Object Detection
ultralytics
rt-detr
ship-detection
buoy-detection
Eval Results

RT-DETR Training Results

Model Information

  • Model: rtdetr-l.pt
  • Dataset: spscd_plus_buoy_yolo/dataset.yaml
  • Classes: 13
  • Image Size: 1280×1280
  • Batch Size: 8
  • Epochs: 100
  • Workers: 16

Training Configuration

  • Initial Learning Rate: 0.0001
  • Final Learning Rate Factor: 0.01
  • Patience: 50
  • Mixed Precision (AMP): Enabled

Training Time

  • Start: 2025-12-16 02:36:48
  • End: 2025-12-17 12:51:39
  • Duration: 34h 14m 50s (123,290 seconds)

Final Test Results

  • mAP50: 0.9919
  • mAP50-95: 0.8531

Files in this Repository

  • best.pt - Best model checkpoint
  • results.csv - Complete training metrics
  • results.png - Training curves visualization
  • confusion_matrix.png - Confusion matrix
  • F1_curve.png, PR_curve.png - Performance curves
  • samples/ - Sample validation predictions

Note: TensorBoard logs are included if available. You can also visualize training using results.csv and the curve images.

How to Use

from ultralytics import RTDETR

# Load model
model = RTDETR('best.pt')

# Run inference
results = model('your_image.jpg')

Visualizing Training Progress

  • View training curves in results.png
  • Analyze per-class performance in confusion matrices
  • Check results.csv for detailed epoch-by-epoch metrics
Downloads last month
390
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Datasets used to train ARG-NCTU/rtdetr-spscd_buoy_joint_1280_b8_e100