Spaces:
Running
on
Zero
Running
on
Zero
| """ | |
| Train a diffusion model on images. | |
| """ | |
| import json | |
| import sys | |
| import os | |
| sys.path.append('.') | |
| # from dnnlib import EasyDict | |
| import traceback | |
| import torch as th | |
| import torch.multiprocessing as mp | |
| import torch.distributed as dist | |
| import numpy as np | |
| import argparse | |
| import dnnlib | |
| from guided_diffusion import dist_util, logger | |
| from guided_diffusion.resample import create_named_schedule_sampler | |
| from guided_diffusion.script_util import ( | |
| args_to_dict, | |
| add_dict_to_argparser, | |
| continuous_diffusion_defaults, | |
| model_and_diffusion_defaults, | |
| create_model_and_diffusion, | |
| ) | |
| from guided_diffusion.continuous_diffusion import make_diffusion as make_sde_diffusion | |
| import nsr | |
| import nsr.lsgm | |
| # from nsr.train_util_diffusion import TrainLoop3DDiffusion as TrainLoop | |
| from nsr.script_util import create_3DAE_model, encoder_and_nsr_defaults, loss_defaults, rendering_options_defaults, eg3d_options_default | |
| from datasets.shapenet import load_data, load_eval_data, load_memory_data | |
| from nsr.losses.builder import E3DGELossClass | |
| from utils.torch_utils import legacy, misc | |
| from torch.utils.data import Subset | |
| from pdb import set_trace as st | |
| from dnnlib.util import EasyDict, InfiniteSampler | |
| # from .vit_triplane_train_FFHQ import init_dataset_kwargs | |
| from datasets.eg3d_dataset import init_dataset_kwargs | |
| # from torch.utils.tensorboard import SummaryWriter | |
| SEED = 0 | |
| def training_loop(args): | |
| # def training_loop(args): | |
| logger.log("dist setup...") | |
| th.cuda.set_device( | |
| args.local_rank) # set this line to avoid extra memory on rank 0 | |
| th.cuda.empty_cache() | |
| th.cuda.manual_seed_all(SEED) | |
| np.random.seed(SEED) | |
| dist_util.setup_dist(args) | |
| # st() # mark | |
| # logger.configure(dir=args.logdir, format_strs=["tensorboard", "csv"]) | |
| logger.configure(dir=args.logdir) | |
| logger.log("creating ViT encoder and NSR decoder...") | |
| # st() # mark | |
| device = dist_util.dev() | |
| args.img_size = [args.image_size_encoder] | |
| logger.log("creating model and diffusion...") | |
| # * set denoise model args | |
| if args.denoise_in_channels == -1: | |
| args.diffusion_input_size = args.image_size_encoder | |
| args.denoise_in_channels = args.out_chans | |
| args.denoise_out_channels = args.out_chans | |
| else: | |
| assert args.denoise_out_channels != -1 | |
| # args.image_size = args.image_size_encoder # 224, follow the triplane size | |
| # if args.diffusion_input_size == -1: | |
| # else: | |
| # args.image_size = args.diffusion_input_size | |
| denoise_model, diffusion = create_model_and_diffusion( | |
| **args_to_dict(args, | |
| model_and_diffusion_defaults().keys())) | |
| denoise_model.to(dist_util.dev()) | |
| denoise_model.train() | |
| opts = eg3d_options_default() | |
| if args.sr_training: | |
| args.sr_kwargs = dnnlib.EasyDict( | |
| channel_base=opts.cbase, | |
| channel_max=opts.cmax, | |
| fused_modconv_default='inference_only', | |
| use_noise=True | |
| ) # ! close noise injection? since noise_mode='none' in eg3d | |
| logger.log("creating encoder and NSR decoder...") | |
| auto_encoder = create_3DAE_model( | |
| **args_to_dict(args, | |
| encoder_and_nsr_defaults().keys())) | |
| auto_encoder.to(device) | |
| auto_encoder.eval() | |
| # * load G_ema modules into autoencoder | |
| # * clone G_ema.decoder to auto_encoder triplane | |
| # logger.log("AE triplane decoder reuses G_ema decoder...") | |
| # auto_encoder.decoder.register_buffer('w_avg', G_ema.backbone.mapping.w_avg) | |
| # auto_encoder.decoder.triplane_decoder.decoder.load_state_dict( # type: ignore | |
| # G_ema.decoder.state_dict()) # type: ignore | |
| # set grad=False in this manner suppresses the DDP forward no grad error. | |
| logger.log("freeze triplane decoder...") | |
| for param in auto_encoder.decoder.triplane_decoder.parameters( | |
| ): # type: ignore | |
| # for param in auto_encoder.decoder.triplane_decoder.decoder.parameters(): # type: ignore | |
| param.requires_grad_(False) | |
| # if args.sr_training: | |
| # logger.log("AE triplane decoder reuses G_ema SR module...") | |
| # # auto_encoder.decoder.triplane_decoder.superresolution.load_state_dict( # type: ignore | |
| # # G_ema.superresolution.state_dict()) # type: ignore | |
| # # set grad=False in this manner suppresses the DDP forward no grad error. | |
| # logger.log("freeze SR module...") | |
| # for param in auto_encoder.decoder.superresolution.parameters(): # type: ignore | |
| # param.requires_grad_(False) | |
| # # del G_ema | |
| # th.cuda.empty_cache() | |
| if args.cfg in ('afhq', 'ffhq'): | |
| if args.sr_training: | |
| logger.log("AE triplane decoder reuses G_ema SR module...") | |
| auto_encoder.decoder.triplane_decoder.superresolution.load_state_dict( # type: ignore | |
| G_ema.superresolution.state_dict()) # type: ignore | |
| # set grad=False in this manner suppresses the DDP forward no grad error. | |
| for param in auto_encoder.decoder.triplane_decoder.superresolution.parameters( | |
| ): # type: ignore | |
| param.requires_grad_(False) | |
| # ! load data | |
| logger.log("creating eg3d data loader...") | |
| training_set_kwargs, dataset_name = init_dataset_kwargs( | |
| data=args.data_dir, | |
| class_name='datasets.eg3d_dataset.ImageFolderDataset' | |
| ) # only load pose here | |
| # if args.cond and not training_set_kwargs.use_labels: | |
| # raise Exception('check here') | |
| # training_set_kwargs.use_labels = args.cond | |
| training_set_kwargs.use_labels = True | |
| training_set_kwargs.xflip = True | |
| training_set_kwargs.random_seed = SEED | |
| # desc = f'{args.cfg:s}-{dataset_name:s}-gpus{c.num_gpus:d}-batch{c.batch_size:d}-gamma{c.loss_kwargs.r1_gamma:g}' | |
| # * construct ffhq/afhq dataset | |
| training_set = dnnlib.util.construct_class_by_name( | |
| **training_set_kwargs) # subclass of training.dataset.Dataset | |
| training_set = dnnlib.util.construct_class_by_name( | |
| **training_set_kwargs) # subclass of training.dataset.Dataset | |
| training_set_sampler = InfiniteSampler( | |
| dataset=training_set, | |
| rank=dist_util.get_rank(), | |
| num_replicas=dist_util.get_world_size(), | |
| seed=SEED) | |
| data = iter( | |
| th.utils.data.DataLoader( | |
| dataset=training_set, | |
| sampler=training_set_sampler, | |
| batch_size=args.batch_size, | |
| pin_memory=True, | |
| num_workers=args.num_workers, | |
| )) | |
| # prefetch_factor=2)) | |
| eval_data = th.utils.data.DataLoader(dataset=Subset( | |
| training_set, np.arange(10)), | |
| batch_size=args.eval_batch_size, | |
| num_workers=1) | |
| else: | |
| logger.log("creating data loader...") | |
| # TODO, load shapenet data | |
| # data = load_data( | |
| # st() mark | |
| if args.overfitting: | |
| logger.log("create overfitting memory dataset") | |
| data = load_memory_data( | |
| file_path=args.eval_data_dir, | |
| batch_size=args.batch_size, | |
| reso=args.image_size, | |
| reso_encoder=args.image_size_encoder, # 224 -> 128 | |
| num_workers=args.num_workers, | |
| load_depth=True # for evaluation | |
| ) | |
| else: | |
| logger.log("create all instances dataset") | |
| # st() mark | |
| data = load_data( | |
| file_path=args.data_dir, | |
| batch_size=args.batch_size, | |
| reso=args.image_size, | |
| reso_encoder=args.image_size_encoder, # 224 -> 128 | |
| num_workers=args.num_workers, | |
| load_depth=True, | |
| preprocess=auto_encoder.preprocess, # clip | |
| dataset_size=args.dataset_size, | |
| # load_depth=True # for evaluation | |
| ) | |
| # st() mark | |
| eval_data = load_eval_data( | |
| file_path=args.eval_data_dir, | |
| batch_size=args.eval_batch_size, | |
| reso=args.image_size, | |
| reso_encoder=args.image_size_encoder, # 224 -> 128 | |
| num_workers=args.num_workers, | |
| load_depth=True # for evaluation | |
| ) | |
| # let all processes sync up before starting with a new epoch of training | |
| if dist_util.get_rank() == 0: | |
| with open(os.path.join(args.logdir, 'args.json'), 'w') as f: | |
| json.dump(vars(args), f, indent=2) | |
| args.schedule_sampler = create_named_schedule_sampler( | |
| args.schedule_sampler, diffusion) | |
| opt = dnnlib.EasyDict(args_to_dict(args, loss_defaults().keys())) | |
| loss_class = E3DGELossClass(device, opt).to(device) | |
| logger.log("training...") | |
| TrainLoop = { | |
| 'adm': nsr.TrainLoop3DDiffusion, | |
| 'dit': nsr.TrainLoop3DDiffusionDiT, | |
| 'ssd': nsr.TrainLoop3DDiffusionSingleStage, | |
| # 'ssd_cvD': nsr.TrainLoop3DDiffusionSingleStagecvD, | |
| 'ssd_cvD_sds': nsr.TrainLoop3DDiffusionSingleStagecvDSDS, | |
| 'ssd_cvd_sds_no_separate_sds_step': | |
| nsr.TrainLoop3DDiffusionSingleStagecvDSDS_sdswithrec, | |
| 'vpsde_lsgm_noD': nsr.lsgm.TrainLoop3DDiffusionLSGM_noD, # use vpsde | |
| # 'vpsde_lsgm': nsr.TrainLoop3DDiffusionLSGM, # use vpsde | |
| # 'vpsde': nsr.TrainLoop3DDiffusion_vpsde, | |
| }[args.trainer_name] | |
| if 'vpsde' in args.trainer_name: | |
| sde_diffusion = make_sde_diffusion( | |
| dnnlib.EasyDict( | |
| args_to_dict(args, | |
| continuous_diffusion_defaults().keys()))) | |
| assert args.mixed_prediction, 'enable mixed_prediction by default' | |
| logger.log('create VPSDE diffusion.') | |
| else: | |
| sde_diffusion = None | |
| dist_util.synchronize() | |
| TrainLoop(rec_model=auto_encoder, | |
| denoise_model=denoise_model, | |
| diffusion=diffusion, | |
| sde_diffusion=sde_diffusion, | |
| loss_class=loss_class, | |
| data=data, | |
| eval_data=eval_data, | |
| **vars(args)).run_loop() | |
| def create_argparser(**kwargs): | |
| # defaults.update(model_and_diffusion_defaults()) | |
| defaults = dict( | |
| dataset_size=-1, | |
| diffusion_input_size=-1, | |
| trainer_name='adm', | |
| use_amp=False, | |
| triplane_scaling_divider=1.0, # divide by this value | |
| overfitting=False, | |
| num_workers=4, | |
| image_size=128, | |
| image_size_encoder=224, | |
| iterations=150000, | |
| schedule_sampler="uniform", | |
| anneal_lr=False, | |
| lr=5e-5, | |
| weight_decay=0.0, | |
| lr_anneal_steps=0, | |
| batch_size=1, | |
| eval_batch_size=12, | |
| microbatch=-1, # -1 disables microbatches | |
| ema_rate="0.9999", # comma-separated list of EMA values | |
| log_interval=50, | |
| eval_interval=2500, | |
| save_interval=10000, | |
| resume_checkpoint="", | |
| resume_checkpoint_EG3D="", | |
| use_fp16=False, | |
| fp16_scale_growth=1e-3, | |
| data_dir="", | |
| eval_data_dir="", | |
| # load_depth=False, # TODO | |
| logdir="/mnt/lustre/yslan/logs/nips23/", | |
| load_submodule_name='', # for loading pretrained auto_encoder model | |
| ignore_resume_opt=False, | |
| # freeze_ae=False, | |
| denoised_ae=True, | |
| ) | |
| defaults.update(model_and_diffusion_defaults()) | |
| defaults.update(continuous_diffusion_defaults()) | |
| defaults.update(encoder_and_nsr_defaults()) # type: ignore | |
| defaults.update(loss_defaults()) | |
| parser = argparse.ArgumentParser() | |
| add_dict_to_argparser(parser, defaults) | |
| return parser | |
| if __name__ == "__main__": | |
| # os.environ["TORCH_CPP_LOG_LEVEL"] = "INFO" | |
| # os.environ["NCCL_DEBUG"] = "INFO" | |
| os.environ[ | |
| "TORCH_DISTRIBUTED_DEBUG"] = "DETAIL" # set to DETAIL for runtime logging. | |
| args = create_argparser().parse_args() | |
| args.local_rank = int(os.environ["LOCAL_RANK"]) | |
| args.gpus = th.cuda.device_count() | |
| # opts = dnnlib.EasyDict(vars(args)) # compatiable with triplane original settings | |
| # opts = args | |
| args.rendering_kwargs = rendering_options_defaults(args) | |
| # Launch processes. | |
| logger.log('Launching processes...') | |
| logger.log('Available devices ', th.cuda.device_count()) | |
| logger.log('Current cuda device ', th.cuda.current_device()) | |
| # logger.log('GPU Device name:', th.cuda.get_device_name(th.cuda.current_device())) | |
| try: | |
| training_loop(args) | |
| # except KeyboardInterrupt as e: | |
| except Exception as e: | |
| # print(e) | |
| traceback.print_exc() | |
| dist_util.cleanup() # clean port and socket when ctrl+c | |