Add license and pipeline_tag metadata

#1
by nielsr HF Staff - opened
Files changed (1) hide show
  1. README.md +41 -36
README.md CHANGED
@@ -1,67 +1,72 @@
 
 
 
 
 
1
  # CSI-BERT2
2
 
3
  The description is generated by Grok3.
4
 
5
  ## Model Details
6
 
7
- - **Model Name**: CSI-BERT2
8
 
9
- - **Model Type**: BERT-inspired transformer for CSI prediction and classification
10
 
11
- - **Version**: 2.0
12
 
13
- - **Release Date**: August 2025
14
 
15
- - **Developers**: Zijian Zhao
16
 
17
- - **Organization**: SRIBD, SYSU
18
 
19
- - **License**: Apache License 2.0
20
 
21
- - **Paper**: [CSI-BERT2: A BERT-inspired Framework for Efficient CSI Prediction and Classification in Wireless Communication and Sensing](https://arxiv.org/abs/2412.06861)
22
 
23
- - **Citation:**
24
 
25
- ```
26
- @article{zhao2024mining,
27
- title={CSI-BERT2: A BERT-inspired Framework for Efficient CSI Prediction and Classification in Wireless Communication and Sensing},
28
- author={Zhao, Zijian and Meng, Fanyi and Lyu, Zhonghao and Li, Hang and Li, Xiaoyang and Zhu, Guangxu},
29
- journal={arXiv preprint arXiv:2412.06861},
30
- year={2024}
31
- }
32
- ```
33
 
34
- - **Contact**: [email protected]
35
 
36
- - **Repository**: https://github.com/RS2002/CSI-BERT2
37
 
38
- - **Previous Version**: [CSI-BERT](https://github.com/RS2002/CSI-BERT)
39
 
40
  ## Model Description
41
 
42
  CSI-BERT2 is an upgraded BERT-inspired transformer model for Channel State Information (CSI) prediction and classification in wireless communication and sensing. It improves upon [CSI-BERT](https://github.com/RS2002/CSI-BERT) with optimized model and code structure, supporting tasks like CSI recovery, prediction, gesture recognition, fall detection, people identification, and people number estimation. The model processes CSI amplitude data and supports adversarial training with a GAN-based discriminator.
43
 
44
- - **Architecture**: BERT-based transformer with optional GAN discriminator
45
- - **Input Format**: CSI amplitude (batch_size, length, receiver_num * carrier_dim), attention mask (batch_size, length), optional timestamp (batch_size, length)
46
- - **Output Format**: Hidden states of dimension [batch_size, length, hidden_dim]
47
- - **Hidden Size**: 128
48
- - **Training Objective**: MLM pre-training with GAN (optional) and task-specific fine-tuning
49
- - **Tasks Supported**: CSI recovery, CSI prediction, CSI classification
50
 
51
  ## Training Data
52
 
53
  The model was trained on the following datasets:
54
 
55
- - **Public Datasets:**
56
- - [WiGesture](http://www.sdp8.net/Dataset?id=5d4ee7ca-d0b0-45e3-9510-abb6e9cdebf9): Gesture recognition, people identification
57
- - [WiFall](https://github.com/RS2002/KNN-MMD/tree/main/WiFall): Action recognition, fall detection, people identification
58
- - **Proposed Dataset:**
59
- - [WiCount]([CSI-BERT2/WiCount at main · RS2002/CSI-BERT2](https://github.com/RS2002/CSI-BERT2/tree/main/WiCount)): People number estimation
60
- - **Data Structure:**
61
- - **Amplitude**: (batch_size, length, receiver_num * carrier_dim)
62
- - **Timestamp**: (batch_size, length) (optional)
63
- - **Label**: (batch_size)
64
- - **Note**: Refer to [CSI-BERT](https://github.com/RS2002/CSI-BERT) for data preparation details. Custom dataloaders may be needed for specific tasks.
65
 
66
  ## Usage
67
 
 
1
+ ---
2
+ license: apache-2.0
3
+ pipeline_tag: time-series-forecasting
4
+ ---
5
+
6
  # CSI-BERT2
7
 
8
  The description is generated by Grok3.
9
 
10
  ## Model Details
11
 
12
+ - **Model Name**: CSI-BERT2
13
 
14
+ - **Model Type**: BERT-inspired transformer for CSI prediction and classification
15
 
16
+ - **Version**: 2.0
17
 
18
+ - **Release Date**: August 2025
19
 
20
+ - **Developers**: Zijian Zhao
21
 
22
+ - **Organization**: SRIBD, SYSU
23
 
24
+ - **License**: Apache License 2.0
25
 
26
+ - **Paper**: [CSI-BERT2: A BERT-inspired Framework for Efficient CSI Prediction and Classification in Wireless Communication and Sensing](https://arxiv.org/abs/2412.06861)
27
 
28
+ - **Citation:**
29
 
30
+ ```
31
+ @article{zhao2024mining,
32
+ title={CSI-BERT2: A BERT-inspired Framework for Efficient CSI Prediction and Classification in Wireless Communication and Sensing},
33
+ author={Zhao, Zijian and Meng, Fanyi and Lyu, Zhonghao and Li, Hang and Li, Xiaoyang and Zhu, Guangxu},
34
+ journal={arXiv preprint arXiv:2412.06861},
35
+ year={2024}
36
+ }
37
+ ```
38
 
39
+ - **Contact**: [email protected]
40
 
41
+ - **Repository**: https://github.com/RS2002/CSI-BERT2
42
 
43
+ - **Previous Version**: [CSI-BERT](https://github.com/RS2002/CSI-BERT)
44
 
45
  ## Model Description
46
 
47
  CSI-BERT2 is an upgraded BERT-inspired transformer model for Channel State Information (CSI) prediction and classification in wireless communication and sensing. It improves upon [CSI-BERT](https://github.com/RS2002/CSI-BERT) with optimized model and code structure, supporting tasks like CSI recovery, prediction, gesture recognition, fall detection, people identification, and people number estimation. The model processes CSI amplitude data and supports adversarial training with a GAN-based discriminator.
48
 
49
+ - **Architecture**: BERT-based transformer with optional GAN discriminator
50
+ - **Input Format**: CSI amplitude (batch_size, length, receiver_num * carrier_dim), attention mask (batch_size, length), optional timestamp (batch_size, length)
51
+ - **Output Format**: Hidden states of dimension [batch_size, length, hidden_dim]
52
+ - **Hidden Size**: 128
53
+ - **Training Objective**: MLM pre-training with GAN (optional) and task-specific fine-tuning
54
+ - **Tasks Supported**: CSI recovery, CSI prediction, CSI classification
55
 
56
  ## Training Data
57
 
58
  The model was trained on the following datasets:
59
 
60
+ - **Public Datasets:**
61
+ - [WiGesture](http://www.sdp8.net/Dataset?id=5d4ee7ca-d0b0-45e3-9510-abb6e9cdebf9): Gesture recognition, people identification
62
+ - [WiFall](https://github.com/RS2002/KNN-MMD/tree/main/WiFall): Action recognition, fall detection, people identification
63
+ - **Proposed Dataset:**
64
+ - [WiCount](https://github.com/RS2002/CSI-BERT2/tree/main/WiCount): People number estimation
65
+ - **Data Structure:**
66
+ - **Amplitude**: (batch_size, length, receiver_num * carrier_dim)
67
+ - **Timestamp**: (batch_size, length) (optional)
68
+ - **Label**: (batch_size)
69
+ - **Note**: Refer to [CSI-BERT](https://github.com/RS2002/CSI-BERT) for data preparation details. Custom dataloaders may be needed for specific tasks.
70
 
71
  ## Usage
72