LoRA-fine-tuned climatebert/distilroberta-base-climate-f on climatebert/netzero_reduction_data

This model is a LoRA (Low-Rank Adaptation) fine-tuned version of climatebert/distilroberta-base-climate-f on the dataset climatebert/netzero_reduction_data.

It is designed for climate-related text classification / net-zero commitments.

ℹ️ Evaluation (validation set)

metric value
eval_loss 0.1172
eval_accuracy 0.9535
eval_f1 0.9535

Metrics are computed using the Hugging Face Trainer on the validation split.

ℹ️ Training configuration

  • Epochs: 1
  • Batch size: 8
  • Learning rate: 0.0001
  • Max sequence length: 256
  • LoRA r (rank): 8
  • LoRA alpha: 16
  • LoRA dropout: 0.05
  • Seed: 42

LoRA is applied on top of the base model using the PEFT library.

ℹ️ Usage

from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch

model_id = "cheekeong2025/climatebert-distilroberta-base-climate-f-lora-0da70e39"

tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForSequenceClassification.from_pretrained(model_id)

inputs = tokenizer("This company announced an ambitious net-zero plan.", return_tensors="pt")
with torch.no_grad():
    logits = model(**inputs).logits
pred = logits.argmax(-1).item()
label = model.config.id2label[str(pred)]
print(label)
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for cheekeong2025/climatebert-distilroberta-base-climate-f-lora-0da70e39

Adapter
(2)
this model

Dataset used to train cheekeong2025/climatebert-distilroberta-base-climate-f-lora-0da70e39