1,000
| 32
| true
| 523,736
| 0.54697
| 0.000758
| 30,524
| 0.064395
| false
| 0.14048
| 0.719164
| 0.000001
| null | 9
|
7
| 3,000,000
| 1,000
| 32
| true
| 523,736
| 0.54697
| 0.000758
| 30,524
| 0.064395
| false
| 0.14048
| 0.719164
| 0.000001
| null | 9
|
7
| 4,000,000
| 1,000
| 32
| true
| 523,736
| 0.54697
| 0.000758
| 30,524
| 0.064395
| false
| 0.14048
| 0.719164
| 0.000001
| null | 9
|
7
| 5,000,000
| 531.25
| 32
| true
| 523,736
| 0.54697
| 0.000758
| 30,524
| 0.064395
| false
| 0.14048
| 0.719164
| 0.000001
| null | 9
|
7
| 6,000,000
| 2,000
| 32
| true
| 523,736
| 0.54697
| 0.000758
| 30,524
| 0.064395
| false
| 0.14048
| 0.719164
| 0.000001
| null | 9
|
7
| 7,000,000
| 2,000
| 32
| true
| 523,736
| 0.54697
| 0.000758
| 30,524
| 0.064395
| false
| 0.14048
| 0.719164
| 0.000001
| null | 9
|
7
| 8,000,000
| 2,000
| 32
| true
| 523,736
| 0.54697
| 0.000758
| 30,524
| 0.064395
| false
| 0.14048
| 0.719164
| 0.000001
| null | 9
|
7
| 9,000,000
| 671.875
| 32
| true
| 523,736
| 0.54697
| 0.000758
| 30,524
| 0.064395
| false
| 0.14048
| 0.719164
| 0.000001
| null | 9
|
7
| 10,000,000
| 1,000
| 32
| true
| 523,736
| 0.54697
| 0.000758
| 30,524
| 0.064395
| false
| 0.14048
| 0.719164
| 0.000001
| null | 9
|
8
| 1,000,000
| 554.6875
| 32
| true
| 829,116
| 0.502348
| 0.00245
| 9,595
| 0.147304
| false
| 0.256266
| 0.580396
| 0.000023
| null | 9
|
8
| 2,000,000
| 0
| 32
| true
| 829,116
| 0.502348
| 0.00245
| 9,595
| 0.147304
| false
| 0.256266
| 0.580396
| 0.000023
| null | 9
|
8
| 3,000,000
| 0
| 32
| true
| 829,116
| 0.502348
| 0.00245
| 9,595
| 0.147304
| false
| 0.256266
| 0.580396
| 0.000023
| null | 9
|
8
| 4,000,000
| 0
| 32
| true
| 829,116
| 0.502348
| 0.00245
| 9,595
| 0.147304
| false
| 0.256266
| 0.580396
| 0.000023
| null | 9
|
8
| 5,000,000
| 0
| 32
| true
| 829,116
| 0.502348
| 0.00245
| 9,595
| 0.147304
| false
| 0.256266
| 0.580396
| 0.000023
| null | 9
|
8
| 6,000,000
| 1,812.5
| 32
| true
| 829,116
| 0.502348
| 0.00245
| 9,595
| 0.147304
| false
| 0.256266
| 0.580396
| 0.000023
| null | 9
|
8
| 7,000,000
| 0
| 32
| true
| 829,116
| 0.502348
| 0.00245
| 9,595
| 0.147304
| false
| 0.256266
| 0.580396
| 0.000023
| null | 9
|
8
| 8,000,000
| 0
| 32
| true
| 829,116
| 0.502348
| 0.00245
| 9,595
| 0.147304
| false
| 0.256266
| 0.580396
| 0.000023
| null | 9
|
8
| 9,000,000
| 0
| 32
| true
| 829,116
| 0.502348
| 0.00245
| 9,595
| 0.147304
| false
| 0.256266
| 0.580396
| 0.000023
| null | 9
|
8
| 10,000,000
| 0
| 32
| true
| 829,116
| 0.502348
| 0.00245
| 9,595
| 0.147304
| false
| 0.256266
| 0.580396
| 0.000023
| null | 9
|
9
| 1,000,000
| 890.625
| 16
| false
| 447,691
| 0.923204
| 0.003143
| 10,466
| 0.162946
| true
| null | null | null | 1,386
| 9
|
9
| 2,000,000
| 4,000
| 16
| false
| 447,691
| 0.923204
| 0.003143
| 10,466
| 0.162946
| true
| null | null | null | 1,386
| 9
|
9
| 3,000,000
| 3,000
| 16
| false
| 447,691
| 0.923204
| 0.003143
| 10,466
| 0.162946
| true
| null | null | null | 1,386
| 9
|
9
| 4,000,000
| 0
| 16
| false
| 447,691
| 0.923204
| 0.003143
| 10,466
| 0.162946
| true
| null | null | null | 1,386
| 9
|
9
| 5,000,000
| 1,460.9375
| 16
| false
| 447,691
| 0.923204
| 0.003143
| 10,466
| 0.162946
| true
| null | null | null | 1,386
| 9
|
9
| 6,000,000
| 0
| 16
| false
| 447,691
| 0.923204
| 0.003143
| 10,466
| 0.162946
| true
| null | null | null | 1,386
| 9
|
9
| 7,000,000
| 0
| 16
| false
| 447,691
| 0.923204
| 0.003143
| 10,466
| 0.162946
| true
| null | null | null | 1,386
| 9
|
9
| 8,000,000
| 546.875
| 16
| false
| 447,691
| 0.923204
| 0.003143
| 10,466
| 0.162946
| true
| null | null | null | 1,386
| 9
|
9
| 9,000,000
| 1,429.6875
| 16
| false
| 447,691
| 0.923204
| 0.003143
| 10,466
| 0.162946
| true
| null | null | null | 1,386
| 9
|
9
| 10,000,000
| 1,398.4375
| 16
| false
| 447,691
| 0.923204
| 0.003143
| 10,466
| 0.162946
| true
| null | null | null | 1,386
| 9
|
ARLBench is a benchmark designed for hyperparameter optimization (HPO) in Reinforcement Learning (RL). Given that we conducted several thousand runs to identify meaningful HPO test settings for RL, we have compiled these results into a dataset for future research and applications.
This dataset can be leveraged to:
The dataset includes:
The dataset follows this mapping:
For optimization runs, it additionally includes:
You can find example notebooks demonstrating how to use:
For more details, refer to the ARLBench paper.