Dataset Preview
Duplicate
The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
The dataset generation failed because of a cast error
Error code:   DatasetGenerationCastError
Exception:    DatasetGenerationCastError
Message:      An error occurred while generating the dataset

All the data files must have the same columns, but at some point there are 2 new columns ({'text', 'dom'}) and 2 missing columns ({'content', 'lang'}).

This happened while the json dataset builder was generating data using

/tmp/hf-datasets-cache/medium/datasets/37368469037966-config-parquet-and-info-abhinav337463-indro-web-d-5acafcec/hub/datasets--abhinav337463--indro-web-data/snapshots/af3e965e3eebf40e80aac24973ed514955d5a6a5/data/indro_v52_zenith_1.jsonl.gz, [/tmp/hf-datasets-cache/medium/datasets/37368469037966-config-parquet-and-info-abhinav337463-indro-web-d-5acafcec/hub/datasets--abhinav337463--indro-web-data/snapshots/af3e965e3eebf40e80aac24973ed514955d5a6a5/code/indro_v56_logic_1.jsonl.gz (origin=hf://datasets/abhinav337463/indro-web-data@af3e965e3eebf40e80aac24973ed514955d5a6a5/code/indro_v56_logic_1.jsonl.gz), /tmp/hf-datasets-cache/medium/datasets/37368469037966-config-parquet-and-info-abhinav337463-indro-web-d-5acafcec/hub/datasets--abhinav337463--indro-web-data/snapshots/af3e965e3eebf40e80aac24973ed514955d5a6a5/code/indro_v56_logic_2.jsonl.gz (origin=hf://datasets/abhinav337463/indro-web-data@af3e965e3eebf40e80aac24973ed514955d5a6a5/code/indro_v56_logic_2.jsonl.gz), /tmp/hf-datasets-cache/medium/datasets/37368469037966-config-parquet-and-info-abhinav337463-indro-web-d-5acafcec/hub/datasets--abhinav337463--indro-web-data/snapshots/af3e965e3eebf40e80aac24973ed514955d5a6a5/data/indro_v52_zenith_1.jsonl.gz (origin=hf://datasets/abhinav337463/indro-web-data@af3e965e3eebf40e80aac24973ed514955d5a6a5/data/indro_v52_zenith_1.jsonl.gz), /tmp/hf-datasets-cache/medium/datasets/37368469037966-config-parquet-and-info-abhinav337463-indro-web-d-5acafcec/hub/datasets--abhinav337463--indro-web-data/snapshots/af3e965e3eebf40e80aac24973ed514955d5a6a5/data/indro_v52_zenith_10.jsonl.gz (origin=hf://datasets/abhinav337463/indro-web-data@af3e965e3eebf40e80aac24973ed514955d5a6a5/data/indro_v52_zenith_10.jsonl.gz), /tmp/hf-datasets-cache/medium/datasets/37368469037966-config-parquet-and-info-abhinav337463-indro-web-d-5acafcec/hub/datasets--abhinav337463--indro-web-data/snapshots/af3e965e3eebf40e80aac24973ed514955d5a6a5/data/indro_v52_zenith_11.jsonl.gz (origin=hf://datasets/abhinav337463/indro-web-data@af3e965e3eebf40e80aac24973ed514955d5a6a5/data/indro_v52_zenith_11.jsonl.gz), /tmp/hf-datasets-cache/medium/datasets/37368469037966-config-parquet-and-info-abhinav337463-indro-web-d-5acafcec/hub/datasets--abhinav337463--indro-web-data/snapshots/af3e965e3eebf40e80aac24973ed514955d5a6a5/data/indro_v52_zenith_12.jsonl.gz (origin=hf://datasets/abhinav337463/indro-web-data@af3e965e3eebf40e80aac24973ed514955d5a6a5/data/indro_v52_zenith_12.jsonl.gz), /tmp/hf-datasets-cache/medium/datasets/37368469037966-config-parquet-and-info-abhinav337463-indro-web-d-5acafcec/hub/datasets--abhinav337463--indro-web-data/snapshots/af3e965e3eebf40e80aac24973ed514955d5a6a5/data/indro_v52_zenith_13.jsonl.gz (origin=hf://datasets/abhinav337463/indro-web-data@af3e965e3eebf40e80aac24973ed514955d5a6a5/data/indro_v52_zenith_13.jsonl.gz), /tmp/hf-datasets-cache/medium/datasets/37368469037966-config-parquet-and-info-abhinav337463-indro-web-d-5acafcec/hub/datasets--abhinav337463--indro-web-data/snapshots/af3e965e3eebf40e80aac24973ed514955d5a6a5/data/indro_v52_zenith_14.jsonl.gz (origin=hf://datasets/abhinav337463/indro-web-data@af3e965e3eebf40e80aac24973ed514955d5a6a5/data/indro_v52_zenith_14.jsonl.gz), /tmp/hf-datasets-cache/medium/datasets/37368469037966-config-parquet-and-info-abhinav337463-indro-web-d-5acafcec/hub/datasets--abhinav337463--indro-web-data/snapshots/af3e965e3eebf40e80aac24973ed514955d5a6a5/data/indro_v52_zenith_15.jsonl.gz (origin=hf://datasets/abhinav337463/indro-web-data@af3e965e3eebf40e80aac24973ed514955d5a6a5/data/indro_v52_zenith_15.jsonl.gz), /tmp/hf-datasets-cache/medium/datasets/37368469037966-config-parquet-and-info-abhinav337463-indro-web-d-5acafcec/hub/datasets--abhinav337463--indro-web-data/snapshots/af3e965e3eebf40e80aac24973ed514955d5a6a5/data/indro_v52_zenith_16.jsonl.gz (origin=hf://datasets/abhinav337463/indro-web-data@af3e965e3eebf40e80aac24973ed514955d5a6a5/data/indro_v52_zenith_16.jsonl.gz), /tmp/hf-datasets-cache/medium/datasets/37368469037966-config-parquet-and-info-abhinav337463-indro-web-d-5acafcec/hub/datasets--abhinav337463--indro-web-data/snapshots/af3e965e3eebf40e80aac24973ed514955d5a6a5/data/indro_v52_zenith_2.jsonl.gz (origin=hf://datasets/abhinav337463/indro-web-data@af3e965e3eebf40e80aac24973ed514955d5a6a5/data/indro_v52_zenith_2.jsonl.gz), /tmp/hf-datasets-cache/medium/datasets/37368469037966-config-parquet-and-info-abhinav337463-indro-web-d-5acafcec/hub/datasets--abhinav337463--indro-web-data/snapshots/af3e965e3eebf40e80aac24973ed514955d5a6a5/data/indro_v52_zenith_3.jsonl.gz (origin=hf://datasets/abhinav337463/indro-web-data@af3e965e3eebf40e80aac24973ed514955d5a6a5/data/indro_v52_zenith_3.jsonl.gz), /tmp/hf-datasets-cache/medium/datasets/37368469037966-config-parquet-and-info-abhinav337463-indro-web-d-5acafcec/hub/datasets--abhinav337463--indro-web-data/snapshots/af3e965e3eebf40e80aac24973ed514955d5a6a5/data/indro_v52_zenith_4.jsonl.gz (origin=hf://datasets/abhinav337463/indro-web-data@af3e965e3eebf40e80aac24973ed514955d5a6a5/data/indro_v52_zenith_4.jsonl.gz), /tmp/hf-datasets-cache/medium/datasets/37368469037966-config-parquet-and-info-abhinav337463-indro-web-d-5acafcec/hub/datasets--abhinav337463--indro-web-data/snapshots/af3e965e3eebf40e80aac24973ed514955d5a6a5/data/indro_v52_zenith_5.jsonl.gz (origin=hf://datasets/abhinav337463/indro-web-data@af3e965e3eebf40e80aac24973ed514955d5a6a5/data/indro_v52_zenith_5.jsonl.gz), /tmp/hf-datasets-cache/medium/datasets/37368469037966-config-parquet-and-info-abhinav337463-indro-web-d-5acafcec/hub/datasets--abhinav337463--indro-web-data/snapshots/af3e965e3eebf40e80aac24973ed514955d5a6a5/data/indro_v52_zenith_6.jsonl.gz (origin=hf://datasets/abhinav337463/indro-web-data@af3e965e3eebf40e80aac24973ed514955d5a6a5/data/indro_v52_zenith_6.jsonl.gz), /tmp/hf-datasets-cache/medium/datasets/37368469037966-config-parquet-and-info-abhinav337463-indro-web-d-5acafcec/hub/datasets--abhinav337463--indro-web-data/snapshots/af3e965e3eebf40e80aac24973ed514955d5a6a5/data/indro_v52_zenith_7.jsonl.gz (origin=hf://datasets/abhinav337463/indro-web-data@af3e965e3eebf40e80aac24973ed514955d5a6a5/data/indro_v52_zenith_7.jsonl.gz), /tmp/hf-datasets-cache/medium/datasets/37368469037966-config-parquet-and-info-abhinav337463-indro-web-d-5acafcec/hub/datasets--abhinav337463--indro-web-data/snapshots/af3e965e3eebf40e80aac24973ed514955d5a6a5/data/indro_v52_zenith_8.jsonl.gz (origin=hf://datasets/abhinav337463/indro-web-data@af3e965e3eebf40e80aac24973ed514955d5a6a5/data/indro_v52_zenith_8.jsonl.gz), /tmp/hf-datasets-cache/medium/datasets/37368469037966-config-parquet-and-info-abhinav337463-indro-web-d-5acafcec/hub/datasets--abhinav337463--indro-web-data/snapshots/af3e965e3eebf40e80aac24973ed514955d5a6a5/data/indro_v52_zenith_9.jsonl.gz (origin=hf://datasets/abhinav337463/indro-web-data@af3e965e3eebf40e80aac24973ed514955d5a6a5/data/indro_v52_zenith_9.jsonl.gz), /tmp/hf-datasets-cache/medium/datasets/37368469037966-config-parquet-and-info-abhinav337463-indro-web-d-5acafcec/hub/datasets--abhinav337463--indro-web-data/snapshots/af3e965e3eebf40e80aac24973ed514955d5a6a5/math/indro_math_v61_1.jsonl.gz (origin=hf://datasets/abhinav337463/indro-web-data@af3e965e3eebf40e80aac24973ed514955d5a6a5/math/indro_math_v61_1.jsonl.gz), /tmp/hf-datasets-cache/medium/datasets/37368469037966-config-parquet-and-info-abhinav337463-indro-web-d-5acafcec/hub/datasets--abhinav337463--indro-web-data/snapshots/af3e965e3eebf40e80aac24973ed514955d5a6a5/math/indro_math_v61_2.jsonl.gz (origin=hf://datasets/abhinav337463/indro-web-data@af3e965e3eebf40e80aac24973ed514955d5a6a5/math/indro_math_v61_2.jsonl.gz), /tmp/hf-datasets-cache/medium/datasets/37368469037966-config-parquet-and-info-abhinav337463-indro-web-d-5acafcec/hub/datasets--abhinav337463--indro-web-data/snapshots/af3e965e3eebf40e80aac24973ed514955d5a6a5/math/indro_math_v61_3.jsonl.gz (origin=hf://datasets/abhinav337463/indro-web-data@af3e965e3eebf40e80aac24973ed514955d5a6a5/math/indro_math_v61_3.jsonl.gz), /tmp/hf-datasets-cache/medium/datasets/37368469037966-config-parquet-and-info-abhinav337463-indro-web-d-5acafcec/hub/datasets--abhinav337463--indro-web-data/snapshots/af3e965e3eebf40e80aac24973ed514955d5a6a5/math/indro_math_v61_4.jsonl.gz (origin=hf://datasets/abhinav337463/indro-web-data@af3e965e3eebf40e80aac24973ed514955d5a6a5/math/indro_math_v61_4.jsonl.gz), /tmp/hf-datasets-cache/medium/datasets/37368469037966-config-parquet-and-info-abhinav337463-indro-web-d-5acafcec/hub/datasets--abhinav337463--indro-web-data/snapshots/af3e965e3eebf40e80aac24973ed514955d5a6a5/math/indro_math_v61_5.jsonl.gz (origin=hf://datasets/abhinav337463/indro-web-data@af3e965e3eebf40e80aac24973ed514955d5a6a5/math/indro_math_v61_5.jsonl.gz), /tmp/hf-datasets-cache/medium/datasets/37368469037966-config-parquet-and-info-abhinav337463-indro-web-d-5acafcec/hub/datasets--abhinav337463--indro-web-data/snapshots/af3e965e3eebf40e80aac24973ed514955d5a6a5/math/indro_math_v61_6.jsonl.gz (origin=hf://datasets/abhinav337463/indro-web-data@af3e965e3eebf40e80aac24973ed514955d5a6a5/math/indro_math_v61_6.jsonl.gz), /tmp/hf-datasets-cache/medium/datasets/37368469037966-config-parquet-and-info-abhinav337463-indro-web-d-5acafcec/hub/datasets--abhinav337463--indro-web-data/snapshots/af3e965e3eebf40e80aac24973ed514955d5a6a5/math/indro_math_v61_7.jsonl.gz (origin=hf://datasets/abhinav337463/indro-web-data@af3e965e3eebf40e80aac24973ed514955d5a6a5/math/indro_math_v61_7.jsonl.gz), /tmp/hf-datasets-cache/medium/datasets/37368469037966-config-parquet-and-info-abhinav337463-indro-web-d-5acafcec/hub/datasets--abhinav337463--indro-web-data/snapshots/af3e965e3eebf40e80aac24973ed514955d5a6a5/math/indro_math_v61_8.jsonl.gz (origin=hf://datasets/abhinav337463/indro-web-data@af3e965e3eebf40e80aac24973ed514955d5a6a5/math/indro_math_v61_8.jsonl.gz), /tmp/hf-datasets-cache/medium/datasets/37368469037966-config-parquet-and-info-abhinav337463-indro-web-d-5acafcec/hub/datasets--abhinav337463--indro-web-data/snapshots/af3e965e3eebf40e80aac24973ed514955d5a6a5/math/indro_math_v61_9.jsonl.gz (origin=hf://datasets/abhinav337463/indro-web-data@af3e965e3eebf40e80aac24973ed514955d5a6a5/math/indro_math_v61_9.jsonl.gz)]

Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)
Traceback:    Traceback (most recent call last):
                File "/usr/local/lib/python3.12/site-packages/datasets/builder.py", line 1887, in _prepare_split_single
                  writer.write_table(table)
                File "/usr/local/lib/python3.12/site-packages/datasets/arrow_writer.py", line 675, in write_table
                  pa_table = table_cast(pa_table, self._schema)
                             ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/table.py", line 2272, in table_cast
                  return cast_table_to_schema(table, schema)
                         ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/table.py", line 2218, in cast_table_to_schema
                  raise CastError(
              datasets.table.CastError: Couldn't cast
              text: string
              ex: string
              lsh: string
              dom: string
              to
              {'content': Value('string'), 'lang': Value('string'), 'ex': Value('string'), 'lsh': Value('string')}
              because column names don't match
              
              During handling of the above exception, another exception occurred:
              
              Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1347, in compute_config_parquet_and_info_response
                  parquet_operations = convert_to_parquet(builder)
                                       ^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 980, in convert_to_parquet
                  builder.download_and_prepare(
                File "/usr/local/lib/python3.12/site-packages/datasets/builder.py", line 884, in download_and_prepare
                  self._download_and_prepare(
                File "/usr/local/lib/python3.12/site-packages/datasets/builder.py", line 947, in _download_and_prepare
                  self._prepare_split(split_generator, **prepare_split_kwargs)
                File "/usr/local/lib/python3.12/site-packages/datasets/builder.py", line 1736, in _prepare_split
                  for job_id, done, content in self._prepare_split_single(
                                               ^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/builder.py", line 1889, in _prepare_split_single
                  raise DatasetGenerationCastError.from_cast_error(
              datasets.exceptions.DatasetGenerationCastError: An error occurred while generating the dataset
              
              All the data files must have the same columns, but at some point there are 2 new columns ({'text', 'dom'}) and 2 missing columns ({'content', 'lang'}).
              
              This happened while the json dataset builder was generating data using
              
              /tmp/hf-datasets-cache/medium/datasets/37368469037966-config-parquet-and-info-abhinav337463-indro-web-d-5acafcec/hub/datasets--abhinav337463--indro-web-data/snapshots/af3e965e3eebf40e80aac24973ed514955d5a6a5/data/indro_v52_zenith_1.jsonl.gz, [/tmp/hf-datasets-cache/medium/datasets/37368469037966-config-parquet-and-info-abhinav337463-indro-web-d-5acafcec/hub/datasets--abhinav337463--indro-web-data/snapshots/af3e965e3eebf40e80aac24973ed514955d5a6a5/code/indro_v56_logic_1.jsonl.gz (origin=hf://datasets/abhinav337463/indro-web-data@af3e965e3eebf40e80aac24973ed514955d5a6a5/code/indro_v56_logic_1.jsonl.gz), /tmp/hf-datasets-cache/medium/datasets/37368469037966-config-parquet-and-info-abhinav337463-indro-web-d-5acafcec/hub/datasets--abhinav337463--indro-web-data/snapshots/af3e965e3eebf40e80aac24973ed514955d5a6a5/code/indro_v56_logic_2.jsonl.gz (origin=hf://datasets/abhinav337463/indro-web-data@af3e965e3eebf40e80aac24973ed514955d5a6a5/code/indro_v56_logic_2.jsonl.gz), /tmp/hf-datasets-cache/medium/datasets/37368469037966-config-parquet-and-info-abhinav337463-indro-web-d-5acafcec/hub/datasets--abhinav337463--indro-web-data/snapshots/af3e965e3eebf40e80aac24973ed514955d5a6a5/data/indro_v52_zenith_1.jsonl.gz (origin=hf://datasets/abhinav337463/indro-web-data@af3e965e3eebf40e80aac24973ed514955d5a6a5/data/indro_v52_zenith_1.jsonl.gz), /tmp/hf-datasets-cache/medium/datasets/37368469037966-config-parquet-and-info-abhinav337463-indro-web-d-5acafcec/hub/datasets--abhinav337463--indro-web-data/snapshots/af3e965e3eebf40e80aac24973ed514955d5a6a5/data/indro_v52_zenith_10.jsonl.gz (origin=hf://datasets/abhinav337463/indro-web-data@af3e965e3eebf40e80aac24973ed514955d5a6a5/data/indro_v52_zenith_10.jsonl.gz), /tmp/hf-datasets-cache/medium/datasets/37368469037966-config-parquet-and-info-abhinav337463-indro-web-d-5acafcec/hub/datasets--abhinav337463--indro-web-data/snapshots/af3e965e3eebf40e80aac24973ed514955d5a6a5/data/indro_v52_zenith_11.jsonl.gz (origin=hf://datasets/abhinav337463/indro-web-data@af3e965e3eebf40e80aac24973ed514955d5a6a5/data/indro_v52_zenith_11.jsonl.gz), /tmp/hf-datasets-cache/medium/datasets/37368469037966-config-parquet-and-info-abhinav337463-indro-web-d-5acafcec/hub/datasets--abhinav337463--indro-web-data/snapshots/af3e965e3eebf40e80aac24973ed514955d5a6a5/data/indro_v52_zenith_12.jsonl.gz (origin=hf://datasets/abhinav337463/indro-web-data@af3e965e3eebf40e80aac24973ed514955d5a6a5/data/indro_v52_zenith_12.jsonl.gz), /tmp/hf-datasets-cache/medium/datasets/37368469037966-config-parquet-and-info-abhinav337463-indro-web-d-5acafcec/hub/datasets--abhinav337463--indro-web-data/snapshots/af3e965e3eebf40e80aac24973ed514955d5a6a5/data/indro_v52_zenith_13.jsonl.gz (origin=hf://datasets/abhinav337463/indro-web-data@af3e965e3eebf40e80aac24973ed514955d5a6a5/data/indro_v52_zenith_13.jsonl.gz), /tmp/hf-datasets-cache/medium/datasets/37368469037966-config-parquet-and-info-abhinav337463-indro-web-d-5acafcec/hub/datasets--abhinav337463--indro-web-data/snapshots/af3e965e3eebf40e80aac24973ed514955d5a6a5/data/indro_v52_zenith_14.jsonl.gz (origin=hf://datasets/abhinav337463/indro-web-data@af3e965e3eebf40e80aac24973ed514955d5a6a5/data/indro_v52_zenith_14.jsonl.gz), /tmp/hf-datasets-cache/medium/datasets/37368469037966-config-parquet-and-info-abhinav337463-indro-web-d-5acafcec/hub/datasets--abhinav337463--indro-web-data/snapshots/af3e965e3eebf40e80aac24973ed514955d5a6a5/data/indro_v52_zenith_15.jsonl.gz (origin=hf://datasets/abhinav337463/indro-web-data@af3e965e3eebf40e80aac24973ed514955d5a6a5/data/indro_v52_zenith_15.jsonl.gz), /tmp/hf-datasets-cache/medium/datasets/37368469037966-config-parquet-and-info-abhinav337463-indro-web-d-5acafcec/hub/datasets--abhinav337463--indro-web-data/snapshots/af3e965e3eebf40e80aac24973ed514955d5a6a5/data/indro_v52_zenith_16.jsonl.gz (origin=hf://datasets/abhinav337463/indro-web-data@af3e965e3eebf40e80aac24973ed514955d5a6a5/data/indro_v52_zenith_16.jsonl.gz), /tmp/hf-datasets-cache/medium/datasets/37368469037966-config-parquet-and-info-abhinav337463-indro-web-d-5acafcec/hub/datasets--abhinav337463--indro-web-data/snapshots/af3e965e3eebf40e80aac24973ed514955d5a6a5/data/indro_v52_zenith_2.jsonl.gz (origin=hf://datasets/abhinav337463/indro-web-data@af3e965e3eebf40e80aac24973ed514955d5a6a5/data/indro_v52_zenith_2.jsonl.gz), /tmp/hf-datasets-cache/medium/datasets/37368469037966-config-parquet-and-info-abhinav337463-indro-web-d-5acafcec/hub/datasets--abhinav337463--indro-web-data/snapshots/af3e965e3eebf40e80aac24973ed514955d5a6a5/data/indro_v52_zenith_3.jsonl.gz (origin=hf://datasets/abhinav337463/indro-web-data@af3e965e3eebf40e80aac24973ed514955d5a6a5/data/indro_v52_zenith_3.jsonl.gz), /tmp/hf-datasets-cache/medium/datasets/37368469037966-config-parquet-and-info-abhinav337463-indro-web-d-5acafcec/hub/datasets--abhinav337463--indro-web-data/snapshots/af3e965e3eebf40e80aac24973ed514955d5a6a5/data/indro_v52_zenith_4.jsonl.gz (origin=hf://datasets/abhinav337463/indro-web-data@af3e965e3eebf40e80aac24973ed514955d5a6a5/data/indro_v52_zenith_4.jsonl.gz), /tmp/hf-datasets-cache/medium/datasets/37368469037966-config-parquet-and-info-abhinav337463-indro-web-d-5acafcec/hub/datasets--abhinav337463--indro-web-data/snapshots/af3e965e3eebf40e80aac24973ed514955d5a6a5/data/indro_v52_zenith_5.jsonl.gz (origin=hf://datasets/abhinav337463/indro-web-data@af3e965e3eebf40e80aac24973ed514955d5a6a5/data/indro_v52_zenith_5.jsonl.gz), /tmp/hf-datasets-cache/medium/datasets/37368469037966-config-parquet-and-info-abhinav337463-indro-web-d-5acafcec/hub/datasets--abhinav337463--indro-web-data/snapshots/af3e965e3eebf40e80aac24973ed514955d5a6a5/data/indro_v52_zenith_6.jsonl.gz (origin=hf://datasets/abhinav337463/indro-web-data@af3e965e3eebf40e80aac24973ed514955d5a6a5/data/indro_v52_zenith_6.jsonl.gz), /tmp/hf-datasets-cache/medium/datasets/37368469037966-config-parquet-and-info-abhinav337463-indro-web-d-5acafcec/hub/datasets--abhinav337463--indro-web-data/snapshots/af3e965e3eebf40e80aac24973ed514955d5a6a5/data/indro_v52_zenith_7.jsonl.gz (origin=hf://datasets/abhinav337463/indro-web-data@af3e965e3eebf40e80aac24973ed514955d5a6a5/data/indro_v52_zenith_7.jsonl.gz), /tmp/hf-datasets-cache/medium/datasets/37368469037966-config-parquet-and-info-abhinav337463-indro-web-d-5acafcec/hub/datasets--abhinav337463--indro-web-data/snapshots/af3e965e3eebf40e80aac24973ed514955d5a6a5/data/indro_v52_zenith_8.jsonl.gz (origin=hf://datasets/abhinav337463/indro-web-data@af3e965e3eebf40e80aac24973ed514955d5a6a5/data/indro_v52_zenith_8.jsonl.gz), /tmp/hf-datasets-cache/medium/datasets/37368469037966-config-parquet-and-info-abhinav337463-indro-web-d-5acafcec/hub/datasets--abhinav337463--indro-web-data/snapshots/af3e965e3eebf40e80aac24973ed514955d5a6a5/data/indro_v52_zenith_9.jsonl.gz (origin=hf://datasets/abhinav337463/indro-web-data@af3e965e3eebf40e80aac24973ed514955d5a6a5/data/indro_v52_zenith_9.jsonl.gz), /tmp/hf-datasets-cache/medium/datasets/37368469037966-config-parquet-and-info-abhinav337463-indro-web-d-5acafcec/hub/datasets--abhinav337463--indro-web-data/snapshots/af3e965e3eebf40e80aac24973ed514955d5a6a5/math/indro_math_v61_1.jsonl.gz (origin=hf://datasets/abhinav337463/indro-web-data@af3e965e3eebf40e80aac24973ed514955d5a6a5/math/indro_math_v61_1.jsonl.gz), /tmp/hf-datasets-cache/medium/datasets/37368469037966-config-parquet-and-info-abhinav337463-indro-web-d-5acafcec/hub/datasets--abhinav337463--indro-web-data/snapshots/af3e965e3eebf40e80aac24973ed514955d5a6a5/math/indro_math_v61_2.jsonl.gz (origin=hf://datasets/abhinav337463/indro-web-data@af3e965e3eebf40e80aac24973ed514955d5a6a5/math/indro_math_v61_2.jsonl.gz), /tmp/hf-datasets-cache/medium/datasets/37368469037966-config-parquet-and-info-abhinav337463-indro-web-d-5acafcec/hub/datasets--abhinav337463--indro-web-data/snapshots/af3e965e3eebf40e80aac24973ed514955d5a6a5/math/indro_math_v61_3.jsonl.gz (origin=hf://datasets/abhinav337463/indro-web-data@af3e965e3eebf40e80aac24973ed514955d5a6a5/math/indro_math_v61_3.jsonl.gz), /tmp/hf-datasets-cache/medium/datasets/37368469037966-config-parquet-and-info-abhinav337463-indro-web-d-5acafcec/hub/datasets--abhinav337463--indro-web-data/snapshots/af3e965e3eebf40e80aac24973ed514955d5a6a5/math/indro_math_v61_4.jsonl.gz (origin=hf://datasets/abhinav337463/indro-web-data@af3e965e3eebf40e80aac24973ed514955d5a6a5/math/indro_math_v61_4.jsonl.gz), /tmp/hf-datasets-cache/medium/datasets/37368469037966-config-parquet-and-info-abhinav337463-indro-web-d-5acafcec/hub/datasets--abhinav337463--indro-web-data/snapshots/af3e965e3eebf40e80aac24973ed514955d5a6a5/math/indro_math_v61_5.jsonl.gz (origin=hf://datasets/abhinav337463/indro-web-data@af3e965e3eebf40e80aac24973ed514955d5a6a5/math/indro_math_v61_5.jsonl.gz), /tmp/hf-datasets-cache/medium/datasets/37368469037966-config-parquet-and-info-abhinav337463-indro-web-d-5acafcec/hub/datasets--abhinav337463--indro-web-data/snapshots/af3e965e3eebf40e80aac24973ed514955d5a6a5/math/indro_math_v61_6.jsonl.gz (origin=hf://datasets/abhinav337463/indro-web-data@af3e965e3eebf40e80aac24973ed514955d5a6a5/math/indro_math_v61_6.jsonl.gz), /tmp/hf-datasets-cache/medium/datasets/37368469037966-config-parquet-and-info-abhinav337463-indro-web-d-5acafcec/hub/datasets--abhinav337463--indro-web-data/snapshots/af3e965e3eebf40e80aac24973ed514955d5a6a5/math/indro_math_v61_7.jsonl.gz (origin=hf://datasets/abhinav337463/indro-web-data@af3e965e3eebf40e80aac24973ed514955d5a6a5/math/indro_math_v61_7.jsonl.gz), /tmp/hf-datasets-cache/medium/datasets/37368469037966-config-parquet-and-info-abhinav337463-indro-web-d-5acafcec/hub/datasets--abhinav337463--indro-web-data/snapshots/af3e965e3eebf40e80aac24973ed514955d5a6a5/math/indro_math_v61_8.jsonl.gz (origin=hf://datasets/abhinav337463/indro-web-data@af3e965e3eebf40e80aac24973ed514955d5a6a5/math/indro_math_v61_8.jsonl.gz), /tmp/hf-datasets-cache/medium/datasets/37368469037966-config-parquet-and-info-abhinav337463-indro-web-d-5acafcec/hub/datasets--abhinav337463--indro-web-data/snapshots/af3e965e3eebf40e80aac24973ed514955d5a6a5/math/indro_math_v61_9.jsonl.gz (origin=hf://datasets/abhinav337463/indro-web-data@af3e965e3eebf40e80aac24973ed514955d5a6a5/math/indro_math_v61_9.jsonl.gz)]
              
              Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

content
string
lang
string
ex
string
lsh
string
<reponame>MTES-MCT/sparte from rest_framework_gis import serializers from rest_framework import serializers as s from .models import ( Artificialisee2015to2018, Artificielle2018, CommunesSybarval, CouvertureSol, EnveloppeUrbaine2018, Ocsge, Renaturee2018to2015, Sybarval, Voirie2018, ZonesBaties2018, UsageSol, ) def get_label(code="", label=""): if code is None: code = "-" if label is None: label = "inconnu" return f"{code} {label[:30]}" class Artificialisee2015to2018Serializer(serializers.GeoFeatureModelSerializer): usage_2015 = s.SerializerMethodField() usage_2018 = s.SerializerMethodField() couverture_2015 = s.SerializerMethodField() couverture_2018 = s.SerializerMethodField() def get_usage_2015(self, obj): return get_label(code=obj.us_2015, label=obj.us_2015_label) def get_usage_2018(self, obj): return get_label(code=obj.us_2018, label=obj.us_2018_label) def get_couverture_2015(self, obj): return get_label(code=obj.cs_2015, label=obj.cs_2015_label) def get_couverture_2018(self, obj): return get_label(code=obj.cs_2018, label=obj.cs_2018_label) class Meta: fields = ( "id", "surface", "usage_2015", "usage_2018", "couverture_2015", "couverture_2018", ) geo_field = "mpoly" model = Artificialisee2015to2018 class Artificielle2018Serializer(serializers.GeoFeatureModelSerializer): couverture = s.SerializerMethodField() def get_couverture(self, obj): return get_label(code=obj.couverture, label=obj.couverture_label) class Meta: fields = ( "id", "surface", "couverture", ) geo_field = "mpoly" model = Artificielle2018 class CommunesSybarvalSerializer(serializers.GeoFeatureModelSerializer): """Marker GeoJSON serializer.""" class Meta: """Marker serializer meta class.""" fields = ( "nom", "code_insee", "surface", ) geo_field = "mpoly" model = CommunesSybarval class EnveloppeUrbaine2018Serializer(serializers.GeoFeatureModelSerializer): couverture = s.SerializerMethodField() def get_couverture(self, obj): return get_label(code=obj.couverture, label=obj.couverture_label) class Meta: fields = ( "id", "couverture", "surface", ) geo_field = "mpoly" model = EnveloppeUrbaine2018 class OcsgeSerializer(serializers.GeoFeatureModelSerializer): couverture = s.SerializerMethodField() usage = s.SerializerMethodField() def get_couverture(self, obj): return get_label(code=obj.couverture, label=obj.couverture_label) def get_usage(self, obj): return get_label(code=obj.usage, label=obj.usage_label) class Meta: fields = ( "id", "couverture", "usage", "millesime", "map_color", "year", ) geo_field = "mpoly" model = Ocsge class Renaturee2018to2015Serializer(serializers.GeoFeatureModelSerializer): usage_2015 = s.SerializerMethodField() usage_2018 = s.SerializerMethodField() couverture_2015 = s.SerializerMethodField() couverture_2018 = s.SerializerMethodField() def get_usage_2015(self, obj): return get_label(code=obj.us_2015, label=obj.us_2015_label) def get_usage_2018(self, obj): return get_label(code=obj.us_2018, label=obj.us_2018_label) def get_couverture_2015(self, obj): return get_label(code=obj.cs_2015, label=obj.cs_2015_label) def get_couverture_2018(self, obj): return get_label(code=obj.cs_2018, label=obj.cs_2018_label) class Meta: fields = ( "id", "surface", "usage_2015", "usage_2018", "couverture_2015", "couverture_2018", ) geo_field = "mpoly" model = Renaturee2018to2015 class SybarvalSerializer(serializers.GeoFeatureModelSerializer): class Meta: fields = ( "id", "surface", ) geo_field = "mpoly" model = Sybarval class Voirie2018Serializer(serializers.GeoFeatureModelSerializer): couverture = s.SerializerMethodField() usage = s.SerializerMethodField() def get_couverture(self, obj): return get_label(code=obj.couverture, label=obj.couverture_label) def get_usage(self, obj): return get_label(code=obj.usage, label=obj.usage_label) class Meta: fields = ( "id", "surface", "couverture", "usage", ) geo_field = "mpoly" model = Voirie2018 class ZonesBaties2018Serializer(serializers.GeoFeatureModelSerializer): couverture = s.SerializerMethodField() usage = s.SerializerMethodField() def get_couverture(self, obj): return get_label(code=obj.couverture, label=obj.couverture_label) def get_usage(self, obj): return get_label(code=obj.usage, label=obj.usage_label) class Meta: fields = ( "id", "couverture", "usage", "surface", ) geo_field = "mpoly" model = ZonesBaties2018 class CouvertureSolSerializer(serializers.ModelSerializer): class Meta: fields = ( "id", "parent", "code", "label", "is_artificial", ) model = CouvertureSol class UsageSolSerializer(serializers.ModelSerializer): class Meta: fields = ( "id", "parent", "code", "label", ) model = UsageSol
Python
1ce2433af85ae173a032577f5b822a563657cf0d361d83c82c0b3dec51a65a9a
0xac9f85bdbd7a80b5
import asyncio import os import tempfile from contextlib import ExitStack from typing import Text, Optional, List, Union, Dict from rasa.importers.importer import TrainingDataImporter from rasa import model from rasa.model import FingerprintComparisonResult from rasa.core.domain import Domain from rasa.utils.common import TempDirectoryPath from rasa.cli.utils import ( print_success, print_warning, print_error, bcolors, print_color, ) from rasa.constants import DEFAULT_MODELS_PATH, DEFAULT_CORE_SUBDIRECTORY_NAME def train( domain: Text, config: Text, training_files: Union[Text, List[Text]], output: Text = DEFAULT_MODELS_PATH, force_training: bool = False, fixed_model_name: Optional[Text] = None, persist_nlu_training_data: bool = False, additional_arguments: Optional[Dict] = None, loop: Optional[asyncio.AbstractEventLoop] = None, ) -> Optional[Text]: if loop is None: try: loop = asyncio.get_event_loop() except RuntimeError: loop = asyncio.new_event_loop() asyncio.set_event_loop(loop) return loop.run_until_complete( train_async( domain=domain, config=config, training_files=training_files, output_path=output, force_training=force_training, fixed_model_name=fixed_model_name, persist_nlu_training_data=persist_nlu_training_data, additional_arguments=additional_arguments, ) ) async def train_async( domain: Union[Domain, Text], config: Dict[Text, Text], training_files: Optional[Union[Text, List[Text]]], output_path: Text = DEFAULT_MODELS_PATH, force_training: bool = False, fixed_model_name: Optional[Text] = None, persist_nlu_training_data: bool = False, additional_arguments: Optional[Dict] = None, ) -> Optional[Text]: """Trains a Rasa model (Core and NLU). Args: domain: Path to the domain file. config: Dict of paths to the config for Core and NLU. Keys are language codes training_files: Paths to the training data for Core and NLU. output_path: Output path. force_training: If `True` retrain model even if data has not changed. fixed_model_name: Name of model to be stored. persist_nlu_training_data: `True` if the NLU training data should be persisted with the model. additional_arguments: Additional training parameters. Returns: Path of the trained model archive. """ # file_importer = TrainingDataImporter.load_from_config( # config, domain, training_files # ) with ExitStack() as stack: train_path = stack.enter_context(TempDirectoryPath(tempfile.mkdtemp())) # bf mod from rasa_addons.importers import BotfrontFileImporter file_importer = BotfrontFileImporter(config, domain, training_files) # domain = await file_importer.get_domain() # if domain.is_empty(): # return await handle_domain_if_not_exists( # file_importer, output_path, fixed_model_name # ) # /bf mod return await _train_async_internal( file_importer, train_path, output_path, force_training, fixed_model_name, persist_nlu_training_data, additional_arguments, ) async def handle_domain_if_not_exists( file_importer: TrainingDataImporter, output_path, fixed_model_name ): nlu_model_only = await _train_nlu_with_validated_data( file_importer, output=output_path, fixed_model_name=fixed_model_name ) print_warning( "Core training was skipped because no valid domain file was found. Only an nlu-model was created." "Please specify a valid domain using '--domain' argument or check if the provided domain file exists." ) return nlu_model_only async def _train_async_internal( file_importer: TrainingDataImporter, train_path: Text, output_path: Text, force_training: bool, fixed_model_name: Optional[Text], persist_nlu_training_data: bool, additional_arguments: Optional[Dict], ) -> Optional[Text]: """Trains a Rasa model (Core and NLU). Use only from `train_async`. Args: file_importer: `TrainingDataImporter` which supplies the training data. train_path: Directory in which to train the model. output_path: Output path. force_training: If `True` retrain model even if data has not changed. persist_nlu_training_data: `True` if the NLU training data should be persisted with the model. fixed_model_name: Name of model to be stored. additional_arguments: Additional training parameters. Returns: Path of the trained model archive. """ stories, nlu_data = await asyncio.gather( file_importer.get_stories(), file_importer.get_nlu_data() ) # if stories.is_empty() and nlu_data.is_empty(): # print_error( # "No training data given. Please provide stories and NLU data in " # "order to train a Rasa model using the '--data' argument." # ) # return # if nlu_data.is_empty(): # print_warning("No NLU data present. Just a Rasa Core model will be trained.") # return await _train_core_with_validated_data( # file_importer, # output=output_path, # fixed_model_name=fixed_model_name, # additional_arguments=additional_arguments, # ) new_fingerprint = await model.model_fingerprint(file_importer) old_model = model.get_latest_model(output_path) fingerprint_comparison = FingerprintComparisonResult(force_training=force_training) if not force_training: fingerprint_comparison = model.should_retrain( new_fingerprint, old_model, train_path ) # bf mod > if fingerprint_comparison.nlu == True: # replace True with list of all langs fingerprint_comparison.nlu = list(new_fingerprint.get("nlu-config", {}).keys()) domain = await file_importer.get_domain() core_untrainable = domain.is_empty() or stories.is_empty() nlu_untrainable = [l for l, d in nlu_data.items() if d.is_empty()] fingerprint_comparison.core = fingerprint_comparison.core and not core_untrainable fingerprint_comparison.nlu = [l for l in fingerprint_comparison.nlu if l not in nlu_untrainable] if core_untrainable: print_color("Skipping Core training since domain or stories are empty.", color=bcolors.OKBLUE) for lang in nlu_untrainable: print_color("No NLU data found for language <{}>, skipping training...".format(lang), color=bcolors.OKBLUE) # </ bf mod if fingerprint_comparison.is_training_required(): await _do_training( file_importer, output_path=output_path, train_path=train_path, fingerprint_comparison_result=fingerprint_comparison, fixed_model_name=fixed_model_name, persist_nlu_training_data=persist_nlu_training_data, additional_arguments=additional_arguments, ) return model.package_model( fingerprint=new_fingerprint, output_directory=output_path, train_path=train_path, fixed_model_name=fixed_model_name, ) print_success( "Nothing changed. You can use the old model stored at '{}'." "".format(os.path.abspath(old_model)) ) return old_model async def _do_training( file_importer: TrainingDataImporter, output_path: Text, train_path: Text, fingerprint_comparison_result: Optional[FingerprintComparisonResult] = None, fixed_model_name: Optional[Text] = None, persist_nlu_training_data: bool = False, additional_arguments: Optional[Dict] = None, ): if not fingerprint_comparison_result: fingerprint_comparison_result = FingerprintComparisonResult() if fingerprint_comparison_result.should_retrain_core(): await _train_core_with_validated_data( file_importer, output=output_path, train_path=train_path, fixed_model_name=fixed_model_name, additional_arguments=additional_arguments, ) elif fingerprint_comparison_result.should_retrain_nlg(): print_color( "Core stories/configuration did not change. " "Only the templates section has been changed. A new model with " "the updated templates will be created.", color=bcolors.OKBLUE, ) await model.update_model_with_new_domain(file_importer, train_path) else: print_color( "Core stories/configuration did not change. No need to retrain Core model.", color=bcolors.OKBLUE, ) if fingerprint_comparison_result.should_retrain_nlu(): await _train_nlu_with_validated_data( file_importer, output=output_path, train_path=train_path, fixed_model_name=fixed_model_name, retrain_nlu=fingerprint_comparison_result.nlu, persist_nlu_training_data=persist_nlu_training_data, ) else: print_color( "NLU data/configuration did not change. No need to retrain NLU model.", color=bcolors.OKBLUE, ) def train_core( domain: Union[Domain, Text], config: Text, stories: Text, output: Text, train_path: Optional[Text] = None, fixed_model_name: Optional[Text] = None, additional_arguments: Optional[Dict] = None, ) -> Optional[Text]: loop = asyncio.get_event_loop() return loop.run_until_complete( train_core_async( domain=domain, config=config, stories=stories, output=output, train_path=train_path, fixed_model_name=fixed_model_name, additional_arguments=additional_arguments, ) ) async def train_core_async( domain: Union[Domain, Text], config: Text, stories: Text, output: Text, train_path: Optional[Text] = None, fixed_model_name: Optional[Text] = None, additional_arguments: Optional[Dict] = None, ) -> Optional[Text]: """Trains a Core model. Args: domain: Path to the domain file. config: Path to the config file for Core. stories: Path to the Core training data. output: Output path. train_path: If `None` the model will be trained in a temporary directory, otherwise in the provided directory. fixed_model_name: Name of model to be stored. uncompress: If `True` the model will not be compressed. additional_arguments: Additional training parameters. Returns: If `train_path` is given it returns the path to the model archive, otherwise the path to the directory with the trained model files. """ file_importer = TrainingDataImporter.load_core_importer_from_config( config, domain, [stories] ) domain = await file_importer.get_domain() if domain.is_empty(): print_error( "Core training was skipped because no valid domain file was found. " "Please specify a valid domain using '--domain' argument or check if the provided domain file exists." ) return None if not await file_importer.get_stories(): print_error( "No stories given. Please provide stories in order to " "train a Rasa Core model using the '--stories' argument." ) return return await _train_core_with_validated_data( file_importer, output=output, train_path=train_path, fixed_model_name=fixed_model_name, additional_arguments=additional_arguments, ) async def _train_core_with_validated_data( file_importer: TrainingDataImporter, output: Text, train_path: Optional[Text] = None, fixed_model_name: Optional[Text] = None, additional_arguments: Optional[Dict] = None, ) -> Optional[Text]: """Train Core with validated training and config data.""" import rasa.core.train with ExitStack() as stack: if train_path: # If the train path was provided, do nothing on exit. _train_path = train_path else: # Otherwise, create a temp train path and clean it up on exit. _train_path = stack.enter_context(TempDirectoryPath(tempfile.mkdtemp())) # normal (not compare) training print_color("Training Core model...", color=bcolors.OKBLUE) domain, config = await asyncio.gather( file_importer.get_domain(), file_importer.get_config() ) await rasa.core.train( domain_file=domain, training_resource=file_importer, output_path=os.path.join(_train_path, DEFAULT_CORE_SUBDIRECTORY_NAME), policy_config=config, additional_arguments=additional_arguments, ) print_color("Core model training completed.", color=bcolors.OKBLUE) if train_path is None: # Only Core was trained. new_fingerprint = await model.model_fingerprint(file_importer) return model.package_model( fingerprint=new_fingerprint, output_directory=output, train_path=_train_path, fixed_model_name=fixed_model_name, model_prefix="core-", ) return _train_path def train_nlu( config: Text, nlu_data: Text, output: Text, train_path: Optional[Text] = None, fixed_model_name: Optional[Text] = None, persist_nlu_training_data: bool = False, ) -> Optional[Text]: """Trains an NLU model. Args: config: Path to the config file for NLU. nlu_data: Path to the NLU training data. output: Output path. train_path: If `None` the model will be trained in a temporary directory, otherwise in the provided directory. fixed_model_name: Name of the model to be stored. persist_nlu_training_data: `True` if the NLU training data should be persisted with the model. Returns: If `train_path` is given it returns the path to the model archive, otherwise the path to the directory with the trained model files. """ loop = asyncio.get_event_loop() return loop.run_until_complete( _train_nlu_async( config, nlu_data, output, train_path, fixed_model_name, persist_nlu_training_data, ) ) async def _train_nlu_async( config: Text, nlu_data: Text, output: Text, train_path: Optional[Text] = None, fixed_model_name: Optional[Text] = None, persist_nlu_training_data: bool = False, ): if not nlu_data: print_error( "No NLU data given. Please provide NLU data in order to train " "a Rasa NLU model using the '--nlu' argument." ) return # training NLU only hence the training files still have to be selected file_importer = TrainingDataImporter.load_nlu_importer_from_config( config, training_data_paths=[nlu_data] ) training_datas = await file_importer.get_nlu_data() if training_datas.is_empty(): print_error( f"Path '{nlu_data}' doesn't contain valid NLU data in it. " "Please verify the data format. " "The NLU model training will be skipped now." ) return return await _train_nlu_with_validated_data( file_importer, output=output, train_path=train_path, fixed_model_name=fixed_model_name, persist_nlu_training_data=persist_nlu_training_data, ) async def _train_nlu_with_validated_data( file_importer: TrainingDataImporter, output: Text, train_path: Optional[Text] = None, fixed_model_name: Optional[Text] = None, persist_nlu_training_data: bool = False, retrain_nlu: Union[bool, List[Text]] = True ) -> Optional[Text]: """Train NLU with validated training and config data.""" import rasa.nlu.train with ExitStack() as stack: models = {} from rasa.nlu import config as cfg_loader if train_path: # If the train path was provided, do nothing on exit. _train_path = train_path else: # Otherwise, create a temp train path and clean it up on exit. _train_path = stack.enter_context(TempDirectoryPath(tempfile.mkdtemp())) # bf mod config = await file_importer.get_nlu_config(retrain_nlu) for lang in config: if config[lang]: print_color("Start training {} NLU model ...".format(lang), color=bcolors.OKBLUE) _, models[lang], _ = await rasa.nlu.train( config[lang], file_importer, _train_path, fixed_model_name="nlu-{}".format(lang), persist_nlu_training_data=persist_nlu_training_data, ) else: print_color("NLU data for language <{}> didn't change, skipping training...".format(lang), color=bcolors.OKBLUE) # /bf mod print_color("NLU model training completed.", color=bcolors.OKBLUE) if train_path is None: # Only NLU was trained new_fingerprint = await model.model_fingerprint(file_importer) return model.package_model( fingerprint=new_fingerprint, output_directory=output, train_path=_train_path, fixed_model_name=fixed_model_name, model_prefix="nlu-", ) return _train_path
Python
19d1564042f06afd9ff6d3daf82c6f3356a7d9d8dfdf558a7cd1fa13be766c3c
0xef44ca738ed102d5
<gh_stars>1-10 class Solution: def finalPrices(self, prices: List[int]) -> List[int]: res = [] for i in range(len(prices)): for j in range(i+1,len(prices)): if prices[j]<=prices[i]: res.append(prices[i]-prices[j]) break if j==len(prices)-1: res.append(prices[i]) res.append(prices[-1]) return res
Python
a7d86c06e5f0bd5932f94342ef1cd1419c14922f3e3bfeae0ce44b4dcda06eae
0xb8e2b66344669647
<filename>PyDSTool/core/context_managers.py # -*- coding: utf-8 -*- """Context managers implemented for (mostly) internal use""" import contextlib import functools from io import UnsupportedOperation import os import sys __all__ = ["RedirectStdout", "RedirectStderr"] @contextlib.contextmanager def _stdchannel_redirected(stdchannel, dest_filename, mode="w"): """ A context manager to temporarily redirect stdout or stderr Originally by <NAME>, 2013 (http://marc-abramowitz.com/archives/2013/07/19/python-context-manager-for-redirected-stdout-and-stderr/) """ oldstdchannel = None dest_file = None try: if stdchannel is None: yield iter([None]) else: oldstdchannel = os.dup(stdchannel.fileno()) dest_file = open(dest_filename, mode) os.dup2(dest_file.fileno(), stdchannel.fileno()) yield except (UnsupportedOperation, AttributeError): yield iter([None]) finally: if oldstdchannel is not None: os.dup2(oldstdchannel, stdchannel.fileno()) if dest_file is not None: dest_file.close() RedirectStdout = functools.partial(_stdchannel_redirected, sys.stdout) RedirectStderr = functools.partial(_stdchannel_redirected, sys.stderr) RedirectNoOp = functools.partial(_stdchannel_redirected, None, "")
Python
e9ce9f6797f684f4125af3c8f2f3ca8451fe24e473a3c87a799d7deb467d057e
0x5e686108d3d53801
<gh_stars>1-10 from keras import Model, Input from keras.layers import Dense, concatenate, LSTM, Reshape, Permute, Embedding, Dropout, Convolution1D, Flatten from keras.optimizers import Adam from pypagai.models.base import KerasModel class SimpleLSTM(KerasModel): """ Use a simple lstm neural network """ @staticmethod def default_config(): config = KerasModel.default_config() config['hidden'] = 32 return config def __init__(self, cfg): super().__init__(cfg) self._cfg_ = cfg def _create_network_(self): hidden = self._cfg_['hidden'] story = Input((self._story_maxlen, ), name='story') question = Input((self._query_maxlen, ), name='question') conc = concatenate([story, question],) conc = Reshape((1, int(conc.shape[1])))(conc) conc = Permute((2, 1))(conc) response = LSTM(hidden, dropout=0.2, recurrent_dropout=0.2)(conc) response = Dense(self._vocab_size, activation='softmax')(response) self._model = Model(inputs=[story, question], outputs=response) self._model.compile(optimizer=Adam(lr=2e-4), loss='sparse_categorical_crossentropy', metrics=['accuracy']) class EmbedLSTM(KerasModel): """ Use a simple lstm neural network """ @staticmethod def default_config(): config = KerasModel.default_config() config['hidden'] = 32 return config def __init__(self, cfg): super().__init__(cfg) self._cfg_ = cfg def _create_network_(self): hidden = self._cfg_['hidden'] story = Input((self._story_maxlen, ), name='story') question = Input((self._query_maxlen, ), name='question') eb_story = Embedding(self._vocab_size, 64)(story) eb_story = Dropout(0.3)(eb_story) eb_question = Embedding(self._vocab_size, 64)(question) eb_question = Dropout(0.3)(eb_question) conc = concatenate([eb_story, eb_question], axis=1) response = LSTM(hidden, dropout=0.2, recurrent_dropout=0.2)(conc) response = Dense(self._vocab_size, activation='softmax')(response) self._model = Model(inputs=[story, question], outputs=response) self._model.compile(optimizer=Adam(lr=2e-4), loss='sparse_categorical_crossentropy', metrics=['accuracy']) class ConvLSTM(KerasModel): """ Use a simple lstm neural network """ @staticmethod def default_config(): config = KerasModel.default_config() config['hidden'] = 32 return config def __init__(self, model_cfg): super().__init__(model_cfg) self._cfg = model_cfg def _create_network_(self): hidden = self._cfg['hidden'] story = Input((self._story_maxlen, ), name='story') question = Input((self._query_maxlen, ), name='question') eb_story = Embedding(self._vocab_size, 64)(story) eb_story = Convolution1D(64, 3, padding='same')(eb_story) eb_story = Convolution1D(32, 3, padding='same')(eb_story) eb_story = Convolution1D(16, 3, padding='same')(eb_story) # eb_story = Flatten()(eb_story) eb_question = Embedding(self._vocab_size, 64)(question) eb_question = Convolution1D(64, 3, padding='same')(eb_question) eb_question = Convolution1D(32, 3, padding='same')(eb_question) eb_question = Convolution1D(16, 3, padding='same')(eb_question) # eb_question = Flatten()(eb_question) conc = concatenate([eb_story, eb_question], axis=1) response = LSTM(hidden, dropout=0.2, recurrent_dropout=0.2)(conc) response = Dense(self._vocab_size, activation='softmax')(response) self._model = Model(inputs=[story, question], outputs=response) self._model.compile(optimizer=Adam(lr=2e-4), loss='sparse_categorical_crossentropy', metrics=['accuracy'])
Python
6ff5eb1643faabfe79e7cf12b3b77bdafbf223256b942b1d5db7a26437ee9a32
0x2b079c821b48eb17
#!/usr/bin/env python # -*- coding:utf-8 -*- # Author: ''' PNASNet in PyTorch. Paper: Progressive Neural Architecture Search ''' from easyai.base_name.block_name import NormalizationType, ActivationType from easyai.base_name.backbone_name import BackboneName from easyai.model.backbone.utility.base_backbone import * from easyai.model.base_block.utility.utility_block import ConvBNActivationBlock from easyai.model.base_block.cls.pnasnet_block import CellA, CellB __all__ = ['pnasnet_A', 'pnasnet_B'] class PNASNet(BaseBackbone): def __init__(self, data_channel=3, num_cells=6, num_planes=44, block=CellA, bnName=NormalizationType.BatchNormalize2d, activationName=ActivationType.ReLU): super().__init__() self.set_name(BackboneName.PNASNetA) self.data_channel = data_channel self.num_cells = num_cells self.block = block self.activation_name = activationName self.bn_name = bnName self.first_output = num_planes self.in_planes = self.first_output self.create_block_list() def create_block_list(self): self.block_out_channels = [] self.index = 0 layer1 = ConvBNActivationBlock(in_channels=self.data_channel, out_channels=self.first_output, kernel_size=3, stride=1, padding=1, bias=False, bnName=self.bn_name, activationName=self.activation_name) self.add_block_list(layer1.get_name(), layer1, self.first_output) self.make_layer(self.first_output, self.num_cells) self.downsample(self.first_output * 2) self.make_layer(self.first_output * 2, self.num_cells) self.downsample(self.first_output * 4) self.make_layer(self.first_output * 4, self.num_cells) def make_layer(self, planes, num_cells): for _ in range(num_cells): temp_block = self.block(self.in_planes, planes, stride=1, bn_name=self.bn_name, activation_name=self.activation_name) self.add_block_list(temp_block.get_name(), temp_block, planes) self.in_planes = planes def downsample(self, planes): down_block = self.block(self.in_planes, planes, stride=2, bn_name=self.bn_name, activation_name=self.activation_name) self.add_block_list(down_block.get_name(), down_block, planes) self.in_planes = planes def forward(self, x): output_list = [] for block in self._modules.values(): x = block(x) output_list.append(x) return output_list def pnasnet_A(data_channel): model = PNASNet(data_channel=data_channel, num_cells=6, num_planes=44, block=CellA) model.set_name(BackboneName.PNASNetA) return model def pnasnet_B(data_channel): model = PNASNet(data_channel=data_channel, num_cells=6, num_planes=32, block=CellB) model.set_name(BackboneName.PNASNetB) return model
Python
1e7ae79e5a84953e5230479e541e934f228111b32411a607f7b5903ae33da37f
0x20bb96e146c5b286
# -*- coding: utf-8 -*- # coding=utf-8 import json import os import math import logging import requests import time from map_download.cmd.BaseDownloader import DownloadEngine, BaseDownloaderThread, latlng2tile_terrain, BoundBox def get_access_token(token): resp = None request_count = 0 url = "https://api.cesium.com/v1/assets/1/endpoint" while True: if request_count > 4: break try: request_count += 1 param = {'access_token': token} resp = requests.get(url, params=param, timeout=2) if resp.status_code != 200: continue break except Exception as e: resp = None time.sleep(3) if resp is None: return None resp_json = resp.json() return resp_json.get('accessToken') class TerrainDownloaderThread(BaseDownloaderThread): URL = "https://assets.cesium.com/1/{z}/{x}/{y}.terrain?extensions=octvertexnormals-watermask&v=1.1.0" def __init__(self, root_dir, bbox, token, task_q, logger=None, write_db=False): super(TerrainDownloaderThread, self).__init__( root_dir, bbox, task_q, logger, write_db=write_db, db_file_name='Terrain.db') self.token = token self._init_metadata( format='terrain', bounds='%f,%f,%f,%f' % (self.bbox.min_lng, self.bbox.min_lat, self.bbox.max_lng, self.bbox.max_lat)) def get_url(self, x, y, z): return self.URL.format(x=x, y=y, z=z) def _download(self, x, y, z): file_path = '%s/%s/%i/%i/%i.%s' % (self.root_dir, 'Terrain', z, x, y, 'terrain') if os.path.exists(file_path): self._data2DB(x, y, z, file_path) return 0 os.makedirs(os.path.dirname(file_path), exist_ok=True) resp = None requre_count = 0 _url = '' access_token = get_access_token(self.token) if access_token is None: return -1 param = {'extensions': 'octvertexnormals-watermask', 'v': '1.1.0', 'access_token': access_token} while True: if requre_count > 4: break try: _url = self.get_url(x, y, z) resp = requests.get(_url, params=param, stream=True, timeout=2) break except Exception as e: resp = None time.sleep(3) requre_count += 1 if resp is None: return -1 if resp.status_code != 200: return -1 try: with open(file_path, 'wb') as f: for chunk in resp.iter_content(chunk_size=1024): if chunk: f.write(chunk) except Exception as e: return -1 self._data2DB(x, y, z, file_path) return 1 class TerrainDownloadEngine(DownloadEngine): root_dir = '' def __init__(self, root_dir, bbox, token, thread_num, logger=None, write_db=False): super(TerrainDownloadEngine, self).__init__(bbox, thread_num, logger, write_db=write_db) self.root_dir = root_dir self.token = token def bbox2xyz(self, bbox, z): min_x, min_y = latlng2tile_terrain(bbox.min_lat, bbox.min_lng, z) max_x, max_y = latlng2tile_terrain(bbox.max_lat, bbox.max_lng, z) return math.floor(min_x), math.floor(min_y), math.ceil(max_x) + 1, math.ceil(max_y) + 1 def generate_metadata(self): try: metadatas = { "attribution": "© Analytical Graphics Inc., © CGIAR-CSI, Produced using Copernicus data and " "information funded by the European Union - EU-DEM layers", "available": [ [ { "endX": 1, "endY": 0, "startX": 0, "startY": 0 } ], [ { "endX": 3, "endY": 1, "startX": 0, "startY": 0 } ], [ { "endX": 7, "endY": 3, "startX": 0, "startY": 0 } ], [ { "endX": 15, "endY": 7, "startX": 0, "startY": 0 } ], [ { "endX": 31, "endY": 15, "startX": 0, "startY": 0 } ], [ { "endX": 63, "endY": 31, "startX": 0, "startY": 0 } ], [ { "endX": 127, "endY": 63, "startX": 0, "startY": 0 } ], [ { "endX": 255, "endY": 127, "startX": 0, "startY": 0 } ], [ { "endX": 511, "endY": 255, "startX": 0, "startY": 0 } ], [ { "endX": 1023, "endY": 511, "startX": 0, "startY": 0 } ], [ { "endX": 2047, "endY": 1023, "startX": 0, "startY": 0 } ], [ { "endX": 4095, "endY": 2047, "startX": 0, "startY": 0 } ], [ { "endX": 8191, "endY": 4095, "startX": 0, "startY": 0 } ], [ { "endX": 16383, "endY": 8191, "startX": 0, "startY": 0 } ], [ { "endX": 32767, "endY": 16383, "startX": 0, "startY": 0 } ] ], "bounds": [-180, -90, 180, 90, ], "description": "STK World Terrain Premium Tileset, v1.3. 10m - 30m resolution CONUS, 30m resolution " "SRTM between 60N and 60S, 30m Europe. Minimum global coverage of 1000m.", "extensions": ["watermask", "vertexnormals", "octvertexnormals", ], "format": "quantized-mesh-1.0", "maxzoom": 13, "minzoom": 0, "name": "world", "projection": "EPSG:4326", "scheme": "tms", "tilejson": "2.1.0", "tiles": ["{z}/{x}/{y}.terrain?v={version}", ], "version": "1.31376.0" } _dir = os.path.join(self.root_dir, 'Terrain') os.makedirs(_dir, exist_ok=True) metadatas_path = os.path.join(_dir, 'layer.json') with open(metadatas_path, 'w') as f: json.dump(metadatas, f) except Exception as e: if self.logger is not None: self.logger.exception(e) def run(self): try: self.generate_metadata() count = 0 bboxs = self.cut_bbox() for bbox in bboxs: _count = self.get_task_count(bbox) count += _count self.division_done_signal.emit(count) for bbox in bboxs: while True: if not self.running: time.sleep(0.01) else: break task_q = self.get_task_queue(bbox) self.threads = [] for i in range(self.thread_num): thread = TerrainDownloaderThread(self.root_dir, self.bbox, self.token, task_q, self.logger, write_db=self.write_db) thread.sub_progressBar_updated_signal.connect(self.sub_update_progressBar) self.threads.append(thread) for thread in self.threads: thread.start() for thread in self.threads: thread.wait() for t in self.threads: t.stop() t.quit() self.threads = [] self.download_done_signal.emit() except Exception as e: if self.logger is not None: self.logger.error(e) if __name__ == '__main__': if 1: logger = logging.getLogger('down') try: root = r'/Users/cugxy/Documents/data/downloader' formatter = logging.Formatter('%(levelname)s-%(message)s') hdlr = logging.StreamHandler() log_file = os.path.join(root, 'down.log') file_hdlr = logging.FileHandler(log_file) file_hdlr.setFormatter(formatter) logger.addHandler(file_hdlr) logger.addHandler(hdlr) logger.setLevel(logging.INFO) min_lng = -180.0 max_lng = 180.0 min_lat = -90.0 max_lat = 90.0 start_zoom = 0 end_zoom = 5 bbox = BoundBox(max_lat, max_lng, min_lat, min_lng, start_zoom, end_zoom) d = TerrainDownloadEngine(root, bbox, 8, logger) d.start() time.sleep(10000) logger.error('main thread out') except Exception as e: logger.error(e) if 0: accessToken = get_access_token() pass
Python
8ba343fa3627630456d4d8758a7ce2f4bc8e55f923f2ee88df259080c5cad8d4
0x427f14a482e52c56
<reponame>vahini01/electoral_rolls #!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Fri Nov 10 23:28:58 2017 @author: dhingratul """ import urllib.request import os from selenium import webdriver from selenium.webdriver.support.ui import Select from bs4 import BeautifulSoup import ssl import requests import wget from PyPDF2 import PdfFileReader def download_file(pdf_url, mdir, filename, flag=False): if flag is True: context = ssl._create_unverified_context() response = urllib.request.urlopen(pdf_url, context=context) else: response = urllib.request.urlopen(pdf_url) filename = mdir + filename file = open(filename, 'wb') file.write(response.read()) if os.stat(filename).st_size == 0: flag = 0 else: flag = 1 file.close() return flag def download_file_R(pdf_url, mdir, filename, file_out): requests.packages.urllib3.disable_warnings() while True: # Keep trying until the webpage successfully downloads try: r = requests.get(pdf_url, verify=False, timeout=10) break # If it downloads, get out and get on with life # If it doesn't download after the timeout period, an exceptions is thrown, and we try again except requests.exceptions.RequestException as e: with open(file_out, "a") as myfile: myfile.write(pdf_url + '\n') filename = mdir + filename with open(filename, 'wb') as f: f.write(r.content) if os.stat(filename).st_size == 0: flag = 0 else: flag = 1 return flag def download_file_W(pdf_url, mdir, filename, flag=False): filename = mdir + filename ssl._create_default_https_context = ssl._create_unverified_context wget.download(pdf_url, filename) if os.stat(filename).st_size == 0: flag = 0 else: flag = 1 return flag def getDriver(url): driver = webdriver.Chrome() driver.get(url) return driver def is_valid_pdf(fn): """Check is the PDF valid """ try: with open(fn, 'rb') as f: pdf = PdfFileReader(f) numpages = pdf.numPages return (numpages > 0) except Exception as e: return False
Python
3ba95fbf0592a79440bda446efca68243b40937d2869cd5a0a0441841b9abdfd
0xabfdaeb793e02b8c
<gh_stars>0 """ Experiment summary ------------------ Treat each province/state in a country cases over time as a vector, do a simple K-Nearest Neighbor between countries. What country has the most similar trajectory to a given country? Plots similar countries """ import sys sys.path.insert(0, '..') from utils import data import os import sklearn import numpy as np import json import matplotlib.pyplot as plt plt.style.use('fivethirtyeight') # ------------ HYPERPARAMETERS ------------- BASE_PATH = '../COVID-19/csse_covid_19_data/' # ------------------------------------------ confirmed = os.path.join( BASE_PATH, 'csse_covid_19_time_series', 'time_series_covid19_confirmed_global.csv') confirmed = data.load_csv_data(confirmed) features = [] targets = [] fig = plt.figure(figsize=(12, 12)) ax = fig.add_subplot(111) cm = plt.get_cmap('jet') NUM_COLORS = 0 LINE_STYLES = ['solid', 'dashed', 'dotted'] NUM_STYLES = len(LINE_STYLES) dist_diff = os.path.join('../exp/results/', 'knn_raw.json') f = open(dist_diff,) dist_diff = json.load(f) for region, dist in dist_diff.items(): plt.style.use('fivethirtyeight') fig = plt.figure(figsize=(12, 12)) ax = fig.add_subplot(111) cm = plt.get_cmap('jet') other_region = dist['manhattan'][0] regions = [region, other_region] for val in regions: df = data.filter_by_attribute( confirmed, "Country/Region", val) cases, labels = data.get_cases_chronologically(df) cases = cases.sum(axis=0) lines = ax.plot(cases, label=val) ax.set_ylabel('# of confirmed cases') ax.set_xlabel("Time (days since Jan 22, 2020)") ax.set_yscale('log') ax.legend() plt.tight_layout() region = region.replace('*', '') other_region = other_region.replace('*', '') plt.title(f'Comparing confirmed cases in {region} and {other_region}') plt.savefig(f'results/raw_manhattan/{region}.png') plt.close() print(region)
Python
3892bbaa446c6859124ea678a66a873eb57e72ef3d4e82ef6011a9599473cb90
0x3e09e178e315608c
<reponame>steven-lang/rational_activations """ Rational Activation Functions for MXNET ======================================= This module allows you to create Rational Neural Networks using Learnable Rational activation functions with MXNET networks. """ import mxnet as mx from mxnet import initializer from mxnet.gluon import HybridBlock from rational.utils.get_weights import get_parameters from rational.mxnet.versions import _version_a, _version_b, _version_c, _version_d from rational._base.rational_base import Rational_base class Rational(Rational_base, HybridBlock): """ Rational Activation Function, inheriting from ``mxnet.gluon.HybridBlock``. Arguments: approx_func (str): The name of the approximated function for initialisation. The different functions are available in `rational.rationals_config.json`. Default: ``leaky_relu`` degrees (tuple of int): The degrees of the numerator (P) and denominator (Q). Default ``(5, 4)`` cuda (bool): whether to execute on cuda device. NOTE: THIS PARAMETER IS CURRENTLY NOT CONSIDERED. CUDA GPUS ARE USED WHEN IT IS POSSIBLE version (str): Version of Rational to use. Rational(x) = P(x)/Q(x), where P(x) = (a_0 + a_1 * x + a_2 * x^2 + ... + a_n * x^n) and `A`: Q(x) = (1 + |b_0 * x| + | b_1 * x^2| + ... + | b_m * x^{m+1}|) `B`: Q(x) = (1 + |b_0 * x + b_1 * x^2 + ... + b_m * x^{m + 1}|) `C`: Q(x) = (0.1 + |b_0 + b_1 * x + b_2 * x^2 + ... + b_m * x^m|) `D`: like `B` with noised coefficients b_i Default ``A`` trainable (bool): Whether the weights are trainable, i.e, if they are updated during backward pass. Default ``True`` Returns: HybridBlock: Rational hybrid block """ def __init__(self, approx_func='leaky_relu', degrees=(5, 4), cuda=False, version='A', trainable=True, **kwargs): super(Rational, self).__init__(**kwargs) # read initial parameter configuration from external files w_numerator, w_denominator = get_parameters( version, degrees, approx_func) # convert w_numerator and w_denominator to mxnet arrays w_numerator = mx.nd.array(w_numerator) w_denominator = mx.nd.array(w_denominator) # register the amount of weights in numerator and denominator, since we need them during # symbolic execution, but are unable to retrieve them at later stages self.numerator_length = len(w_numerator) self.denominator_length = len(w_denominator) self.training = trainable self.degrees = degrees self.version = version self.init_approximation = approx_func # set specified context (currently not happening, since unclear, how and why helpful) # self.device = gpu() if cuda else cpu() # register and configure weights (numerator and denominator coefficients) with self.name_scope(): self.numerator = self.params.get(name='w_numerator', shape=(len(w_numerator),), init=initializer.Constant( w_numerator), grad_req='write' if trainable else 'null', differentiable=trainable) self.denominator = self.params.get(name='w_denominator', shape=(len(w_denominator),), init=initializer.Constant( w_denominator), grad_req='write' if trainable else 'null', differentiable=trainable) # register whether function is trainable, since this information needs to be passed to # version D self.training = trainable self.init_approximation = approx_func # set rational activation function version self.rational_func = {'A': _version_a, 'B': _version_b, 'C': _version_c, 'D': _version_d} \ .get(version) if self.rational_func is None: raise ValueError( "rational activation function version %s not implemented" % version) def hybrid_forward(self, F, x, numerator, denominator): return self.rational_func(F, x, numerator, denominator, self.training, self.numerator_length, self.denominator_length) def numpy(self): """ Returns a numpy version of this activation function. """ from rational.numpy import Rational as Rational_numpy rational_n = Rational_numpy(self.init_approximation, self.degrees, self.version) rational_n.numerator = self.numerator.data().asnumpy().tolist() rational_n.denominator = self.denominator.data().asnumpy().tolist() return rational_n
Python
5ff164365206465f3f2318f2b8152fc1224060dc3005ded9b59fca7a0df5cb33
0x69ddd8e0a0dc8a9c
<filename>torchflare/criterion/utils.py<gh_stars>1-10 """Utils for criterion.""" import torch import torch.nn.functional as F def normalize(x, axis=-1): """Performs L2-Norm.""" num = x denom = torch.norm(x, 2, axis, keepdim=True).expand_as(x) + 1e-12 return num / denom # Source : https://github.com/earhian/Humpback-Whale-Identification-1st-/blob/master/models/triplet_loss.py def euclidean_dist(x, y): """Computes Euclidean distance.""" m, n = x.size(0), y.size(0) xx = torch.pow(x, 2).sum(1, keepdim=True).expand(m, n) yy = torch.pow(x, 2).sum(1, keepdim=True).expand(m, m).t() dist = xx + yy - 2 * torch.matmul(x, y.t()) dist = dist.clamp(min=1e-12).sqrt() return dist def cosine_dist(x, y): """Computes Cosine Distance.""" x = F.normalize(x, dim=1) y = F.normalize(y, dim=1) dist = 2 - 2 * torch.mm(x, y.t()) return dist
Python
78ce00ca6c55feba8354953695d1668c7ac148d1556ceb77b93e26fb811a80c0
0x9a5d82ebc45e698c
<reponame>geudrik/hautomation #! /usr/bin/env python2.7 # -*- coding: latin-1 -*- from flask import Blueprint from flask import current_app from flask import render_template from flask_login import login_required homestack = Blueprint("homestack", __name__, url_prefix="/homestack") @homestack.route("/", methods=["GET"]) @login_required def home(): return render_template("homestack/home.html")
Python
a0838d3a04f088d52fb7f7ff2895f2afb5516d976530b1b023edd8a5b5c1e563
0x221d82b8d9de228c
"""Forms for RTD donations""" import logging from django import forms from django.conf import settings from django.utils.translation import ugettext_lazy as _ from readthedocs.payments.forms import StripeModelForm, StripeResourceMixin from readthedocs.payments.utils import stripe from .models import Supporter log = logging.getLogger(__name__) class SupporterForm(StripeResourceMixin, StripeModelForm): """Donation support sign up form This extends the basic payment form, giving fields for credit card number, expiry, and CVV. The proper Knockout data bindings are established on :py:class:`StripeModelForm` """ class Meta: model = Supporter fields = ( 'last_4_digits', 'name', 'email', 'dollars', 'logo_url', 'site_url', 'public', ) labels = { 'public': _('Make this donation public'), } help_texts = { 'public': _('Your name and image will be displayed on the donation page'), 'email': _('Your email is used for Gravatar and so we can send you a receipt'), 'logo_url': _("URL of your company's logo, images should be 300x300 pixels or less"), 'dollars': _('Companies donating over $400 can specify a logo URL and site link'), } widgets = { 'dollars': forms.HiddenInput(attrs={ 'data-bind': 'value: dollars' }), 'logo_url': forms.TextInput(attrs={ 'data-bind': 'value: logo_url, enable: urls_enabled' }), 'site_url': forms.TextInput(attrs={ 'data-bind': 'value: site_url, enable: urls_enabled' }), 'last_4_digits': forms.TextInput(attrs={ 'data-bind': 'valueInit: card_digits, value: card_digits' }), } last_4_digits = forms.CharField(widget=forms.HiddenInput(), required=True) name = forms.CharField(required=True) email = forms.CharField(required=True) def __init__(self, *args, **kwargs): self.user = kwargs.pop('user') super(SupporterForm, self).__init__(*args, **kwargs) def validate_stripe(self): """Call stripe for payment (not ideal here) and clean up logo < $200""" dollars = self.cleaned_data['dollars'] if dollars < 200: self.cleaned_data['logo_url'] = None self.cleaned_data['site_url'] = None stripe.Charge.create( amount=int(self.cleaned_data['dollars']) * 100, currency='usd', source=self.cleaned_data['stripe_token'], description='Read the Docs Sustained Engineering', receipt_email=self.cleaned_data['email'] ) def save(self, commit=True): supporter = super(SupporterForm, self).save(commit) if commit and self.user is not None and self.user.is_authenticated(): supporter.user = self.user supporter.save() return supporter class EthicalAdForm(StripeResourceMixin, StripeModelForm): """Payment form for ethical ads This extends the basic payment form, giving fields for credit card number, expiry, and CVV. The proper Knockout data bindings are established on :py:class:`StripeModelForm` """ class Meta: model = Supporter fields = ( 'last_4_digits', 'name', 'email', 'dollars', ) help_texts = { 'email': _('Your email is used so we can send you a receipt'), } widgets = { 'dollars': forms.HiddenInput(attrs={ 'data-bind': 'value: dollars' }), 'last_4_digits': forms.TextInput(attrs={ 'data-bind': 'valueInit: card_digits, value: card_digits' }), } last_4_digits = forms.CharField(widget=forms.HiddenInput(), required=True) name = forms.CharField(required=True) email = forms.CharField(required=True) def validate_stripe(self): stripe.Charge.create( amount=int(self.cleaned_data['dollars']) * 100, currency='usd', source=self.cleaned_data['stripe_token'], description='Read the Docs Sponsorship Payment', receipt_email=self.cleaned_data['email'] )
Python
4614dcc698cbb82e6ce9b48f236a1a67155190b773eba2d7ca26337974526099
0xd40c027b5addd4f4
#!/usr/bin/env python # -*- coding: utf-8 -*- from .base import DataReaderBase from ..tools import COL, _get_dates, to_float, to_int import pandas as pd #from pandas.tseries.frequencies import to_offset from six.moves import cStringIO as StringIO import logging import traceback import datetime import json import token, tokenize def ymd_to_date(y, m, d): """ Returns date >>> expiration = {u'd': 1, u'm': 12, u'y': 2014} >>> ymd_to_date(**expiration) datetime.date(2014, 12, 1) >>> ymd_to_date(2014, 3, 1) datetime.date(2014, 3, 1) """ return(datetime.date(year=y, month=m, day=d)) def date_to_ymd(date): """ Returns dict like {'y': ..., 'm': ..., 'd': ...} >>> date_to_ymd(datetime.date(year=2010, month=1, day=3)) {'y': 2010, 'm': 1, 'd': 3} """ d = { 'y': date.year, 'm': date.month, 'd': date.day } return(d) def fix_lazy_json(in_text): """ Handle lazy JSON - to fix expecting property name this function fixes the json output from google http://stackoverflow.com/questions/4033633/handling-lazy-json-in-python-expecting-property-name """ tokengen = tokenize.generate_tokens(StringIO(in_text).readline) result = [] for tokid, tokval, _, _, _ in tokengen: # fix unquoted strings if (tokid == token.NAME): if tokval not in ['true', 'false', 'null', '-Infinity', 'Infinity', 'NaN']: tokid = token.STRING tokval = u'"%s"' % tokval # fix single-quoted strings elif (tokid == token.STRING): if tokval.startswith ("'"): tokval = u'"%s"' % tokval[1:-1].replace ('"', '\\"') # remove invalid commas elif (tokid == token.OP) and ((tokval == '}') or (tokval == ']')): if (len(result) > 0) and (result[-1][1] == ','): result.pop() # fix single-quoted strings elif (tokid == token.STRING): if tokval.startswith ("'"): tokval = u'"%s"' % tokval[1:-1].replace ('"', '\\"') result.append((tokid, tokval)) return tokenize.untokenize(result) def json_decode(json_string): try: ret = json.loads(json_string) except: json_string = fix_lazy_json(json_string) ret = json.loads(json_string) return ret class DataReaderGoogleFinanceOptions(DataReaderBase): """ DataReader to fetch data from Google Finance Options see https://www.google.com/finance/option_chain https://github.com/makmac213/python-google-option-chain http://www.drtomstarke.com/index.php/option-chains-from-google-finance-api """ def init(self, *args, **kwargs): self._get_multi = self._get_multi_todict def _get_one(self, name, *args, **kwargs): return(self._get_one_raw(name, 'All', 'json')) def _get_one_raw(self, symbol, typ='All', output='json', y='2014', m='12', d='1'): url = "https://www.google.com/finance/option_chain" params = { 'q': symbol, 'type': typ, 'output': output, } data = self._get_content(url, params) d = {} lst = [] for typ in [u'puts', u'calls']: df_typ = pd.DataFrame(data[typ]) df_typ['Type'] = typ lst.append(df_typ) del data[typ] for i, expiration in enumerate(data['expirations']): params = { 'q': symbol, 'output': output, 'expy': expiration['y'], 'expm': expiration['m'], 'expd': expiration['d'], } data = self._get_content(url, params) for typ in [u'puts', u'calls']: df_typ = pd.DataFrame(data[typ]) df_typ['Type'] = typ lst.append(df_typ) del data[typ] lst.append(df_typ) df = pd.concat(lst, axis=0, ignore_index=True) d_cols = { "a": "Ask", "b": "Bid", "p": "Last", "strike": "Strike", "expiry": "Expiry", "vol": "Volume", "name": "Name" } df = df.rename(columns=d_cols) """ d_cols = { "a": "ask", "b": "bid", "c": "change", "cid": "identity code", "cp": "cp" "cs": change direction. "chg" = up, "chr" = down, "chg"? "e": # I think this tells us something about what country where the stock is traded. "OPRA" means USA. "expiry": expiration date for this option "name": I don't know. I have never seen a value for this "oi": open interest. How many of these are currently being held by others. See, http://www.investopedia.com/terms/o/openinterest.asp "p": price, last "s": option code. Basically, Stock Symbol + 7 if mini option + date + "C" or "P" + price "strike": "strike price for this option" "vol": "the volume of options traded." } """ for col in ['Ask', 'Bid', 'c', 'cp', 'Last', 'Strike']: df[col] = df[col].map(to_float) for col in ['Volume', 'oi', 'cid']: df[col] = df[col].map(to_int) df['Expiry'] = pd.to_datetime(df['Expiry']) data['options'] = df data['underlying_id'] = int(data['underlying_id']) data['expiry'] = ymd_to_date(**data['expiry']) for i, expiration in enumerate(data['expirations']): data['expirations'][i] = ymd_to_date(**expiration) #for col in ['Volume']: # df[col] = df[col].fillna(0) #d = {} #d["options"] = df #return(d) return(data) def _get_content(self, url, params): #response = requests.get(url, params=params) response = self.session.get(url, params=params) if response.status_code == 200: content_json = response.text data = json_decode(content_json) return(data) if __name__ == "__main__": import doctest doctest.testmod()
Python
0f9d5d5311a69262771a50a6f7993d96b0a1573a9bcc4dd6c1d48e1bb3fe5938
0xa1d964f3a37826f5
<reponame>Vail-qin/Keras-TextClassification # !/usr/bin/python # -*- coding: utf-8 -*- # @time : 2019/11/2 21:08 # @author : Mo # @function: from keras_textclassification.data_preprocess.text_preprocess import load_json, save_json from keras_textclassification.conf.path_config import path_model_dir path_fast_text_model_vocab2index = path_model_dir + 'vocab2index.json' path_fast_text_model_l2i_i2l = path_model_dir + 'l2i_i2l.json' import numpy as np import os class PreprocessGenerator: """ 数据预处理, 输入为csv格式, [label,ques] """ def __init__(self): self.l2i_i2l = None if os.path.exists(path_fast_text_model_l2i_i2l): self.l2i_i2l = load_json(path_fast_text_model_l2i_i2l) def prereocess_idx(self, pred): if os.path.exists(path_fast_text_model_l2i_i2l): pred_i2l = {} i2l = self.l2i_i2l['i2l'] for i in range(len(pred)): pred_i2l[i2l[str(i)]] = pred[i] pred_i2l_rank = [sorted(pred_i2l.items(), key=lambda k: k[1], reverse=True)] return pred_i2l_rank else: raise RuntimeError("path_fast_text_model_label2index is None") def prereocess_pred_xid(self, pred): if os.path.exists(path_fast_text_model_l2i_i2l): pred_l2i = {} l2i = self.l2i_i2l['l2i'] for i in range(len(pred)): pred_l2i[pred[i]] = l2i[pred[i]] pred_l2i_rank = [sorted(pred_l2i.items(), key=lambda k: k[1], reverse=True)] return pred_l2i_rank else: raise RuntimeError("path_fast_text_model_label2index is None") def preprocess_get_label_set(self, path): # 首先获取label,set,即存在的具体类 label_set = set() len_all = 0 file_csv = open(path, "r", encoding="utf-8") for line in file_csv: len_all += 1 if len_all > 1: # 第一条是标签'label,ques',不选择 line_sp = line.split(",") label_org = str(line_sp[0]).strip().upper() label_real = "NAN" if label_org=="" else label_org label_set.add(label_real) file_csv.close() return label_set, len_all def preprocess_label_ques_to_idx(self, embedding_type, batch_size, path, embed, rate=1): label_set, len_all = self.preprocess_get_label_set(path) # 获取label转index字典等, 如果label2index存在则不转换了, dev验证集合的时候用 if not os.path.exists(path_fast_text_model_l2i_i2l): count = 0 label2index = {} index2label = {} for label_one in label_set: label2index[label_one] = count index2label[count] = label_one count = count + 1 l2i_i2l = {} l2i_i2l['l2i'] = label2index l2i_i2l['i2l'] = index2label save_json(l2i_i2l, path_fast_text_model_l2i_i2l) else: l2i_i2l = load_json(path_fast_text_model_l2i_i2l) # 读取数据的比例 len_ql = int(rate * len_all) if len_ql <= 500: # sample时候不生效,使得语料足够训练 len_ql = len_all def process_line(line): # 对每一条数据操作,获取label和问句index line_sp = line.split(",") ques = str(line_sp[1]).strip().upper() label = str(line_sp[0]).strip().upper() label = "NAN" if label == "" else label que_embed = embed.sentence2idx(ques) label_zeros = [0] * len(l2i_i2l['l2i']) label_zeros[l2i_i2l['l2i'][label]] = 1 return que_embed, label_zeros while True: file_csv = open(path, "r", encoding="utf-8") cout_all_line = 0 cnt = 0 x, y = [], [] # 跳出循环 if len_ql < cout_all_line: break for line in file_csv: cout_all_line += 1 if cout_all_line > 1: # 第一条是标签'label,ques',不选择 x_line, y_line = process_line(line) x.append(x_line) y.append(y_line) cnt += 1 if cnt == batch_size: if embedding_type in ['bert', 'albert']: x_, y_ = np.array(x), np.array(y) x_1 = np.array([x[0] for x in x_]) x_2 = np.array([x[1] for x in x_]) x_all = [x_1, x_2] elif embedding_type == 'xlnet': x_, y_ = x, np.array(y) x_1 = np.array([x[0][0] for x in x_]) x_2 = np.array([x[1][0] for x in x_]) x_3 = np.array([x[2][0] for x in x_]) x_all = [x_1, x_2, x_3] else: x_all, y_ = np.array(x), np.array(y) cnt = 0 yield (x_all, y_) x, y =[], [] file_csv.close() print("preprocess_label_ques_to_idx ok")
Python
e197c9c464126d62d78c30aec5ad91317d62797304bd554419f3a9f7bf56e9f2
0x30ba1e2c126485e4
<gh_stars>1-10 ######## Image Object Detection Using Tensorflow-trained Classifier ######### # # Author: <NAME> # Date: 1/15/18 # Description: # This program uses a TensorFlow-trained classifier to perform object detection. # It loads the classifier uses it to perform object detection on an image. # It draws boxes and scores around the objects of interest in the image. ## Some of the code is copied from Google's example at ## https://github.com/tensorflow/models/blob/master/research/object_detection/object_detection_tutorial.ipynb ## and some is copied from Dat Tran's example at ## https://github.com/datitran/object_detector_app/blob/master/object_detection_app.py ## but I changed it to make it more understandable to me. # Import packages import os import cv2 import numpy as np import tensorflow as tf import sys # This is needed since the notebook is stored in the object_detection folder. sys.path.append("..") # Import utilites from utils import label_map_util from utils import visualization_utils as vis_util # Name of the directory containing the object detection module we're using MODEL_NAME = 'inference_graph' IMAGE_NAME = 'test1.jpg' # Grab path to current working directory CWD_PATH = os.getcwd() # Path to frozen detection graph .pb file, which contains the model that is used # for object detection. PATH_TO_CKPT = os.path.join(CWD_PATH,MODEL_NAME,'frozen_inference_graph.pb') # Path to label map file PATH_TO_LABELS = os.path.join(CWD_PATH,'training','labelmap.pbtxt') # Path to image PATH_TO_IMAGE = os.path.join(CWD_PATH,IMAGE_NAME) # Number of classes the object detector can identify NUM_CLASSES = 6 # Load the label map. # Label maps map indices to category names, so that when our convolution # network predicts `5`, we know that this corresponds to `king`. # Here we use internal utility functions, but anything that returns a # dictionary mapping integers to appropriate string labels would be fine label_map = label_map_util.load_labelmap(PATH_TO_LABELS) categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True) category_index = label_map_util.create_category_index(categories) # Load the Tensorflow model into memory. detection_graph = tf.Graph() with detection_graph.as_default(): od_graph_def = tf.GraphDef() with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid: serialized_graph = fid.read() od_graph_def.ParseFromString(serialized_graph) tf.import_graph_def(od_graph_def, name='') sess = tf.Session(graph=detection_graph) # Define input and output tensors (i.e. data) for the object detection classifier # Input tensor is the image image_tensor = detection_graph.get_tensor_by_name('image_tensor:0') # Output tensors are the detection boxes, scores, and classes # Each box represents a part of the image where a particular object was detected detection_boxes = detection_graph.get_tensor_by_name('detection_boxes:0') # Each score represents level of confidence for each of the objects. # The score is shown on the result image, together with the class label. detection_scores = detection_graph.get_tensor_by_name('detection_scores:0') detection_classes = detection_graph.get_tensor_by_name('detection_classes:0') # Number of objects detected num_detections = detection_graph.get_tensor_by_name('num_detections:0') # Load image using OpenCV and # expand image dimensions to have shape: [1, None, None, 3] # i.e. a single-column array, where each item in the column has the pixel RGB value image = cv2.imread(PATH_TO_IMAGE) image_expanded = np.expand_dims(image, axis=0) # Perform the actual detection by running the model with the image as input (boxes, scores, classes, num) = sess.run( [detection_boxes, detection_scores, detection_classes, num_detections], feed_dict={image_tensor: image_expanded}) # Draw the results of the detection (aka 'visulaize the results') vis_util.visualize_boxes_and_labels_on_image_array( image, np.squeeze(boxes), np.squeeze(classes).astype(np.int32), np.squeeze(scores), category_index, use_normalized_coordinates=True, line_thickness=8, min_score_thresh=0.60) # All the results have been drawn on image. Now display the image. cv2.imshow('Object detector', image) # Press any key to close the image cv2.waitKey(0) # Clean up cv2.destroyAllWindows()
Python
6f10fe3937e35951eeb5bb4ced40684942e59c93a0a0e010b52991db4e9b39fb
0x8b7df1d7623d6607
from django.db.models import Q from django.shortcuts import render from django.http import Http404 # Create your views here. from rest_framework.views import APIView from rest_framework.response import Response from rest_framework.decorators import api_view from .models import Product, Category from .serializers import ProductSerializer, CategorySerializer class LatestProductsList(APIView): def get(self, request, format=None): products = Product.objects.all()[0:4] serializer = ProductSerializer(products,many=True) return Response(serializer.data) class ProductDetail(APIView): def get_object(self, category_slug, product_slug): try: return Product.objects.filter(category__slug=category_slug).get(slug=product_slug) except Product.DoesNotExist: raise Http404 def get(self, request, category_slug, product_slug, format= None): product = self.get_object(category_slug, product_slug) serializer = ProductSerializer(product) return Response(serializer.data) class CategoryDetail(APIView): def get_object(self, category_slug): try: return Category.objects.get(slug=category_slug) except Category.DoesNotExist: raise Http404 def get(self, request, category_slug, format= None): category = self.get_object(category_slug) serializer = CategorySerializer(category) return Response(serializer.data) @api_view(['POST']) def search(request): query = request.data.get('query', '') if query: products = Product.objects.filter(Q(name__icontains=query) | Q(description__icontains=query)) serializer = ProductSerializer(products, many=True) return Response(serializer.data) else: return Response({"products": []})
Python
371e23c5cb59408b66ff53795e32d56b67cca34d4bb8eb6abf142a8a695ed799
0xe94ba4ff187e3cf9
from sys import maxsize class Contact: def __init__(self, fname=None, mname=None, lname=None, nick=None, title=None, comp=None, addr=None, home=None, mobile=None, work=None, fax=None, email1=None, email2=None, email3=None, homepage=None, bday=None, bmonth=None, byear=None, aday=None, amonth=None, ayear=None, secaddr=None, secphone=None, note=None, id =None): self.fname = fname self.mname = mname self.lname = lname self.nick = nick self.title = title self.comp = comp self.addr = addr self.home = home self.mobile = mobile self.work = work self.fax = fax self.email1 = email1 self.email2 = email2 self.email3 = email3 self.homepage = homepage self.bday = bday self.bmonth = bmonth self.byear = byear self.aday = aday self.amonth = amonth self.ayear = ayear self.secaddr = secaddr self.secphone = secphone self.note = note self.id = id def __repr__(self): return "%s:%s:%s" % (self.id, self.fname, self.lname) def __eq__(self, other): return (self.id is None or other.id is None or self.id == other.id) and self.fname == other.fname and self.lname == other.lname def id_or_max(self): if self.id: return int(self.id) else: return maxsize
Python
0cde2967b1feb08a16836293cbedac48942ca7b246b3bc4e40a0237b8ddc0a83
0x9495bce932493775
from zeit.cms.i18n import MessageFactory as _ import zope.interface import zope.schema class IGlobalSettings(zope.interface.Interface): """Global CMS settings.""" default_year = zope.schema.Int( title=_("Default year"), min=1900, max=2100) default_volume = zope.schema.Int( title=_("Default volume"), min=1, max=54) def get_working_directory(template): """Return the collection which is the main working directory. template: Template which will be filled with year and volume. In ``template`` the placeholders $year and $volume will be replaced. Example: 'online/$year/$volume/foo' If the respective collection does not exist, it will be created before returning it. """
Python
6051aec4e9e9b8946edf7c3233ae0856116d17e93db7c71a33f42a9ab9671e71
0xc325e4f7991f87a5
<filename>abc/abc165/abc165e.py N, M = map(int, input().split()) for i in range(1, M + 1): if i % 2 == 1: j = (i - 1) // 2 print(1 + j, M + 1 - j) else: j = (i - 2) // 2 print(M + 2 + j, 2 * M + 1 - j)
Python
4a0a273e581e1fb27e62539d38fbfbebca765a24f45dcd10741115fb4ca10e67
0x462abe2e02c1619b
<filename>eth2/beacon/chains/base.py from abc import ( ABC, abstractmethod, ) import logging from typing import ( TYPE_CHECKING, Tuple, Type, ) from eth._utils.datatypes import ( Configurable, ) from eth.db.backends.base import ( BaseAtomicDB, ) from eth.exceptions import ( BlockNotFound, ) from eth.validation import ( validate_word, ) from eth_typing import ( Hash32, ) from eth_utils import ( ValidationError, encode_hex, ) from eth2._utils.ssz import ( validate_imported_block_unchanged, ) from eth2.beacon.db.chain import ( BaseBeaconChainDB, BeaconChainDB, ) from eth2.beacon.exceptions import ( BlockClassError, StateMachineNotFound, ) from eth2.beacon.types.blocks import ( BaseBeaconBlock, ) from eth2.beacon.types.states import ( BeaconState, ) from eth2.beacon.typing import ( FromBlockParams, Slot, ) from eth2.beacon.validation import ( validate_slot, ) if TYPE_CHECKING: from eth2.beacon.state_machines.base import ( # noqa: F401 BaseBeaconStateMachine, ) class BaseBeaconChain(Configurable, ABC): """ The base class for all BeaconChain objects """ chaindb = None # type: BaseBeaconChainDB chaindb_class = None # type: Type[BaseBeaconChainDB] sm_configuration = None # type: Tuple[Tuple[Slot, Type[BaseBeaconStateMachine]], ...] chain_id = None # type: int # # Helpers # @classmethod @abstractmethod def get_chaindb_class(cls) -> Type[BaseBeaconChainDB]: pass # # Chain API # @classmethod @abstractmethod def from_genesis(cls, base_db: BaseAtomicDB, genesis_state: BeaconState, genesis_block: BaseBeaconBlock) -> 'BaseBeaconChain': pass # # State Machine API # @classmethod @abstractmethod def get_state_machine_class( cls, block: BaseBeaconBlock) -> Type['BaseBeaconStateMachine']: pass @abstractmethod def get_state_machine(self, at_block: BaseBeaconBlock=None) -> 'BaseBeaconStateMachine': pass @classmethod @abstractmethod def get_state_machine_class_for_block_slot( cls, slot: Slot) -> Type['BaseBeaconStateMachine']: pass # # Block API # @abstractmethod def get_block_class(self, block_root: Hash32) -> Type[BaseBeaconBlock]: pass @abstractmethod def create_block_from_parent(self, parent_block: BaseBeaconBlock, block_params: FromBlockParams) -> BaseBeaconBlock: pass @abstractmethod def get_block_by_root(self, block_root: Hash32) -> BaseBeaconBlock: pass @abstractmethod def get_canonical_head(self) -> BaseBeaconBlock: pass @abstractmethod def get_score(self, block_root: Hash32) -> int: pass @abstractmethod def ensure_block(self, block: BaseBeaconBlock=None) -> BaseBeaconBlock: pass @abstractmethod def get_block(self) -> BaseBeaconBlock: pass @abstractmethod def get_canonical_block_by_slot(self, slot: Slot) -> BaseBeaconBlock: pass @abstractmethod def get_canonical_block_root(self, slot: Slot) -> Hash32: pass @abstractmethod def import_block( self, block: BaseBeaconBlock, perform_validation: bool=True ) -> Tuple[BaseBeaconBlock, Tuple[BaseBeaconBlock, ...], Tuple[BaseBeaconBlock, ...]]: pass class BeaconChain(BaseBeaconChain): """ A Chain is a combination of one or more ``StateMachine`` classes. Each ``StateMachine`` is associated with a range of slots. The Chain class acts as a wrapper around these other StateMachine classes, delegating operations to the appropriate StateMachine depending on the current block slot number. """ logger = logging.getLogger("eth2.beacon.chains.BeaconChain") chaindb_class = BeaconChainDB # type: Type[BaseBeaconChainDB] def __init__(self, base_db: BaseAtomicDB) -> None: if not self.sm_configuration: raise ValueError( "The Chain class cannot be instantiated with an empty `sm_configuration`" ) else: # TODO implment validate_sm_configuration(self.sm_configuration) # validate_sm_configuration(self.sm_configuration) pass self.chaindb = self.get_chaindb_class()(base_db) # # Helpers # @classmethod def get_chaindb_class(cls) -> Type['BaseBeaconChainDB']: if cls.chaindb_class is None: raise AttributeError("`chaindb_class` not set") return cls.chaindb_class # # Chain API # @classmethod def from_genesis(cls, base_db: BaseAtomicDB, genesis_state: BeaconState, genesis_block: BaseBeaconBlock) -> 'BaseBeaconChain': """ Initialize the ``BeaconChain`` from a genesis state. """ sm_class = cls.get_state_machine_class_for_block_slot(genesis_block.slot) if type(genesis_block) != sm_class.block_class: raise BlockClassError( "Given genesis block class: {}, StateMachine.block_class: {}".format( type(genesis_block), sm_class.block_class ) ) chaindb = cls.get_chaindb_class()(db=base_db) chaindb.persist_state(genesis_state) return cls._from_genesis_block(base_db, genesis_block) @classmethod def _from_genesis_block(cls, base_db: BaseAtomicDB, genesis_block: BaseBeaconBlock) -> 'BaseBeaconChain': """ Initialize the ``BeaconChain`` from the genesis block. """ chaindb = cls.get_chaindb_class()(db=base_db) chaindb.persist_block(genesis_block, genesis_block.__class__) return cls(base_db) # # StateMachine API # @classmethod def get_state_machine_class(cls, block: BaseBeaconBlock) -> Type['BaseBeaconStateMachine']: """ Returns the ``StateMachine`` instance for the given block slot number. """ return cls.get_state_machine_class_for_block_slot(block.slot) @classmethod def get_state_machine_class_for_block_slot( cls, slot: Slot) -> Type['BaseBeaconStateMachine']: """ Return the ``StateMachine`` class for the given block slot number. """ if cls.sm_configuration is None: raise AttributeError("Chain classes must define the StateMachines in sm_configuration") validate_slot(slot) for start_slot, sm_class in reversed(cls.sm_configuration): if slot >= start_slot: return sm_class raise StateMachineNotFound("No StateMachine available for block slot: #{0}".format(slot)) def get_state_machine(self, at_block: BaseBeaconBlock=None) -> 'BaseBeaconStateMachine': """ Return the ``StateMachine`` instance for the given block number. """ block = self.ensure_block(at_block) sm_class = self.get_state_machine_class_for_block_slot(block.slot) return sm_class( chaindb=self.chaindb, block=block, ) # # Block API # def get_block_class(self, block_root: Hash32) -> Type[BaseBeaconBlock]: slot = self.chaindb.get_slot_by_root(block_root) sm_class = self.get_state_machine_class_for_block_slot(slot) block_class = sm_class.block_class return block_class def create_block_from_parent(self, parent_block: BaseBeaconBlock, block_params: FromBlockParams) -> BaseBeaconBlock: """ Passthrough helper to the ``StateMachine`` class of the block descending from the given block. """ return self.get_state_machine_class_for_block_slot( slot=parent_block.slot + 1 if block_params.slot is None else block_params.slot, ).create_block_from_parent(parent_block, block_params) def get_block_by_root(self, block_root: Hash32) -> BaseBeaconBlock: """ Return the requested block as specified by block hash. Raise ``BlockNotFound`` if there's no block with the given hash in the db. """ validate_word(block_root, title="Block Hash") block_class = self.get_block_class(block_root) return self.chaindb.get_block_by_root(block_root, block_class) def get_canonical_head(self) -> BaseBeaconBlock: """ Return the block at the canonical chain head. Raise ``CanonicalHeadNotFound`` if there's no head defined for the canonical chain. """ block_root = self.chaindb.get_canonical_head_root() block_class = self.get_block_class(block_root) return self.chaindb.get_block_by_root(block_root, block_class) def get_score(self, block_root: Hash32) -> int: """ Return the score of the block with the given hash. Raise ``BlockNotFound`` if there is no matching black hash. """ return self.chaindb.get_score(block_root) def ensure_block(self, block: BaseBeaconBlock=None) -> BaseBeaconBlock: """ Return ``block`` if it is not ``None``, otherwise return the block of the canonical head. """ if block is None: head = self.get_canonical_head() return self.create_block_from_parent(head, FromBlockParams()) else: return block def get_block(self) -> BaseBeaconBlock: """ Return the current TIP block. """ return self.get_state_machine().block def get_canonical_block_by_slot(self, slot: Slot) -> BaseBeaconBlock: """ Return the block with the given number in the canonical chain. Raise ``BlockNotFound`` if there's no block with the given number in the canonical chain. """ validate_slot(slot) return self.get_block_by_root(self.chaindb.get_canonical_block_root(slot)) def get_canonical_block_root(self, slot: Slot) -> Hash32: """ Return the block hash with the given number in the canonical chain. Raise ``BlockNotFound`` if there's no block with the given number in the canonical chain. """ return self.chaindb.get_canonical_block_root(slot) def import_block( self, block: BaseBeaconBlock, perform_validation: bool=True ) -> Tuple[BaseBeaconBlock, Tuple[BaseBeaconBlock, ...], Tuple[BaseBeaconBlock, ...]]: """ Import a complete block and returns a 3-tuple - the imported block - a tuple of blocks which are now part of the canonical chain. - a tuple of blocks which were canonical and now are no longer canonical. """ try: parent_block = self.get_block_by_root(block.previous_block_root) except BlockNotFound: raise ValidationError( "Attempt to import block #{}. Cannot import block {} before importing " "its parent block at {}".format( block.slot, block.signed_root, block.previous_block_root, ) ) base_block_for_import = self.create_block_from_parent( parent_block, FromBlockParams(), ) state, imported_block = self.get_state_machine(base_block_for_import).import_block(block) # Validate the imported block. if perform_validation: validate_imported_block_unchanged(imported_block, block) # TODO: Now it just persists all state. Should design how to clean up the old state. self.chaindb.persist_state(state) ( new_canonical_blocks, old_canonical_blocks, ) = self.chaindb.persist_block(imported_block, imported_block.__class__) self.logger.debug( 'IMPORTED_BLOCK: slot %s | signed root %s', imported_block.slot, encode_hex(imported_block.signed_root), ) return imported_block, new_canonical_blocks, old_canonical_blocks
Python
0fdf55898a047dcb568336091976a73f11ffb352a11657711ba48b761be983ad
0x42b14a08e446a55
#!/usr/local/bin/python3 import paramiko,time #using as SSH Client client = paramiko.SSHClient() # check dir(client) to find available options. # auto adjust host key verification with yes or no client.set_missing_host_key_policy(paramiko.AutoAddPolicy()) # time for connecting to remote Cisco IOS """ Manually taking input addr = input('Provide IP address to connect to: ') user = input('Username: ') pwd = <PASSWORD>('Password: ')""" # Taking input from files f1 = open("devices.txt","r") f2 = open("commands.txt","r") for line in f1: client = paramiko.SSHClient() client.set_missing_host_key_policy(paramiko.AutoAddPolicy()) data = line.split(" ") # print(data) addr = data[0] user = data[1] pwd = data[2] f3 = open(addr+".txt","w+") # print(addr +" "+ user +" " +pwd) client.connect(addr,username=user,password=<PASSWORD>,allow_agent=False,look_for_keys=False) # we have to ask for Shell device_access = client.invoke_shell() for line in f2: device_access.send(line) time.sleep(1) output = device_access.recv(55000).decode('ascii') f3.write(output) """ THIS CODE IS FOR SINGLE COMMAND, FOR MULTIPLE COMMANDS CODE BELOW # send command to the device device_access.send("ter len 0\nshow run \n") time.sleep(2) # receive output from the device, convert it to byte-like format and print it print(device_access.recv(550000).decode('ascii')) # We can print the same to a file too with open("csr1000v.txt","w") as f: f.write(device_access.recv(550000).decode('ascii'))"""
Python
70dc9698b60a1bb5772ed9a128cb4f35dff6805fef87c5ec63f87750d44cfc4e
0x4752a98e476560c9
# for n in range(400,500): # i = n // 100 # j = n // 10 % 10 # k = n % 10 # if n == i ** 3 + j ** 3 + k ** 3: # print(n) # 第一道题(16) # input("请输入(第一次):") # s1 = input("请输入(第二次):") # l1 = s1.split(' ') # l2 = [] # for i in l1: # if i.isdigit(): # l2.append(int(i)) # for i in l2: # if not (i % 6): # print(i, end=" ") # 第二道题(17) out_l1 = [] def bian_int_list(l1): re_l1 = [] # 返回出去的列表 for i in l1: re_l1.append(i) def jisuan(str_num): he1 = 0 global out_l1 for i in l1(): he1 += int(i)**2 if he1 > int(str_num): out_l1.append(str_num) return None while 1: in_1 = input("请输入数值:") nums_l1 = in_1.split(' ')
Python
40daad66139ecb5c081448dec2e82a1402aaf650ef4327c07595648dbd37c0c3
0x647e97df45a0485c
<filename>graphdb/transformer.py<gh_stars>1-10 """ A query transformer is a function that accepts a program and returns a program, plus a priority level. Higher priority transformers are placed closer to the front of the list. We’re ensuring is a function, because we’re going to evaluate it later 31 . We’ll assume there won’t be an enormous number of transformer additions, and walk the list linearly to add a new one. We’ll leave a note in case this assumption turns out to be false — a binary search is much more time-optimal for long lists, but adds a little complexity and doesn’t really speed up short lists. """ class Transformer: def __init__(self): self.T = [] def transform(self, program): return program """ Dagoba.T = [] # transformers (more than meets the eye) """ """ Dagoba.addTransformer = function(fun, priority) { if(typeof fun != 'function') return Dagoba.error('Invalid transformer function') for(var i = 0; i < Dagoba.T.length; i++) # OPT: binary search if(priority > Dagoba.T[i].priority) break Dagoba.T.splice(i, 0, {priority: priority, fun: fun}) } """ """ Dagoba.transform = function(program) { return Dagoba.T.reduce(function(acc, transformer) { return transformer.fun(acc) }, program) } """ """ Dagoba.addAlias = function(newname, oldname, defaults) { defaults = defaults || [] # default arguments for the alias Dagoba.addPipetype(newname, function() {}) # because there's no method catchall in js Dagoba.addTransformer(function(program) { return program.map(function(step) { if(step[0] != newname) return step return [oldname, Dagoba.extend(step[1], defaults)] }) }, 100) # these need to run early, so they get a high priority } """ """ Dagoba.extend = function(list, defaults) { return Object.keys(defaults).reduce(function(acc, key) { if(typeof list[key] != 'undefined') return acc acc[key] = defaults[key] return acc }, list) } """
Python
b3c876767fc289cce0b62ec9582025d24fb101ffce0942a3476775cffa8b4a59
0xcb07d697e2b916d2
<filename>yzcore/templates/project_template/src/const/_job.py #!/usr/bin/python3.6.8+ # -*- coding:utf-8 -*- """ @auth: cml @date: 2020-12-2 @desc: ... """ class JobStatus(object): PENDING = 0 # 任务等待执行 STARTED = 100 # 任务执行开始 PROCESS = 110 POLLING = 120 CALLBACK = 130 SUCCESS = 200 # 任务执行成功 RETRY = 300 # 任务重试 FAILURE = 400 # 任务执行失败 REVOKED = 500 # 任务撤销
Python
e557a00feaaa84c1dac22980c90d6a62a9f62eafdaae9e91599c07cfa7f6b1fb
0xcd5f639fd4e70d0d
<reponame>kithsirij/NLP-based-Syllabus-Coverage-Exam-paper-checker-Tool # -*- coding: utf-8 -*- # Form implementation generated from reading ui file 'add_subject.ui' # # Created by: PyQt4 UI code generator 4.11.4 # # WARNING! All changes made in this file will be lost! from PyQt4 import QtCore, QtGui try: _fromUtf8 = QtCore.QString.fromUtf8 except AttributeError: def _fromUtf8(s): return s try: _encoding = QtGui.QApplication.UnicodeUTF8 def _translate(context, text, disambig): return QtGui.QApplication.translate(context, text, disambig, _encoding) except AttributeError: def _translate(context, text, disambig): return QtGui.QApplication.translate(context, text, disambig) class Ui_Dialog_add_subject(object): def setupUi(self, Dialog_add_subject): Dialog_add_subject.setObjectName(_fromUtf8("Dialog_add_subject")) Dialog_add_subject.resize(568, 374) font = QtGui.QFont() font.setFamily(_fromUtf8("Times New Roman")) font.setPointSize(10) Dialog_add_subject.setFont(font) Dialog_add_subject.setContextMenuPolicy(QtCore.Qt.CustomContextMenu) icon = QtGui.QIcon() icon.addPixmap(QtGui.QPixmap(_fromUtf8("Qt_interface/SE_syllabus/4zIr6y.jpg")), QtGui.QIcon.Normal, QtGui.QIcon.Off) Dialog_add_subject.setWindowIcon(icon) self.lbl_subject_name = QtGui.QLabel(Dialog_add_subject) self.lbl_subject_name.setGeometry(QtCore.QRect(50, 235, 131, 21)) font = QtGui.QFont() font.setFamily(_fromUtf8("Times New Roman")) font.setPointSize(12) self.lbl_subject_name.setFont(font) self.lbl_subject_name.setObjectName(_fromUtf8("lbl_subject_name")) self.label_add_subject = QtGui.QLabel(Dialog_add_subject) self.label_add_subject.setGeometry(QtCore.QRect(220, 30, 151, 31)) font = QtGui.QFont() font.setFamily(_fromUtf8("Times New Roman")) font.setPointSize(14) font.setBold(True) font.setWeight(75) self.label_add_subject.setFont(font) self.label_add_subject.setObjectName(_fromUtf8("label_add_subject")) self.lineEdit_subject_name = QtGui.QLineEdit(Dialog_add_subject) self.lineEdit_subject_name.setGeometry(QtCore.QRect(190, 230, 321, 31)) font = QtGui.QFont() font.setFamily(_fromUtf8("Times New Roman")) font.setPointSize(12) self.lineEdit_subject_name.setFont(font) self.lineEdit_subject_name.setObjectName(_fromUtf8("lineEdit_subject_name")) self.label_year = QtGui.QLabel(Dialog_add_subject) self.label_year.setGeometry(QtCore.QRect(50, 95, 81, 21)) font = QtGui.QFont() font.setFamily(_fromUtf8("Times New Roman")) font.setPointSize(12) self.label_year.setFont(font) self.label_year.setObjectName(_fromUtf8("label_year")) self.label_semester = QtGui.QLabel(Dialog_add_subject) self.label_semester.setGeometry(QtCore.QRect(50, 165, 91, 21)) font = QtGui.QFont() font.setFamily(_fromUtf8("Times New Roman")) font.setPointSize(12) self.label_semester.setFont(font) self.label_semester.setObjectName(_fromUtf8("label_semester")) self.pushButton_save = QtGui.QPushButton(Dialog_add_subject) self.pushButton_save.setGeometry(QtCore.QRect(190, 290, 111, 31)) font = QtGui.QFont() font.setFamily(_fromUtf8("Times New Roman")) font.setPointSize(10) self.pushButton_save.setFont(font) icon1 = QtGui.QIcon() icon1.addPixmap(QtGui.QPixmap(_fromUtf8("Qt_interface/SE_syllabus/Save-as.png")), QtGui.QIcon.Normal, QtGui.QIcon.Off) self.pushButton_save.setIcon(icon1) self.pushButton_save.setIconSize(QtCore.QSize(20, 20)) self.pushButton_save.setObjectName(_fromUtf8("pushButton_save")) self.pushButton_cancel = QtGui.QPushButton(Dialog_add_subject) self.pushButton_cancel.setGeometry(QtCore.QRect(340, 290, 111, 31)) font = QtGui.QFont() font.setFamily(_fromUtf8("Times New Roman")) self.pushButton_cancel.setFont(font) icon2 = QtGui.QIcon() icon2.addPixmap(QtGui.QPixmap(_fromUtf8("Qt_interface/SE_syllabus/if_draw-08_725558.png")), QtGui.QIcon.Normal, QtGui.QIcon.Off) self.pushButton_cancel.setIcon(icon2) self.pushButton_cancel.setIconSize(QtCore.QSize(20, 20)) self.pushButton_cancel.setObjectName(_fromUtf8("pushButton_cancel")) self.comboBox_year = QtGui.QComboBox(Dialog_add_subject) self.comboBox_year.setGeometry(QtCore.QRect(190, 91, 111, 31)) font = QtGui.QFont() font.setFamily(_fromUtf8("Times New Roman")) font.setPointSize(12) self.comboBox_year.setFont(font) self.comboBox_year.setObjectName(_fromUtf8("comboBox_year")) self.comboBox_semester = QtGui.QComboBox(Dialog_add_subject) self.comboBox_semester.setGeometry(QtCore.QRect(190, 160, 111, 31)) font = QtGui.QFont() font.setFamily(_fromUtf8("Times New Roman")) font.setPointSize(12) self.comboBox_semester.setFont(font) self.comboBox_semester.setObjectName(_fromUtf8("comboBox_semester")) self.retranslateUi(Dialog_add_subject) QtCore.QObject.connect(self.pushButton_cancel, QtCore.SIGNAL(_fromUtf8("clicked()")), self.lineEdit_subject_name.clear) QtCore.QMetaObject.connectSlotsByName(Dialog_add_subject) def retranslateUi(self, Dialog_add_subject): Dialog_add_subject.setWindowTitle(_translate("Dialog_add_subject", "Dialog", None)) self.lbl_subject_name.setText(_translate("Dialog_add_subject", "SUBJECT NAME", None)) self.label_add_subject.setText(_translate("Dialog_add_subject", "ADD SUBJECT", None)) self.label_year.setText(_translate("Dialog_add_subject", "YEAR", None)) self.label_semester.setText(_translate("Dialog_add_subject", "SEMESTER", None)) self.pushButton_save.setText(_translate("Dialog_add_subject", "SAVE", None)) self.pushButton_cancel.setText(_translate("Dialog_add_subject", "CANCEL", None)) if __name__ == "__main__": import sys app = QtGui.QApplication(sys.argv) Dialog_add_subject = QtGui.QDialog() ui = Ui_Dialog_add_subject() ui.setupUi(Dialog_add_subject) Dialog_add_subject.show() sys.exit(app.exec_())
Python
e40326f4ed06a3aa8a0bd13034069a017cf72dee70e21e6954978b307075f201
0xb27b12fd167cb4b4
<gh_stars>1-10 from django.db.models import signals from django.test import TestCase from django.core import management from django.utils import six from shared_models import models PRE_SYNCDB_ARGS = ['app', 'create_models', 'verbosity', 'interactive', 'db'] SYNCDB_DATABASE = 'default' SYNCDB_VERBOSITY = 1 SYNCDB_INTERACTIVE = False class PreSyncdbReceiver(object): def __init__(self): self.call_counter = 0 self.call_args = None def __call__(self, signal, sender, **kwargs): self.call_counter = self.call_counter + 1 self.call_args = kwargs class OneTimeReceiver(object): """ Special receiver for handle the fact that test runner calls syncdb for several databases and several times for some of them. """ def __init__(self): self.call_counter = 0 self.call_args = None def __call__(self, signal, sender, **kwargs): # Although test runner calls syncdb for several databases, # testing for only one of them is quite sufficient. if kwargs['db'] == SYNCDB_DATABASE: self.call_counter = self.call_counter + 1 self.call_args = kwargs # we need to test only one call of syncdb signals.pre_syncdb.disconnect(pre_syncdb_receiver, sender=models) # We connect receiver here and not in unit test code because we need to # connect receiver before test runner creates database. That is, sequence of # actions would be: # # 1. Test runner imports this module. # 2. We connect receiver. # 3. Test runner calls syncdb for create default database. # 4. Test runner execute our unit test code. pre_syncdb_receiver = OneTimeReceiver() signals.pre_syncdb.connect(pre_syncdb_receiver, sender=models) class SyncdbSignalTests(TestCase): def test_pre_syncdb_call_time(self): self.assertEqual(pre_syncdb_receiver.call_counter, 1) def test_pre_syncdb_args(self): r = PreSyncdbReceiver() signals.pre_syncdb.connect(r, sender=models) management.call_command('syncdb', database=SYNCDB_DATABASE, verbosity=SYNCDB_VERBOSITY, interactive=SYNCDB_INTERACTIVE, load_initial_data=False, stdout=six.StringIO()) args = r.call_args self.assertEqual(r.call_counter, 1) self.assertEqual(set(args), set(PRE_SYNCDB_ARGS)) self.assertEqual(args['app'], models) self.assertEqual(args['verbosity'], SYNCDB_VERBOSITY) self.assertEqual(args['interactive'], SYNCDB_INTERACTIVE) self.assertEqual(args['db'], 'default')
Python
69b2e70b7523ce5e3faf1bd0000c7b61be1ed4c7e22a0c167f0763ce86a22f22
0x8397ea8332b6defd
<filename>examples/mouse.py #!/usr/bin/env python import time import os import math from trackball import TrackBall print("""Trackball: Mouse Use the trackball as a mouse in Raspbian, with right-click when the switch is pressed. Press Ctrl+C to exit! """) trackball = TrackBall(interrupt_pin=4) trackball.set_rgbw(0, 0, 0, 0) # Check for xte (used to control mouse) use_xte = os.system('which xte') == 0 if use_xte == 0: raise RuntimeError("xte not found. Did you sudo apt install xautomation?") while True: up, down, left, right, switch, state = trackball.read() # Send movements and clicks to xte if switch: cmd = 'xte "mouseclick 1"' os.system(cmd) elif right or up or left or down: x = right - left x = math.copysign(x**2, x) y = down - up y = math.copysign(y**2, y) cmd = 'xte "mousermove {} {}"'.format(int(x), int(y)) os.system(cmd) time.sleep(0.0001)
Python
feedd1e6406a530eb6f617eb2411a511f2dab30b8813ab18052103ed2e10786a
0x9b1c85abc4d6cc18
<filename>garaged/src/garage/tf/regressors/gaussian_mlp_regressor_model.py """GaussianMLPRegressorModel.""" import numpy as np import tensorflow as tf import tensorflow_probability as tfp from garage.experiment import deterministic from garage.tf.models import GaussianMLPModel class GaussianMLPRegressorModel(GaussianMLPModel): """GaussianMLPRegressor based on garage.tf.models.Model class. This class can be used to perform regression by fitting a Gaussian distribution to the outputs. Args: input_shape (tuple[int]): Input shape of the training data. output_dim (int): Output dimension of the model. name (str): Model name, also the variable scope. hidden_sizes (list[int]): Output dimension of dense layer(s) for the MLP for mean. For example, (32, 32) means the MLP consists of two hidden layers, each with 32 hidden units. hidden_nonlinearity (callable): Activation function for intermediate dense layer(s). It should return a tf.Tensor. Set it to None to maintain a linear activation. hidden_w_init (callable): Initializer function for the weight of intermediate dense layer(s). The function should return a tf.Tensor. hidden_b_init (callable): Initializer function for the bias of intermediate dense layer(s). The function should return a tf.Tensor. output_nonlinearity (callable): Activation function for output dense layer. It should return a tf.Tensor. Set it to None to maintain a linear activation. output_w_init (callable): Initializer function for the weight of output dense layer(s). The function should return a tf.Tensor. output_b_init (callable): Initializer function for the bias of output dense layer(s). The function should return a tf.Tensor. learn_std (bool): Is std trainable. init_std (float): Initial value for std. adaptive_std (bool): Is std a neural network. If False, it will be a parameter. std_share_network (bool): Boolean for whether mean and std share the same network. std_hidden_sizes (list[int]): Output dimension of dense layer(s) for the MLP for std. For example, (32, 32) means the MLP consists of two hidden layers, each with 32 hidden units. min_std (float): If not None, the std is at least the value of min_std, to avoid numerical issues. max_std (float): If not None, the std is at most the value of max_std, to avoid numerical issues. std_hidden_nonlinearity (callable): Nonlinearity for each hidden layer in the std network. std_hidden_w_init (callable): Initializer function for the weight of intermediate dense layer(s) in the std network. std_hidden_b_init (callable): Initializer function for the bias of intermediate dense layer(s) in the std network. std_output_nonlinearity (callable): Activation function for output dense layer in the std network. It should return a tf.Tensor. Set it to None to maintain a linear activation. std_output_w_init (callable): Initializer function for the weight of output dense layer(s) in the std network. std_parameterization (str): How the std should be parametrized. There are two options: - exp: the logarithm of the std will be stored, and applied a exponential transformation - softplus: the std will be computed as log(1+exp(x)) layer_normalization (bool): Bool for using layer normalization or not. """ def __init__(self, input_shape, output_dim, name='GaussianMLPRegressorModel', hidden_sizes=(32, 32), hidden_nonlinearity=tf.nn.tanh, hidden_w_init=tf.initializers.glorot_uniform( seed=deterministic.get_tf_seed_stream()), hidden_b_init=tf.zeros_initializer(), output_nonlinearity=None, output_w_init=tf.initializers.glorot_uniform( seed=deterministic.get_tf_seed_stream()), output_b_init=tf.zeros_initializer(), learn_std=True, adaptive_std=False, std_share_network=False, init_std=1.0, min_std=1e-6, max_std=None, std_hidden_sizes=(32, 32), std_hidden_nonlinearity=tf.nn.tanh, std_hidden_w_init=tf.initializers.glorot_uniform( seed=deterministic.get_tf_seed_stream()), std_hidden_b_init=tf.zeros_initializer(), std_output_nonlinearity=None, std_output_w_init=tf.initializers.glorot_uniform( seed=deterministic.get_tf_seed_stream()), std_parameterization='exp', layer_normalization=False): super().__init__(output_dim=output_dim, name=name, hidden_sizes=hidden_sizes, hidden_nonlinearity=hidden_nonlinearity, hidden_w_init=hidden_w_init, hidden_b_init=hidden_b_init, output_nonlinearity=output_nonlinearity, output_w_init=output_w_init, output_b_init=output_b_init, learn_std=learn_std, adaptive_std=adaptive_std, std_share_network=std_share_network, init_std=init_std, min_std=min_std, max_std=max_std, std_hidden_sizes=std_hidden_sizes, std_hidden_nonlinearity=std_hidden_nonlinearity, std_output_nonlinearity=std_output_nonlinearity, std_parameterization=std_parameterization, layer_normalization=layer_normalization) self._input_shape = input_shape def network_output_spec(self): """Network output spec. Return: list[str]: List of key(str) for the network outputs. """ return [ 'normalized_dist', 'normalized_mean', 'normalized_log_std', 'dist', 'mean', 'log_std', 'x_mean', 'x_std', 'y_mean', 'y_std' ] def _build(self, state_input, name=None): """Build model given input placeholder(s). Args: state_input (tf.Tensor): Place holder for state input. name (str): Inner model name, also the variable scope of the inner model, if exist. One example is garage.tf.models.Sequential. Return: tfp.distributions.MultivariateNormalDiag: Normlizaed distribution. tf.Tensor: Normalized mean. tf.Tensor: Normalized log_std. tfp.distributions.MultivariateNormalDiag: Vanilla distribution. tf.Tensor: Vanilla mean. tf.Tensor: Vanilla log_std. tf.Tensor: Mean for data. tf.Tensor: log_std for data. tf.Tensor: Mean for label. tf.Tensor: log_std for label. """ with tf.compat.v1.variable_scope('normalized_vars'): x_mean_var = tf.compat.v1.get_variable( name='x_mean', shape=(1, ) + self._input_shape, dtype=np.float32, initializer=tf.zeros_initializer(), trainable=False) x_std_var = tf.compat.v1.get_variable( name='x_std_var', shape=(1, ) + self._input_shape, dtype=np.float32, initializer=tf.ones_initializer(), trainable=False) y_mean_var = tf.compat.v1.get_variable( name='y_mean_var', shape=(1, self._output_dim), dtype=np.float32, initializer=tf.zeros_initializer(), trainable=False) y_std_var = tf.compat.v1.get_variable( name='y_std_var', shape=(1, self._output_dim), dtype=np.float32, initializer=tf.ones_initializer(), trainable=False) normalized_xs_var = (state_input - x_mean_var) / x_std_var _, normalized_dist_mean, normalized_dist_log_std = super()._build( normalized_xs_var) # Since regressor expects [N, *dims], we need to squeeze the extra # dimension normalized_dist_log_std = tf.squeeze(normalized_dist_log_std, 1) with tf.name_scope('mean_network'): means_var = normalized_dist_mean * y_std_var + y_mean_var with tf.name_scope('std_network'): log_stds_var = normalized_dist_log_std + tf.math.log(y_std_var) normalized_dist = tfp.distributions.MultivariateNormalDiag( loc=normalized_dist_mean, scale_diag=tf.exp(normalized_dist_log_std)) vanilla_dist = tfp.distributions.MultivariateNormalDiag( loc=means_var, scale_diag=tf.exp(log_stds_var)) return (normalized_dist, normalized_dist_mean, normalized_dist_log_std, vanilla_dist, means_var, log_stds_var, x_mean_var, x_std_var, y_mean_var, y_std_var) def clone(self, name): """Return a clone of the model. It copies the configuration and parameters of the primitive. Args: name (str): Name of the newly created model. It has to be different from source model if cloned under the same computational graph. Returns: garage.tf.policies.GaussianMLPModel: Newly cloned model. """ new_regressor = self.__class__( name=name, input_shape=self._input_shape, output_dim=self._output_dim, hidden_sizes=self._hidden_sizes, hidden_nonlinearity=self._hidden_nonlinearity, hidden_w_init=self._hidden_w_init, hidden_b_init=self._hidden_b_init, output_nonlinearity=self._output_nonlinearity, output_w_init=self._output_w_init, output_b_init=self._output_b_init, learn_std=self._learn_std, adaptive_std=self._adaptive_std, std_share_network=self._std_share_network, init_std=self._init_std, min_std=self._min_std, max_std=self._max_std, std_hidden_sizes=self._std_hidden_sizes, std_hidden_nonlinearity=self._std_hidden_nonlinearity, std_hidden_w_init=self._std_hidden_w_init, std_hidden_b_init=self._std_hidden_b_init, std_output_nonlinearity=self._std_output_nonlinearity, std_output_w_init=self._std_output_w_init, std_parameterization=self._std_parameterization, layer_normalization=self._layer_normalization) new_regressor.parameters = self.parameters return new_regressor
Python
64511465269da4605633ea0ba65e148b04fcd22e0eb7e96d30c80fc2a4da88e3
0x4db310b0a56b8b74
<filename>test.py import torch import torch.nn as nn import torch.optim as optim import torch.nn.functional as F import torch.backends.cudnn as cudnn import torchvision import torchvision.transforms as transforms import torchvision.datasets as datasets import os import argparse from torch.autograd import Variable from extensions.utils import progress_bar from extensions.model_refinery_wrapper import ModelRefineryWrapper from extensions.refinery_loss import RefineryLoss from models import ShuffleNetv2_wrapper from models import DiracDeltaNet_wrapper parser = argparse.ArgumentParser(description='PyTorch imagenet inference') parser.add_argument('--datadir', help='path to dataset') parser.add_argument('--inputdir', help='path to input model') args = parser.parse_args() # Data print('==> Preparing data..') # Data loading code valdir = os.path.join(args.datadir, 'val') normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) transform_test = transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), normalize, ]) #imagenet testset = datasets.ImageFolder(valdir, transform_test) num_classes=1000 testloader = torch.utils.data.DataLoader(testset, batch_size=1000, shuffle=False, pin_memory=True, num_workers=30) use_cuda = torch.cuda.is_available() print('Using input path: %s' % args.inputdir) checkpoint = torch.load(args.inputdir) init_net = checkpoint['net'] net=init_net.to('cpu') label_refinery=torch.load('./resnet50.t7') net = ModelRefineryWrapper(net, label_refinery) device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") print(device) if torch.cuda.device_count() > 1: print("Let's use", torch.cuda.device_count(), "GPUs!") net = nn.DataParallel(net) net=net.to(device) criterion = RefineryLoss() def accuracy(output, target, topk=(1,)): """Computes the precision@k for the specified values of k""" with torch.no_grad(): maxk = max(topk) batch_size = target.size(0) _, pred = output.topk(maxk, 1, True, True) pred = pred.t() correct = pred.eq(target.view(1, -1).expand_as(pred)) res = [] for k in topk: correct_k = correct[:k].view(-1).float().sum(0, keepdim=True) res.append(correct_k) return res def test(): net.eval() criterion.eval() test_loss = 0 correct_1 = 0 correct_5 = 0 total = 0 for batch_idx, (inputs, targets) in enumerate(testloader): if use_cuda: inputs, targets = inputs.cuda(device), targets.cuda(device) with torch.no_grad(): outputs = net(inputs) loss = criterion(outputs, targets) if isinstance(loss, tuple): loss_value, outputs = loss else: loss_value = loss test_loss += loss_value.item() prec1, prec5 = accuracy(outputs, targets, topk=(1, 5)) total += targets.size(0) correct_1 += prec1 correct_5 += prec5 progress_bar(batch_idx, len(testloader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)' % (test_loss/(batch_idx+1), 100.*float(correct_1)/float(total), correct_1, total)) return 100.*float(correct_1)/float(total),100.*float(correct_5)/float(total),test_loss acc1,acc5,loss=test() print('top-1 accuracy: {0:.3f}%, top-5 accuracy: {1:.3f}%'.format(acc1,acc5))
Python
87942be73c8fc38c801a786f9688d8e3eb9c3b1992a351468129815e1fa488e5
0xaf68c8ee48448514
<reponame>actingweb/box-actingweb<filename>aw-actor-trust.py #!/usr/bin/env python # from actingweb import actor from actingweb import config from actingweb import trust from actingweb import auth import webapp2 import os from google.appengine.ext.webapp import template import json import logging import datetime import time # /trust handlers # # GET /trust with query parameters (relationship, type, and peerid) to retrieve trust relationships (auth: only creator and admins allowed) # POST /trust with json body to initiate a trust relationship between this # actor and another (reciprocal relationship) (auth: only creator and admins allowed) # POST /trust/{relationship} with json body to create new trust # relationship (see config.py for default relationship and auto-accept, no # auth required) # GET /trust/{relationship}}/{actorid} to get details on a specific relationship (auth: creator, admin, or peer secret) # POST /trust/{relationship}}/{actorid} to send information to a peer about changes in the relationship # PUT /trust/{relationship}}/{actorid} with a json body to change details on a relationship (baseuri, secret, desc) (auth: creator, # admin, or peer secret) # DELETE /trust/{relationship}}/{actorid} to delete a relationship (with # ?peer=true if the delete is from the peer) (auth: creator, admin, or # peer secret) # Handling requests to trust/ class rootHandler(webapp2.RequestHandler): def get(self, id): if self.request.get('_method') == 'POST': self.post(id) return (Config, myself, check) = auth.init_actingweb(appreq=self, id=id, path='trust') if not myself or check.response["code"] != 200: return if not check.checkAuthorisation(path='trust', method='GET'): self.response.set_status(403) return relationship = '' type = '' peerid = '' relationship = self.request.get('relationship') type = self.request.get('type') peerid = self.request.get('peerid') relationships = myself.getTrustRelationships( relationship=relationship, peerid=peerid, type=type) if not relationships: self.response.set_status(404, 'Not found') return pairs = [] for rel in relationships: pairs.append({ 'baseuri': rel.baseuri, 'id': myself.id, 'peerid': rel.peerid, 'relationship': rel.relationship, 'approved': rel.approved, 'peer_approved': rel.peer_approved, 'verified': rel.verified, 'type': rel.type, 'desc': rel.desc, 'secret': rel.secret, }) out = json.dumps(pairs) self.response.write(out) self.response.headers["Content-Type"] = "application/json" self.response.set_status(200, 'Ok') def post(self, id): (Config, myself, check) = auth.init_actingweb(appreq=self, id=id, path='trust') if not myself or check.response["code"] != 200: return if not check.checkAuthorisation(path='trust', method='POST'): self.response.set_status(403) return secret = '' desc = '' relationship = Config.default_relationship type = '' try: params = json.loads(self.request.body.decode('utf-8', 'ignore')) if 'url' in params: url = params['url'] else: url = '' if 'relationship' in params: relationship = params['relationship'] if 'type' in params: type = params['type'] if 'desc' in params: desc = params['desc'] except ValueError: url = self.request.get('url') relationship = self.request.get('relationship') type = self.request.get('type') if len(url) == 0: self.response.set_status(400, 'Missing peer URL') return secret = Config.newToken() new_trust = myself.createReciprocalTrust( url=url, secret=secret, desc=desc, relationship=relationship, type=type) if not new_trust: self.response.set_status(408, 'Unable to create trust relationship') return self.response.headers.add_header( "Location", str(Config.root + myself.id + '/trust/' + new_trust.relationship + '/' + new_trust.peerid)) pair = { 'baseuri': new_trust.baseuri, 'id': myself.id, 'peerid': new_trust.peerid, 'relationship': new_trust.relationship, 'approved': new_trust.approved, 'peer_approved': new_trust.peer_approved, 'verified': new_trust.verified, 'type': new_trust.type, 'desc': new_trust.desc, 'secret': new_trust.secret, } out = json.dumps(pair) self.response.write(out) self.response.headers["Content-Type"] = "application/json" self.response.set_status(201, 'Created') # Handling requests to /trust/*, e.g. /trust/friend class relationshipHandler(webapp2.RequestHandler): def get(self, id, relationship): if self.request.get('_method') == 'POST': self.post(id, relationship) return self.response.set_status(404, "Not found") def put(self, id, relationship): (Config, myself, check) = auth.init_actingweb(appreq=self, id=id, path='trust', subpath=relationship, add_response=False) if not myself: return if relationship != 'trustee': self.response.set_status(404, "Not found") return # Access is the same as /trust if not check.checkAuthorisation(path='trust', method='POST'): self.response.set_status(403) return try: params = json.loads(self.request.body.decode('utf-8', 'ignore')) if 'trustee_root' in params: trustee_root = params['trustee_root'] else: trustee_root = '' if 'creator' in params: creator = params['creator'] else: creator = None except ValueError: self.response.set_status(400, 'No json content') return if len(trustee_root) > 0: myself.setProperty('trustee_root', trustee_root) if creator: myself.modify(creator=creator) self.response.set_status(204, 'No content') def delete(self, id, relationship): (Config, myself, check) = auth.init_actingweb(appreq=self, id=id, path='trust', subpath=relationship, add_response=False) if not myself: return if relationship != 'trustee': self.response.set_status(404, "Not found") return # Access is the same as /trust if not check.checkAuthorisation(path='trust', method='DELETE'): self.response.set_status(403) return myself.deleteProperty('trustee_root') self.response.set_status(204, 'No content') def post(self, id, relationship): (Config, myself, check) = auth.init_actingweb(appreq=self, id=id, path='trust', subpath=relationship, add_response=False) if not myself: return if not check.checkAuthorisation(path='trust', subpath='<type>', method='POST'): self.response.set_status(403) return try: params = json.loads(self.request.body.decode('utf-8', 'ignore')) if 'baseuri' in params: baseuri = params['baseuri'] else: baseuri = '' if 'id' in params: peerid = params['id'] else: peerid = '' if 'type' in params: type = params['type'] else: type = '' if 'secret' in params: secret = params['secret'] else: secret = '' if 'desc' in params: desc = params['desc'] else: desc = '' if 'verify' in params: verificationToken = params['verify'] else: verificationToken = None except ValueError: self.response.set_status(400, 'No json content') return if len(baseuri) == 0 or len(peerid) == 0 or len(type) == 0: self.response.set_status(400, 'Missing mandatory attributes') return if Config.auto_accept_default_relationship and Config.default_relationship == relationship: approved = True else: approved = False # Since we received a request for a relationship, assume that peer has approved new_trust = myself.createVerifiedTrust(baseuri=baseuri, peerid=peerid, approved=approved, secret=secret, verificationToken=verificationToken, type=type, peer_approved=True, relationship=relationship, desc=desc) if not new_trust: self.response.set_status(403, 'Forbidden') return self.response.headers.add_header( "Location", str(Config.root + myself.id + '/trust/' + new_trust.relationship + "/" + new_trust.peerid)) pair = { 'baseuri': new_trust.baseuri, 'id': myself.id, 'peerid': new_trust.peerid, 'relationship': new_trust.relationship, 'approved': new_trust.approved, 'peer_approved': new_trust.peer_approved, 'verified': new_trust.verified, 'type': new_trust.type, 'desc': new_trust.desc, 'secret': new_trust.secret, } out = json.dumps(pair) self.response.write(out) self.response.headers["Content-Type"] = "application/json" if approved: self.response.set_status(201, 'Created') else: self.response.set_status(202, 'Accepted') # Handling requests to specific relationships, e.g. /trust/friend/12f2ae53bd class trustHandler(webapp2.RequestHandler): def get(self, id, relationship, peerid): if self.request.get('_method') == 'PUT': self.put(id, relationship, peerid) return if self.request.get('_method') == 'DELETE': self.delete(id, relationship, peerid) return logging.debug('GET trust headers: ' + str(self.request.headers)) (Config, myself, check) = auth.init_actingweb(appreq=self, id=id, path='trust', subpath=relationship) if not myself or check.response["code"] != 200: return if not check.checkAuthorisation(path='trust', subpath='<type>/<id>', method='GET', peerid=peerid): self.response.set_status(403) return relationships = myself.getTrustRelationships( relationship=relationship, peerid=peerid) if not relationships: self.response.set_status(404, 'Not found') return my_trust = relationships[0] # If the peer did a GET to verify if check.trust and check.trust.peerid == peerid and not my_trust.verified: my_trust.modify(verified=True) verificationToken = my_trust.verificationToken else: verificationToken = '' pair = { 'baseuri': my_trust.baseuri, 'id': myself.id, 'peerid': my_trust.peerid, 'relationship': my_trust.relationship, 'approved': my_trust.approved, 'peer_approved': my_trust.peer_approved, 'verified': my_trust.verified, 'verificationToken': verificationToken, 'type': my_trust.type, 'desc': my_trust.desc, 'secret': my_trust.secret, } out = json.dumps(pair) self.response.write(out) self.response.headers["Content-Type"] = "application/json" if my_trust.approved: self.response.set_status(200, 'Ok') else: self.response.set_status(202, 'Accepted') def post(self, id, relationship, peerid): (Config, myself, check) = auth.init_actingweb(appreq=self, id=id, path='trust', subpath=relationship) if not myself or check.response["code"] != 200: return if not check.checkAuthorisation(path='trust', subpath='<type>/<id>', method='POST', peerid=peerid): self.response.set_status(403) return try: params = json.loads(self.request.body.decode('utf-8', 'ignore')) peer_approved = None if 'approved' in params: if params['approved'] and params['approved'] == True: peer_approved = True except ValueError: self.response.set_status(400, 'No json content') return if myself.modifyTrustAndNotify(relationship=relationship, peerid=peerid, peer_approved=peer_approved): self.response.set_status(204, 'Ok') else: self.response.set_status(405, 'Not modified') def put(self, id, relationship, peerid): (Config, myself, check) = auth.init_actingweb(appreq=self, id=id, path='trust', subpath=relationship) if not myself or check.response["code"] != 200: return if not check.checkAuthorisation(path='trust', subpath='<type>/<id>', method='PUT', peerid=peerid): self.response.set_status(403) return try: params = json.loads(self.request.body.decode('utf-8', 'ignore')) if 'baseuri' in params: baseuri = params['baseuri'] else: baseuri = '' if 'desc' in params: desc = params['desc'] else: desc = '' if 'approved' in params: if params['approved'] == True or params['approved'].lower() == "true": approved = True else: approved = None except ValueError: if not self.request.get('_method') or self.request.get('_method') != "PUT": self.response.set_status(400, 'No json content') return if self.request.get('approved') and len(self.request.get('approved')) > 0: if self.request.get('approved').lower() == "true": approved = True else: approved = None if self.request.get('baseuri') and len(self.request.get('baseuri')) > 0: baseuri = self.request.get('baseuri') else: baseuri = '' if self.request.get('desc') and len(self.request.get('desc')) > 0: desc = self.request.get('desc') else: desc = '' if myself.modifyTrustAndNotify(relationship=relationship, peerid=peerid, baseuri=baseuri, approved=approved, desc=desc): self.response.set_status(204, 'Ok') else: self.response.set_status(405, 'Not modified') def delete(self, id, relationship, peerid): (Config, myself, check) = auth.init_actingweb(appreq=self, id=id, path='trust', subpath=relationship, add_response=False) if not myself or (check.response["code"] != 200 and check.response["code"] != 401): auth.add_auth_response(appreq=self, auth_obj=check) return # We allow non-approved peers to delete even if we haven't approved the relationship yet if not check.checkAuthorisation(path='trust', subpath='<type>/<id>', method='DELETE', peerid=peerid, approved=False): self.response.set_status(403) return isPeer = False if check.trust and check.trust.peerid == peerid: isPeer = True else: # Use of GET param peer=true is a way of forcing no deletion of a peer # relationship even when requestor is not a peer (primarily for testing purposes) peerGet = self.request.get('peer').lower() if peerGet.lower() == "true": isPeer = True Config = config.config() relationships = myself.getTrustRelationships( relationship=relationship, peerid=peerid) if not relationships: self.response.set_status(404, 'Not found') return my_trust = relationships[0] if isPeer: deleted = myself.deleteReciprocalTrust(peerid=peerid, deletePeer=False) else: deleted = myself.deleteReciprocalTrust(peerid=peerid, deletePeer=True) if not deleted: self.response.set_status(502, 'Not able to delete relationship with peer.') return self.response.set_status(204, 'Ok') application = webapp2.WSGIApplication([ webapp2.Route(r'/<id>/trust<:/?>', rootHandler, name='rootHandler'), webapp2.Route(r'/<id>/trust/<relationship><:/?>', relationshipHandler, name='relationshipHandler'), webapp2.Route(r'/<id>/trust/<relationship>/<peerid><:/?>', trustHandler, name='trustHandler'), ], debug=True)
Python
4c930112d86b2b047feaa1e768b211a4fbe3406bda9735402c196b78d21eff7e
0x8dcfccbdc86e1edd
# Store the version here so: # 1) we don't load dependencies by storing it in __init__.py # 2) we can import it in setup.py for the same reason # 3) we can import it into your module module # https://stackoverflow.com/questions/458550/standard-way-to-embed-version-into-python-package __version__ = '1.6.1' release_notes = { '1.6.1': """ Fixed GUI crash when loading certain RLBot config files with relative paths for agents. Fixed agent preset loading to allow multiple agents to saved/loaded correctly if they have the same name. - ima9rd """, '1.6.0':""" Add support for auto starting .NET executables. """, '1.5.1': """ Fixed crash with GUI when no default RLBot.cfg file was found. Updated GUI to launch Rocket League when clicking run if no Rocket League process is found. - ima9rd """, '1.5.0': """ Adding a have_internet helper function to help streamline upgrade checks. - ima9rd """, '1.4.2': """ Adding support for auto-running java bots during tournaments. To take advantage of this in your bot, see https://github.com/RLBot/RLBotJavaExample/wiki/Auto-Launching-Java Plus bug fixes: - Fixed a bug where auto-run executables would crash when trying to write to stderr. - Dragging bots to another team in the GUI no longer breaks the config. """, '1.3.0': """ Accurate ball prediction for Hoops and Dropshot modes! - Kipje13, Marvin, NeverCast, et. al. """, '1.2.6': """ Fixed a bug where field info was not extracted properly during dropshot mode. It was reporting 2 goals rather than the expected 140. """, '1.2.5': """ *************************************************** * Fix for dodge cancels / half flips! - ccman32 * *************************************************** Plus: - Changing the rendering strategy for 3D lines that go past the camera. Formerly it was "draw it, even though it's crazy sometimes", now it will be "don't draw it". - Showing the rate that inputs are received for each player index when you press the [home] key. Toggle back off with the [end] key. - Fixed a bug where party_member_bot could get influenced by real controller input. - Creating new presets in the GUI works better now. - Got rid of the libpng warning seen when using the GUI. - Giving specific error messages when cfg files are messed up. """, '1.2.2': """ - Rearranged the GUI a bit, and made it load and track appearance configs more effectively. - Fixed bug where RUN button behavior in the GUI would not work after killing bots. """, '1.2.0': """ - We now offer a 'RigidBodyTick' thanks to whatisaphone! It's a lower-level representation of physics data which updates at 120Hz and is not subject to interpolation. You can still make a great bot without it, but this feature is quite nice for the scientists among us. See https://github.com/RLBot/RLBotPythonExample/wiki/Rigid-Body-Tick for more details! - Faster way to access ball prediction data in python. - Skyborg """, '1.1.3': """ - Faster way to access ball prediction data in python. - Skyborg - Java bots will now shut down when the python framework quits. This has been necessary recently to avoid buggy situations. - Shutting down the python framework will no longer attempt to kill bots twice in a row. - Clicking on the "Run" button twice in a row in the GUI will no longer spawn duplicate processes. """, '1.1.2': """ Faster way to access ball prediction data in python. - Skyborg """, '1.1.1': """ You can now get information about the ball's status in Dropshot mode thanks to hallo_doei! Read all about it at https://github.com/RLBot/RLBot/wiki/Dropshot Other changes: - The loadout config for orange team is now respected again. - ccman32 - Fixed a bug where the GUI would crash with a "KeyError". - hallo_doei - Avoiding and suppressing some game crashes, and also restoring the ability to get game tick data during replays and the postgame. - tarehart - Fixed a bug where bots would dodge when they intended to double jump. -tarehart """, '1.0.6': """ The latest Rocket League patch broke dodges for our bots; this update fixes it. """, '1.0.5': """ Maximum size for a render message has been decreased again because many people experienced errors related to memory access. The limit is now only double the original. """, '1.0.4': """ - Maximum size for a render message has been increased by a factor of 100. This means you can draw a lot of lines at once without getting errors. - Boost amount for cars will now round up to the nearest integer, so 0.3% boost will now appear as 1 instead of 0. - Fixed a crash that would commonly happen after a match ends. As a side effect, you can no longer see up-to-date player data during instant replays. """, '1.0.3': """ Time for the big 1.0 release! We actually left "beta" a long time ago so this isn't as big a milestone as the number implies, but we DO have two great new features! 1. Setting game state. You can manipulate the position, velocity, etc of the ball and the cars! This can be a great help during bot development, and you can also get creative with it. Visit the wiki for details and documentation - https://github.com/RLBot/RLBot/wiki/Manipulating-Game-State Code written by hallo_doei, ccman32, and tarehart 2. Ball prediction. We now provide a list of future ball positions based on chip's excellent physics modeling. Take advantage of this to do next-level wall reads, catches, and dribbles! You can read about the math involved here: https://samuelpmish.github.io/notes/RocketLeague/ball_bouncing/ Note: currently the wall bounces are only accurate on the standard arena, not hoops or dropshot. Documentation and examples can be found here: https://github.com/RLBot/RLBot/wiki/Ball-Path-Prediction Code written by chip and tarehart Bonus: - You can now play on Salty Shores thanks to hallo_doei - Bug fix for people with spaces in their file path by Zaptive - Subprocess agent for future Rust support by whatisaphone """, '0.0.32': """ More comprehensive fix for Rocket League patch 1.50. Compared to previous version: - Dropshot tile data is fixed - Boost pad data is fixed - Loadout configuration is fixed Thanks to ccman32 and dtracers for delivering this fix quickly! """, '0.0.31': """ Rapid response to Rocket League patch 1.50 with the following known issues: - Dropshot tile data is missing - Boost pad data is missing - Loadout configuration is broken Thanks to ccman32 and dtracers for delivering this short-term fix quickly. We will follow this up with a proper fix as soon as possible. You may also choose to stay on Rocket League 1.49 and RLBot 0.0.30, ask for instructions on discord. """, '0.0.30': """ - New core dll that is less likely to break when Rocket League is patched - ccman32 and hallo-doei - Fixed bug resulting in incorrect quickchat - dtracers - Added more built-in colors to the python rendering manager - Eastvillage - Fix for items with a ':' not showing up in the GUI - hallo-doei - Fix for GUI not saving correct path - hallo-doei - Fix for GUI crash when saving preset then canceling - hallo-doei - Adding file checking before injection (Resolves #167) - Redox - Fixed typo in rlbot.cfg - Redox - Fancy release notes - tarehart and Skyborg """ } release_banner = """ ______ _ ______ _ 10100 | ___ \ | | ___ \ | | 00101 110011 | |_/ / | | |_/ / ___ | |_ 110011 00110110 | /| | | ___ \/ _ \| __| 01101100 010010 | |\ \| |____| |_/ / (_) | |_ 010010 10010 \_| \_\_____/\____/ \___/ \__| 01001 """ def get_current_release_notes(): if __version__ in release_notes: return release_notes[__version__] return '' def get_help_text(): return "Trouble? Ask on Discord at https://discord.gg/5cNbXgG " \ "or report an issue at https://github.com/RLBot/RLBot/issues" def print_current_release_notes(): print(release_banner) print("Version {}".format(__version__)) print(get_current_release_notes()) print(get_help_text()) print("")
Python
bf713112ef7ccdaf6306ef069d66d5e58c72df235c5d43c8aab7ae37dbb344ea
0xabbc659bf83f571d
from floodsystem.stationdata import build_station_list from floodsystem.flood import stations_highest_rel_level def run(): stations = build_station_list() warning_stations = stations_highest_rel_level(stations,10) for entry in warning_stations: print(entry[0].name,entry[1]) if __name__ == "__main__": print("*** Task 2C: CUED Part IA Flood Warning System ***") run()
Python
2e151f4405b5a9ead5c65dd37f5c915a6d59c5eedb232b578805c6b0482f99d3
0x449cdcdd4b1b9a95
<filename>src/biotite/copyable.py # This source code is part of the Biotite package and is distributed # under the 3-Clause BSD License. Please see 'LICENSE.rst' for further # information. __name__ = "biotite" __author__ = "<NAME>" __all__ = ["Copyable"] import abc class Copyable(metaclass=abc.ABCMeta): """ Base class for all objects, that should be copyable. The public method `copy()` first creates a fresh instance of the class of the instance, that is copied via the `__copy_create__()` method. All variables, that could not be set via the constructor, are then copied via `__copy_fill__()`, starting with the method in the uppermost base class and ending with the class of the instance to be copied. This approach solves the problem of encapsulated variables in superclasses. """ def copy(self): """ Create a deep copy of this object. Returns ------- copy A copy of this object. """ clone = self.__copy_create__() self.__copy_fill__(clone) return clone def __copy_create__(self): """ Instantiate a new object of this class. Only the constructor should be called in this method. All further attributes, that need to be copied are handled in `__copy_fill__()` Do not call the `super()` method here. This method must be overridden, if the constructor takes parameters. Returns ------- copy A freshly instantiated copy of *self*. """ return type(self)() def __copy_fill__(self, clone): """ Copy all necessary attributes to the new object. Always call the `super()` method as first statement. Parameters ---------- clone The freshly instantiated copy of *self*. """ pass
Python
341a51b18b82c90d7b3e30fd3336eb1d4b9c8a53b3b82ea111b029db942015e1
0x1373599914f8ea9
import logging import time from datetime import timedelta from typing import List from homeassistant.components.binary_sensor import ( BinarySensorEntity, DEVICE_CLASS_MOTION ) from homeassistant.config_entries import ConfigEntry from homeassistant.const import ATTR_ATTRIBUTION from homeassistant.core import HomeAssistant from wyzeapy.base_client import Device, AccessTokenError from wyzeapy.client import Client from wyzeapy.types import PropertyIDs from .const import DOMAIN _LOGGER = logging.getLogger(__name__) ATTRIBUTION = "Data provided by Wyze" SCAN_INTERVAL = timedelta(seconds=10) async def async_setup_entry(hass: HomeAssistant, config_entry: ConfigEntry, async_add_entities): _LOGGER.debug("""Creating new WyzeApi binary sensor component""") client: Client = hass.data[DOMAIN][config_entry.entry_id] def get_cameras() -> List[Device]: try: return client.get_cameras() except AccessTokenError as e: _LOGGER.warning(e) client.reauthenticate() return client.get_cameras() cameras = [WyzeCameraMotion(client, camera) for camera in await hass.async_add_executor_job(get_cameras)] async_add_entities(cameras, True) class WyzeCameraMotion(BinarySensorEntity): _on: bool _available: bool def __init__(self, wyzeapi_client: Client, device: Device): self._client = wyzeapi_client self._device = device self._last_event = int(str(int(time.time())) + "000") @property def device_info(self): return { "identifiers": { (DOMAIN, self._device.mac) }, "name": self.name, "manufacturer": "WyzeLabs", "model": self._device.product_model } @property def available(self) -> bool: return self._available @property def name(self): """Return the display name of this switch.""" return self._device.nickname @property def is_on(self): """Return true if switch is on.""" return self._on @property def unique_id(self): return "{}-motion".format(self._device.mac) @property def device_state_attributes(self): """Return device attributes of the entity.""" return { ATTR_ATTRIBUTION: ATTRIBUTION, "state": self.is_on, "available": self.available, "device model": self._device.product_model, "mac": self.unique_id } @property def device_class(self): return DEVICE_CLASS_MOTION def update(self): try: device_info = self._client.get_info(self._device) except AccessTokenError: self._client.reauthenticate() device_info = self._client.get_info(self._device) for property_id, value in device_info: if property_id == PropertyIDs.AVAILABLE: self._available = True if value == "1" else False latest_event = self._client.get_latest_event(self._device) if latest_event is not None: if latest_event.event_ts > self._last_event: self._on = True self._last_event = latest_event.event_ts else: self._on = False self._last_event = latest_event.event_ts else: self._on = False
Python
d0013ca39b15e9bfe2441a29d2eee564633127a70aabe41c3fa49857f13af58c
0x81620e9a22563077
<filename>src/Components/missions/GEMS/mcd43c.py """ Reads climate modeling grid 0.05 degree MCD43 BRDF files. """ import os import sys from numpy import loadtxt, array, tile, where, concatenate, flipud from numpy import ones from datetime import date, datetime, timedelta from glob import glob from pyhdf.SD import SD, HDF4Error MISSING = 32.767 SDS = dict ( LAND = ('BRDF_Albedo_Parameter1_Band1','BRDF_Albedo_Parameter1_Band2', 'BRDF_Albedo_Parameter1_Band3','BRDF_Albedo_Parameter1_Band4', 'BRDF_Albedo_Parameter1_Band5','BRDF_Albedo_Parameter1_Band6', 'BRDF_Albedo_Parameter1_Band7', 'BRDF_Albedo_Parameter2_Band1','BRDF_Albedo_Parameter2_Band2', 'BRDF_Albedo_Parameter2_Band3','BRDF_Albedo_Parameter2_Band4', 'BRDF_Albedo_Parameter2_Band5','BRDF_Albedo_Parameter2_Band6', 'BRDF_Albedo_Parameter2_Band7', 'BRDF_Albedo_Parameter3_Band1','BRDF_Albedo_Parameter3_Band2', 'BRDF_Albedo_Parameter3_Band3','BRDF_Albedo_Parameter3_Band4', 'BRDF_Albedo_Parameter3_Band5','BRDF_Albedo_Parameter3_Band6', 'BRDF_Albedo_Parameter3_Band7'), QUAL = ('BRDF_Albedo_Quality', 'Snow_BRDF_Albedo', 'BRDF_Albedo_Ancillary', ) ) ALIAS = dict ( BRDF_Albedo_Parameter1_Band1 = 'KISO_b1_645', BRDF_Albedo_Parameter1_Band2 = 'KISO_b2_856', BRDF_Albedo_Parameter1_Band3 = 'KISO_b3_465', BRDF_Albedo_Parameter1_Band4 = 'KISO_b4_553', BRDF_Albedo_Parameter1_Band5 = 'KISO_b5_1241', BRDF_Albedo_Parameter1_Band6 = 'KISO_b6_1629', BRDF_Albedo_Parameter1_Band7 = 'KISO_b7_2114', BRDF_Albedo_Parameter2_Band1 = 'KVOL_b1_645', BRDF_Albedo_Parameter2_Band2 = 'KVOL_b2_856', BRDF_Albedo_Parameter2_Band3 = 'KVOL_b3_465', BRDF_Albedo_Parameter2_Band4 = 'KVOL_b4_553', BRDF_Albedo_Parameter2_Band5 = 'KVOL_b5_1241', BRDF_Albedo_Parameter2_Band6 = 'KVOL_b6_1629', BRDF_Albedo_Parameter2_Band7 = 'KVOL_b7_2114', BRDF_Albedo_Parameter3_Band1 = 'KGEO_b1_645', BRDF_Albedo_Parameter3_Band2 = 'KGEO_b2_856', BRDF_Albedo_Parameter3_Band3 = 'KGEO_b3_465', BRDF_Albedo_Parameter3_Band4 = 'KGEO_b4_553', BRDF_Albedo_Parameter3_Band5 = 'KGEO_b5_1241', BRDF_Albedo_Parameter3_Band6 = 'KGEO_b6_1629', BRDF_Albedo_Parameter3_Band7 = 'KGEO_b7_2114', ) #........................................................................... class McD43C(object): """ This class implements the MODIS LAND BRDF 16-day Level 3 products, MCD43C1 (0.05 degree horz res), """ def __init__ (self,Path,lon,lat,Verb=1): """ Reads files for one day of Level 3 MCD43C1 present on a given *Path* and returns an object with all 3 kernels coeff. On input, Required parameters: Path -- for now a single file. Eventually implement a single directory, or a list of files and directories. """ if type(lon) is list: lon = array(lon) lat = array(lat) # List of HDF files for a given date #----------------------------------- self.verb = Verb self.SDS = SDS['LAND'] #self.Tfiles = glob(Path + '*.hdf') if type(Path) is str: self.Files = [Path] else: self.Files = Path # From a list of lat and lon, return the # dx, dy on the grid # ------------------------------------- self.nobs = len(lon) self._findNearest(Path,lon,lat) # Read BRDF kernel in a MODIS tile # --------------------------------- self.read_BRDF() # Result #--- def _findNearest(self,path,lon,lat): """Given a list of lat, lon, return numbers to find the position of the nearest neighbor on the grid (dx,dy) """ dLon = 0.05 dLat = 0.05 Lon0 = -180 - dLon Lat0 = -90 + dLat self.dx = (0.5+(lon-Lon0)/dLon).astype(int) self.dy = (0.5+(lat-Lat0)/dLat).astype(int) if self.verb: print 'dx','dy', self.dx,self.dy #--- def read_BRDF(self): """Reads MCD43C1 file with Level 3 BRDF kernels for each MODIS band.""" # Create empty lists for SDS to be read from file # ----------------------------------------------- for name in self.SDS: self.__dict__[name] = [] BRDF = MISSING * ones((len(self.SDS),self.nobs)) for fn in self.Files: try: if self.verb: print "[] Working on "+fn hfile = SD(fn) except HDF4Error: if self.verb > 2: print "- %s: not recognized as an HDF file"%filename return # Read select variables (reshape to allow concatenation later) # ------------------------------------------------------------ for sds in self.SDS: if self.verb: print 'sds',self.SDS.index(sds) v = hfile.select(sds).get() a = hfile.select(sds).attributes() if a['scale_factor']!=1.0 or a['add_offset']!=0.0: v = a['scale_factor'] * v + a['add_offset'] if self.verb: print array(self.dx), BRDF.shape, BRDF[self.SDS.index(sds),:], v.shape v = flipud(v) BRDF[self.SDS.index(sds),:] = v[array(self.dy), array(self.dx)] for sds in self.SDS: self.__dict__[sds] = BRDF[self.SDS.index(sds),:] if sds in ALIAS.keys(): self.__dict__[ALIAS[sds]] = self.__dict__[sds] #--- #............................................................................ if __name__ == "__main__": path = '/nobackup/3/pcastell/MODIS/MCD43C1/MCD43C1.A2005361.005.2008094071946.hdf' lon = [-2.,-120.,15.2,17.2,170.1] lat = [88.,40.,-20.,-20.,-55.5] lon = np.arange(-180,180,1) lat = np.arange(-90,90,1) lon,lat = np.meshgrid(lon,lat) ex = McD43C(path,lon.flatten(),lat.flatte())
Python
1eb7a1d7a8de2441577087996188a41b92e2a247f1d869409f741cb2dd6eba5d
0x6e69baeca0679c58
<gh_stars>100-1000 """Lowest-common-denominator implementations of platform functionality.""" from __future__ import absolute_import, division, print_function, with_statement import errno import socket from tornado.platform import interface class Waker(interface.Waker): """Create an OS independent asynchronous pipe. For use on platforms that don't have os.pipe() (or where pipes cannot be passed to select()), but do have sockets. This includes Windows and Jython. """ def __init__(self): # Based on Zope async.py: http://svn.zope.org/zc.ngi/trunk/src/zc/ngi/async.py self.writer = socket.socket() # Disable buffering -- pulling the trigger sends 1 byte, # and we want that sent immediately, to wake up ASAP. self.writer.setsockopt(socket.IPPROTO_TCP, socket.TCP_NODELAY, 1) count = 0 while 1: count += 1 # Bind to a local port; for efficiency, let the OS pick # a free port for us. # Unfortunately, stress tests showed that we may not # be able to connect to that port ("Address already in # use") despite that the OS picked it. This appears # to be a race bug in the Windows socket implementation. # So we loop until a connect() succeeds (almost always # on the first try). See the long thread at # http://mail.zope.org/pipermail/zope/2005-July/160433.html # for hideous details. a = socket.socket() a.bind(("127.0.0.1", 0)) a.listen(1) connect_address = a.getsockname() # assigned (host, port) pair try: self.writer.connect(connect_address) break # success except socket.error as detail: if (not hasattr(errno, 'WSAEADDRINUSE') or detail[0] != errno.WSAEADDRINUSE): # "Address already in use" is the only error # I've seen on two WinXP Pro SP2 boxes, under # Pythons 2.3.5 and 2.4.1. raise # (10048, 'Address already in use') # assert count <= 2 # never triggered in Tim's tests if count >= 10: # I've never seen it go above 2 a.close() self.writer.close() raise socket.error("Cannot bind trigger!") # Close `a` and try again. Note: I originally put a short # sleep() here, but it didn't appear to help or hurt. a.close() self.reader, addr = a.accept() self.reader.setblocking(0) self.writer.setblocking(0) a.close() self.reader_fd = self.reader.fileno() def fileno(self): return self.reader.fileno() def write_fileno(self): return self.writer.fileno() def wake(self): try: self.writer.send(b"x") except (IOError, socket.error): pass def consume(self): try: while True: result = self.reader.recv(1024) if not result: break except (IOError, socket.error): pass def close(self): self.reader.close() self.writer.close()
Python
6dad4fdb6d5bf0e726de49f158f0165fa3bc39470fba97ee991cd8eb04eaf9fd
0xc32fedb84ba444ac
""" This script will modulate the blinky lights using the following algorithm: 1) uses user-provided location to obtain row of pixel data from bathy image 2) samples a 'number of LEDs' number of pixels from that row 3) shifts the sampled row data to center it at the location specified by user 4) displays resulting pixels on Blinky Tape 5) shifts next row by a given latitude, also specified by user 6) sleeps for user-specified period of time Uses the following arguments: -l/--location: tuple Location of the user in tuple(lat, lon). This represents the center of the LED strip. Defaults to (0, 0) -u/--update-interval: int Update interval of the script, in minutes. Defaults to 10. -p/--port: str Serial port of the BlinkyLight (e.g., 'ttyAMA0', 'COM3'). Defaults to 'COM5'. -d/--delta_latitude: int Vertical change in latitude every update rate. May be 0, but this will result in a never-changing LEDs. -i/--image: str Name of the PNG image that contains the color coded pathymetric data. The file current named mapserv.png was obtained using the following API: https://www.gebco.net/data_and_products/gebco_web_services/web_map_service/mapserv?request=getmap&service=wms&BBOX=-90,-180,90,180&format=image/png&height=600&width=1200&crs=EPSG:4326&layers=GEBCO_LATEST_SUB_ICE_TOPO&version=1.3.0 In lieu of providing command line arguments, you may alternatively edit the defaults in bath_config.json. NOTE: runs via: runfile('/BlinkyTape_Python/bathymetry_blink/bathymetry_blink.py', wdir='/BlinkyTape_Python/') (C) 2021 <NAME> (https://joeycodes.dev) MIT Licensed """ import optparse import json from blinkytape import BlinkyTape from time import sleep from PIL import Image import numpy as np import sys MAX_ERRORS = 3 num_errors = 0 # Obtain default parameters with open("./bathymetry_blink/bathy_config.json") as f: config = json.load(f) # Default Blinky Tape port on Raspberry Pi is /dev/ttyACM0 parser = optparse.OptionParser() parser.add_option("-p", "--port", dest="portname", help="serial port (ex: /dev/ttyACM0)", default=config["port"]) parser.add_option("-l", "--location", dest="location", help="Location of the center of the LED strip (ex: 70,-110)", default=config["location"]) parser.add_option("-u", "--update-rate", dest="update_rate", help="How often to update elevation profile (mins) (ex: 5)", default=config["update_rate"]) parser.add_option("-d", "--delta-latitude", dest="delta_latitude", help="Change in latitude during update (ex: 5)", default=config["delta_latitude"]) parser.add_option("-n", "--num-leds", dest="num_leds", help="Number of LEDs in strip (ex: 60)", default=config["num_leds"]) parser.add_option("-i", "--image", dest="image_name", help="Name of the map/bathymetry image (ex: ./mapserv.png)", default=config["image"]) (options, args) = parser.parse_args() if args: print("Unknown parameters: " + args) # grab the values provided by user (or defaults) port = options.portname loc = options.location rate = options.update_rate delta = options.delta_latitude n_leds = options.num_leds i_name = options.image_name # Some visual indication that it works, for headless setups (green tape) bt = BlinkyTape(port, n_leds) bt.displayColor(0, 100, 0) bt.show() sleep(2) while True: try: # first, load image im = Image.open(i_name) # Can be many different formats. cols, rows = im.size a = np.asarray(im) # of shape (rows, cols, channels) # map loc latitude to 0-based index latitude_index = min(rows - 1, max(0, (int)(((loc[0] - -90) / (90 - -90)) * (rows - 0) + 0))) longitude_index = min(cols - 1, max(0, (int)(((loc[1] - -180) / (180 - -180)) * (cols - 0) + 0))) # update the location of the next row of elevation data to take loc[0] += delta loc[0] = ((loc[0] + 90) % 180) - 90 # wraps to next pole if overflow print("Lat index: " + str(latitude_index)) print("Lon index: " + str(longitude_index)) print("Next latitude: " + str(loc[0])) # grab the applicable pixel indices indices = [(int)(x*(cols/n_leds)) for x in range(n_leds)] # sample that row of pixel data output_pixels = np.take(a[latitude_index], indices, axis=0) # rotate the row to center around the specified longitude output_pixels = np.roll(output_pixels, longitude_index, axis=0) # send all pixel data to bt for pixel in output_pixels: print("Sending r: {}, g: {}, b: {}".format(*pixel)) bt.sendPixel(*pixel) # finally, show the image bt.show() # delete variables for memory management del a del im # Tape resets to stored pattern after a few seconds of inactivity sleep(rate * 60) # Wait specified number of minutes # sleep(10) # Wait specified number of minutes except KeyboardInterrupt: print("Keyboard interrupt, ending program.") sys.exit() except RuntimeError as e: print("Encountered runtime error: " + e.args[0]) # flush any incomplete data bt.show() num_errors += 1 if num_errors > MAX_ERRORS: sys.exit("Error count exceeds that allowed.")
Python
88d282f085d39d538dad12154d3654aa89d69ee2338bbdb712a04635a156a87a
0xa32df8fb991778be
<filename>service/transforms/export_submissions.py """ Export Submissions Transform module """ #pylint: disable=too-few-public-methods import pandas as pd from .transform import TransformBase from ..resources.field_configs import FieldConfigs from ..resources.field_maps import FieldMaps class ExportSubmissionsTransform(TransformBase): """ Transform for Export Submissions """ def transform(self, data, sep): """ transform submissions from export """ output = list(map(self.get_data, data)) output = list(map(self.pretty_format, output)) output = [i for i in output if i is not None] output = self.normalize(output) output = self.to_csv(output, sep) return output # pylint: disable=R0201 def get_data(self, submission): """ Get data from submission object """ # skip permit type = existingPermitApplication submissions #pylint: disable=too-many-nested-blocks if submission['data']['permitType'] and submission['data']['permitType'] != 'existingPermitApplication': output = {} data = submission['data'] output['id'] = submission['_id'] output['created'] = submission['created'] #pylint: disable=too-many-nested-blocks for key in data: # flatten list values if isinstance(data[key], list): if len(data[key]) > 0: if isinstance(data[key][0], (int, str)): output[key] = ', '.join(map(str, data[key])) else: file_names = [] for index, val in enumerate(data[key]): # if storage, concat filename if 'storage' in val and 'originalName' in val: file_names.append(val['originalName']) else: output[key+str(index+1)] = val if len(file_names) > 0: output[key] = ', '.join(file_names) # flatten multi select values elif isinstance(data[key], dict): # building use code needs manual process if FieldConfigs.is_building_use(key): output[key] = self.convert_building_use(key, data[key], data) # flatten nested address fields elif FieldConfigs.is_nested_address_field(key): output = self.convert_address_fields(key, data[key], output) else: multi_selects = [] for multi_key, multi_value in data[key].items(): if multi_value: multi_selects.append(multi_key) output[key] = ', '.join(multi_selects) else: output[key] = data[key] return output def normalize(self, data): """ Normalize data into a flat structure into DataFrame """ dataframe = pd.json_normalize(data) # update column names dataframe.rename(columns=self.pretty_string, inplace=True) return dataframe def to_csv(self, dataframe, sep=','): """ Return CSV from DataFrame """ return dataframe.to_csv(index=False, sep=sep, line_terminator='\r\n') def pretty_format(self, data): """ Pretty format data fields """ output = {} if data: data = self.set_pts_fields(data) for key in data: if self.datetime_valid(data[key]): output[key] = self.pretty_time(data[key]) else: field_key = FieldConfigs.get_field_key(key, 'map') phone_appnum_key = FieldConfigs.get_field_key(key, 'pretty') if field_key is not None: output[key] = FieldMaps.map_key_value(field_key, data[key]) # manually add Fire Rating and proposed Fire Rating if field_key == 'construction_type' and data[key] != '': output = self.add_fire_rating(key, data[key], output) # format phone numbers and building application number elif phone_appnum_key is not None: if phone_appnum_key == 'phone_fields': output[key] = self.pretty_phonenumber(data[key]) # cleanse characters that break the csv elif isinstance(data[key], (str, bytes)): output[key] = data[key].replace('\n', '\t').replace('|', '') # relabel field, if necessary relabel_field = FieldConfigs.get_relabel_fields(key) if relabel_field: output[relabel_field] = output.pop(key) output = self.reorder_fields(output) return output
Python
91c43d6a87fb88abf29db5c27b412966c574541e630ad3ae310a4f237c61e654
0xd66990b90b686675
from rest_framework import serializers from core import models class AssetSerializer(serializers.ModelSerializer): class Meta: model = models.Asset fields = '__all__'
Python
5a439d05e6474ea64663a4cf4a763a625b532342287ce325df0fa21207df6583
0x63919591fb7f1935
<filename>Pzzzzz/plugins/wm.py from nonebot import CommandSession, on_command from langdetect import detect, detect_langs from aiohttp import ClientSession from nonebot import get_bot from nonebot.argparse import ArgumentParser import time import hmac import random, sys import hashlib import binascii import urllib bot = get_bot() # 百度通用翻译API,不包含词典、tts语音合成等资源,如有相关需求请联系<EMAIL> # coding=utf-8 import hashlib import urllib import random @on_command("wm", aliases={"翻译", "translate"}, only_to_me=False) async def wm(session: CommandSession): session.get("token", prompt="请输入你想翻译的句子!") myurl = "/api/trans/vip/translate" q = session.state["token"] fromLang = session.state["fr"] # 原文语种 toLang = session.state["to"] # 译文语种 salt = random.randint(32768, 65536) sign = bot.config.BAIDUAPI + q + str(salt) + bot.config.BAIDUKey sign = hashlib.md5(sign.encode()).hexdigest() myurl = ( myurl + "?appid=" + bot.config.BAIDUAPI + "&q=" + urllib.parse.quote(q) + "&from=" + fromLang + "&to=" + toLang + "&salt=" + str(salt) + "&sign=" + sign ) async with ClientSession() as sess: async with sess.get("https://fanyi-api.baidu.com" + myurl) as resp: if resp.status != 200: pass ShitAns = await resp.json() try: ans = [i["dst"] for i in ShitAns["trans_result"]] ans = "\n".join(ans) except: session.finish("翻译错误,原因是:" + ShitAns["error_code"]) session.finish("翻译结果为:\n" + ans) @wm.args_parser async def _(session: CommandSession): arg = session.current_arg_text.strip() if session.is_first_run: parser = ArgumentParser(session=session) parser.add_argument("--fr", "-f", type=str, default="no") parser.add_argument("--to", "-t", type=str, default="no") parser.add_argument("token", type=str, default="", nargs="+") argv = parser.parse_args(session.current_arg.split(" ")) arg = " ".join(argv.token) if arg == "": session.pause("输入不能为空哦!") session.state["fr"] = detect(arg) if argv.fr == "no" else argv.fr if session.state["fr"][:2] == "zh": session.state["fr"] = "zh" if argv.to == "no": if session.state["fr"] == "zh": session.state["to"] = "en" else: session.state["to"] = "zh" else: session.state["to"] = argv.to if argv.fr == "no": session.state["fr"] = "auto" session.state["token"] = arg
Python
6e37e4bbd35bb24bf0254a76ed7c85a364f34a1f685a0ffcac3b380b919b24c6
0x4f2dc2fd077c2085
import matplotlib.pyplot as plt import pandas as pd def group_by_category(df): grouped = df.groupby(['CATEGORY']).size().to_frame('Crimes') labels = ['Trespassing', 'Vehicle theft', 'General Theft', 'Damage to Property', 'Robbery', 'Homicide'] p = grouped.plot.pie(y='Crimes', labels=labels, autopct='%1.1f%%') p.set_title('Crimes Percentage Grouped By Category') p.get_legend().remove() plt.savefig('../charts/category.png') def group_by_time_of_day(df): grouped = df.groupby(['TIME_OF_DAY']).size().to_frame('Crimes') p = grouped.plot.pie(y='Crimes', labels=['Day', 'Evening', 'Night'], autopct='%1.1f%%') p.set_title('Crimes Percentage Grouped By Time of Day') p.get_legend().remove() plt.savefig('../charts/time_of_day.png') def group_by_day_of_the_week(df): grouped = df.groupby(['DAY_OF_THE_WEEK']).size().to_frame('Crimes') labels = ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday', 'Sunday'] p = grouped.plot.pie(y='Crimes', labels=labels, autopct='%1.1f%%') p.set_title('Crimes Percentage Grouped By Day of The Week') p.get_legend().remove() plt.savefig('../charts/day_of_the_week.png') def group_by_month(df): grouped = df.groupby(['MONTH']).size().to_frame('Size') grouped['Percentage'] = 100 * grouped['Size'] / len(df) grouped = grouped.drop(columns='Size') p = grouped.plot.bar() p.set_title('Crimes Percentage Grouped By Month') p.set_ylabel('Percentage of Crimes') p.set_xlabel('Month') p.get_legend().remove() plt.savefig('../charts/month.png') def group_by_year(df): grouped = df.groupby(['YEAR']).size().to_frame('Crimes') p = grouped.plot.pie(y='Crimes', autopct='%1.1f%%') p.set_title('Crimes Percentage Grouped By Year') p.get_legend().remove() plt.savefig('../charts/year.png') def group_by_territory(df): grouped = df.groupby(['PDQ']).size().to_frame('Size') grouped['Percentage'] = 100 * grouped['Size'] / len(df) grouped = grouped.drop(columns='Size') grouped.index = grouped.index.astype(int) p = grouped.plot.bar() p.set_title('Crimes Percentage Grouped By Territory') p.set_ylabel('Percentage of Crimes') p.set_xlabel('Territory Number') p.get_legend().remove() plt.savefig('../charts/territory.png') if __name__ == '__main__': df = pd.read_csv('../data/crimes_dataset_processed_incomplete.csv') group_by_territory(df) group_by_year(df) group_by_month(df) group_by_time_of_day(df) group_by_day_of_the_week(df) group_by_category(df)
Python
caea9dee308587e9d9cc634fa5d85d3dc860b40ed56d2df7c38496f8640aa0d7
0xf3c3f9ed5f23e829
End of preview.

Dataset Card for Indro-Sovereign Gold Dataset (V39)

This dataset is a highly refined, industrially filtered collection of web-crawled text from the Common Crawl (CC-MAIN-2025-05), specifically curated for the development of the Indro AI Base Model. It is the result of the "Zero Money Startup" challenge, focusing on high-quality Hindi and English data.

Dataset Details

Dataset Description

The Indro-Sovereign Gold Dataset is designed to solve the "repetition loop" and "junk data" problems in large language model (LLM) training. Using the V39 Iron Guard Refinery, every document is subjected to rigorous heuristic and algorithmic checks to ensure "Gold" status.

  • Curated by: Abhinav Anand (Indro Studio)
  • Funded by: Community Driven (Zero Money Startup Challenge)
  • Shared by: Abhinav Anand
  • Language(s) (NLP): Hindi (Primary), English (Secondary)
  • License: MIT

Dataset Sources

Uses

Direct Use

  • Pre-training of Large Language Models (LLMs).
  • Fine-tuning for Hindi-English (Hinglish) understanding.
  • Research in web-scale data cleaning and deduplication.

Out-of-Scope Use

  • Not intended for use in production without secondary safety alignment (RLHF).
  • Not suitable for tasks requiring real-time updated information beyond the crawl date.

Dataset Structure

The data is delivered in compressed .jsonl.gz shards. Each entry contains:

  • text: The cleaned, high-quality extracted text.
  • meta: Metadata including language (lang), token count (tokens), and Shannon entropy (ent).
  • ex: 128-bit unique exact hash for deduplication.
  • lsh: 128-bit SimHash for near-duplicate detection.
  • host: The source domain of the document.

Dataset Creation

Curation Rationale

To build a truly Sovereign AI, we need data that reflects Indian linguistic nuances without the "noise" of global spam. This dataset was created to provide a cleaner alternative to raw web-scrapes.

Source Data

  • Source: Common Crawl (WET files).
  • Collection: Distributed mining via Indro-Titan V39 Workers.

Data Collection and Processing

We utilize a multi-stage Iron Guard pipeline:

  1. Language Filtering: FastText LID (Score > 0.97).
  2. Anti-Loop: Word frequency analysis to prevent "the-the-the" repetition loops.
  3. Entropy Guard: Documents must fall within $6.5 < H < 9.5$ to ensure information density.
  4. Deduplication: Bloom Filters and 128-bit SimHash (Hamming Distance $\le 5$).

Bias, Risks, and Limitations

While the V39 refinery is strict, users should note that web data inherently reflects the biases of its creators.

Recommendations

It is recommended to apply secondary toxicity filters before using this data for consumer-facing AI applications.

Glossary

  • Entropy (H): A measure of the randomness or information density in a text document.
  • SimHash: A locality-sensitive hashing algorithm used to find similar documents.
  • Iron Guard: The proprietary multi-stage filtering logic of Indro Studio.

Dataset Card Contact

Abhinav Anand - Indro Studio

Downloads last month
3,293

Spaces using abhinav337463/indro-web-data 2