RT-DETR Training Results
Model Information
- Model: rtdetr-l.pt
- Dataset: spscd_plus_buoy_yolo/dataset.yaml
- Classes: 13
- Image Size: 1280×1280
- Batch Size: 8
- Epochs: 100
- Workers: 16
Training Configuration
- Initial Learning Rate: 0.0001
- Final Learning Rate Factor: 0.01
- Patience: 50
- Mixed Precision (AMP): Enabled
Training Time
- Start: 2025-12-16 02:36:48
- End: 2025-12-17 12:51:39
- Duration: 34h 14m 50s (123,290 seconds)
Final Test Results
- mAP50: 0.9919
- mAP50-95: 0.8531
Files in this Repository
best.pt- Best model checkpointresults.csv- Complete training metricsresults.png- Training curves visualizationconfusion_matrix.png- Confusion matrixF1_curve.png,PR_curve.png- Performance curvessamples/- Sample validation predictions
Note: TensorBoard logs are included if available. You can also visualize training using results.csv and the curve images.
How to Use
from ultralytics import RTDETR
# Load model
model = RTDETR('best.pt')
# Run inference
results = model('your_image.jpg')
Visualizing Training Progress
- View training curves in
results.png - Analyze per-class performance in confusion matrices
- Check
results.csvfor detailed epoch-by-epoch metrics
- Downloads last month
- 390
Datasets used to train ARG-NCTU/rtdetr-spscd_buoy_joint_1280_b8_e100
Evaluation results
-
self-reported
0.992
- [email protected]:0.95self-reported0.853