Spaces:
Runtime error
Runtime error
File size: 15,363 Bytes
09dd649 c947ff2 466e3e5 ab0c591 f562da7 09dd649 a5d07a8 ea33f68 323e41c ea33f68 a5d07a8 ea33f68 a5d07a8 ea33f68 a5d07a8 323e41c 398fce5 09dd649 398fce5 afc2272 398fce5 09dd649 c947ff2 09dd649 323e41c d418457 323e41c d418457 323e41c d418457 323e41c d418457 323e41c d418457 323e41c d418457 323e41c d418457 323e41c d418457 323e41c d418457 323e41c 398fce5 afc2272 398fce5 c947ff2 323e41c 398fce5 323e41c d418457 ab0c591 c947ff2 d418457 466e3e5 d418457 398fce5 afc2272 398fce5 c947ff2 ab0c591 398fce5 ab0c591 09dd649 ab0c591 c9fe6dd 88290c8 c947ff2 09dd649 398fce5 f562da7 398fce5 f562da7 398fce5 f562da7 398fce5 095b16a 398fce5 b257a7c 398fce5 095b16a 398fce5 cb7c3d2 398fce5 7801f62 398fce5 09dd649 398fce5 cb7c3d2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 |
import gradio as gr
from transformers import AutoProcessor, Qwen2_5_VLForConditionalGeneration, TextIteratorStreamer
from transformers.image_utils import load_image
from threading import Thread
import time
import torch
import spaces
import cv2
import numpy as np
from PIL import Image
from models import (
get_model_list, get_model_info, DEFAULT_GENERATION_PARAMS,
get_preset_list, get_preset_params, get_preset_description
)
def progress_bar_html(label: str) -> str:
"""
Returns an HTML snippet for a thin progress bar with a label.
The progress bar is styled as a dark animated bar.
"""
return f'''
<div style="display: flex; align-items: center;">
<span style="margin-right: 10px; font-size: 14px;">{label}</span>
<div style="width: 110px; height: 5px; background-color: #9370DB; border-radius: 2px; overflow: hidden;">
<div style="width: 100%; height: 100%; background-color: #4B0082; animation: loading 1.5s linear infinite;"></div>
</div>
</div>
<style>
@keyframes loading {{
0% {{ transform: translateX(-100%); }}
100% {{ transform: translateX(100%); }}
}}
</style>
'''
def downsample_video(video_path):
"""
Downsamples the video to 10 evenly spaced frames.
Each frame is converted to a PIL Image along with its timestamp.
"""
vidcap = cv2.VideoCapture(video_path)
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
fps = vidcap.get(cv2.CAP_PROP_FPS)
frames = []
if total_frames <= 0 or fps <= 0:
vidcap.release()
return frames
# Sample 10 evenly spaced frames.
frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int)
for i in frame_indices:
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
success, image = vidcap.read()
if success:
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
pil_image = Image.fromarray(image)
timestamp = round(i / fps, 2)
frames.append((pil_image, timestamp))
vidcap.release()
return frames
# Initial model will be loaded when the first request comes in
processor = None
model = None
current_model_name = None
def load_model(model_name):
"""
Loads the model and processor based on the model name.
Returns the model and processor.
"""
global processor, model, current_model_name
# If the model is already loaded, return it
if model is not None and current_model_name == model_name:
return model, processor
# Get model info
model_info = get_model_info(model_name)
MODEL_ID = model_info["id"]
# Set dtype based on model info
dtype = getattr(torch, model_info["dtype"])
# Load processor and model
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
MODEL_ID,
trust_remote_code=True,
torch_dtype=dtype
).to(model_info["device"]).eval()
# Update current model name
current_model_name = model_name
return model, processor
@spaces.GPU
def model_inference(input_dict, history, model_name, temperature=DEFAULT_GENERATION_PARAMS["temperature"],
top_p=DEFAULT_GENERATION_PARAMS["top_p"], top_k=DEFAULT_GENERATION_PARAMS["top_k"],
max_new_tokens=DEFAULT_GENERATION_PARAMS["max_new_tokens"],
do_sample=DEFAULT_GENERATION_PARAMS["do_sample"],
num_beams=DEFAULT_GENERATION_PARAMS["num_beams"],
early_stopping=DEFAULT_GENERATION_PARAMS["early_stopping"],
length_penalty=DEFAULT_GENERATION_PARAMS["length_penalty"],
no_repeat_ngram_size=DEFAULT_GENERATION_PARAMS["no_repeat_ngram_size"],
repetition_penalty=DEFAULT_GENERATION_PARAMS["repetition_penalty"]):
# Load the selected model
model, processor = load_model(model_name)
text = input_dict["text"]
files = input_dict["files"]
if text.strip().lower().startswith("@video-infer"):
# Remove the tag from the query.
text = text[len("@video-infer"):].strip()
if not files:
gr.Error("Please upload a video file along with your @video-infer query.")
return
# Assume the first file is a video.
video_path = files[0]
frames = downsample_video(video_path)
if not frames:
gr.Error("Could not process video.")
return
# Build messages: start with the text prompt.
messages = [
{
"role": "user",
"content": [{"type": "text", "text": text}]
}
]
# Append each frame with a timestamp label.
for image, timestamp in frames:
messages[0]["content"].append({"type": "text", "text": f"Frame {timestamp}:"})
messages[0]["content"].append({"type": "image", "image": image})
# Collect only the images from the frames.
video_images = [image for image, _ in frames]
# Prepare the prompt.
prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = processor(
text=[prompt],
images=video_images,
return_tensors="pt",
padding=True,
).to("cuda")
# Set up streaming generation.
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = dict(
inputs,
streamer=streamer,
max_new_tokens=max_new_tokens,
temperature=temperature,
top_p=top_p,
top_k=top_k,
do_sample=do_sample,
num_beams=num_beams,
early_stopping=early_stopping,
length_penalty=length_penalty,
no_repeat_ngram_size=no_repeat_ngram_size,
repetition_penalty=repetition_penalty
)
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
yield progress_bar_html(f"Processing video with {model_name}")
for new_text in streamer:
buffer += new_text
time.sleep(0.01)
yield buffer
return
if len(files) > 1:
images = [load_image(image) for image in files]
elif len(files) == 1:
images = [load_image(files[0])]
else:
images = []
if text == "" and not images:
gr.Error("Please input a query and optionally image(s).")
return
if text == "" and images:
gr.Error("Please input a text query along with the image(s).")
return
messages = [
{
"role": "user",
"content": [
*[{"type": "image", "image": image} for image in images],
{"type": "text", "text": text},
],
}
]
prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = processor(
text=[prompt],
images=images if images else None,
return_tensors="pt",
padding=True,
).to("cuda")
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = dict(
inputs,
streamer=streamer,
max_new_tokens=max_new_tokens,
temperature=temperature,
top_p=top_p,
top_k=top_k,
do_sample=do_sample,
num_beams=num_beams,
early_stopping=early_stopping,
length_penalty=length_penalty,
no_repeat_ngram_size=no_repeat_ngram_size,
repetition_penalty=repetition_penalty
)
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
yield progress_bar_html(f"Processing with {model_name}")
for new_text in streamer:
buffer += new_text
time.sleep(0.01)
yield buffer
examples = [
[{"text": "Describe the Image?", "files": ["example_images/document.jpg"]}],
[{"text": "@video-infer Explain the content of the Advertisement", "files": ["example_images/videoplayback.mp4"]}],
[{"text": "@video-infer Explain the content of the video in detail", "files": ["example_images/breakfast.mp4"]}],
[{"text": "@video-infer Explain the content of the video.", "files": ["example_images/sky.mp4"]}],
]
def create_interface():
# Get the list of available models and presets
model_options = get_model_list()
preset_options = get_preset_list()
def apply_preset(preset_name):
"""Helper function to apply parameter presets"""
params = get_preset_params(preset_name)
return [
params["temperature"],
params["top_p"],
params["top_k"],
params["max_new_tokens"],
params["do_sample"],
params["num_beams"],
params["early_stopping"],
params["length_penalty"],
params["no_repeat_ngram_size"],
params["repetition_penalty"],
get_preset_description(preset_name)
]
with gr.Blocks() as demo:
gr.Markdown("# **Qwen2.5 Series (add `@video-infer` for video understanding)**")
with gr.Accordion("Model Settings", open=True):
with gr.Row():
model_dropdown = gr.Dropdown(
choices=model_options,
value=model_options[0],
label="Select Model"
)
with gr.Row():
preset_dropdown = gr.Dropdown(
choices=preset_options,
value="Default",
label="Parameter Preset"
)
preset_description = gr.Textbox(
value=get_preset_description("Default"),
label="Preset Description",
interactive=False
)
# Button to apply the selected preset
preset_button = gr.Button("Apply Preset")
with gr.Row():
temperature = gr.Slider(
minimum=0.0,
maximum=2.0,
value=DEFAULT_GENERATION_PARAMS["temperature"],
step=0.1,
label="Temperature",
info="Higher values produce more diverse outputs"
)
top_p = gr.Slider(
minimum=0.0,
maximum=1.0,
value=DEFAULT_GENERATION_PARAMS["top_p"],
step=0.05,
label="Top P",
info="Nucleus sampling: limit sampling to top P% of probability mass"
)
with gr.Row():
top_k = gr.Slider(
minimum=1,
maximum=100,
value=DEFAULT_GENERATION_PARAMS["top_k"],
step=1,
label="Top K",
info="Limit sampling to top K most likely tokens"
)
max_tokens = gr.Slider(
minimum=64,
maximum=2048,
value=DEFAULT_GENERATION_PARAMS["max_new_tokens"],
step=64,
label="Max New Tokens",
info="Maximum number of tokens to generate"
)
with gr.Row():
do_sample = gr.Checkbox(
value=DEFAULT_GENERATION_PARAMS["do_sample"],
label="Do Sample",
info="When enabled, uses sampling; when disabled, uses greedy decoding"
)
num_beams = gr.Slider(
minimum=1,
maximum=10,
value=DEFAULT_GENERATION_PARAMS["num_beams"],
step=1,
label="Beam Size",
info="Number of beams for beam search (1 = no beam search)"
)
with gr.Accordion("Advanced Parameters", open=False):
with gr.Row():
repetition_penalty = gr.Slider(
minimum=0.1,
maximum=2.0,
value=DEFAULT_GENERATION_PARAMS["repetition_penalty"],
step=0.1,
label="Repetition Penalty",
info="Penalize repetition (1.0 = no penalty, > 1.0 = penalty)"
)
length_penalty = gr.Slider(
minimum=-2.0,
maximum=2.0,
value=DEFAULT_GENERATION_PARAMS["length_penalty"],
step=0.1,
label="Length Penalty",
info="<1 favors shorter, >1 favors longer generations"
)
with gr.Row():
no_repeat_ngram_size = gr.Slider(
minimum=0,
maximum=10,
value=DEFAULT_GENERATION_PARAMS["no_repeat_ngram_size"],
step=1,
label="No Repeat NGram Size",
info="Size of ngrams that can't be repeated (0 = no constraint)"
)
early_stopping = gr.Checkbox(
value=DEFAULT_GENERATION_PARAMS["early_stopping"],
label="Early Stopping",
info="Stop beam search when best beam is found"
)
# Connect preset button with parameter controls
preset_button.click(
fn=apply_preset,
inputs=[preset_dropdown],
outputs=[
temperature,
top_p,
top_k,
max_tokens,
do_sample,
num_beams,
early_stopping,
length_penalty,
no_repeat_ngram_size,
repetition_penalty,
preset_description
]
)
# Update description when preset is selected
preset_dropdown.change(
fn=lambda x: get_preset_description(x),
inputs=[preset_dropdown],
outputs=[preset_description]
)
chatbot = gr.ChatInterface(
fn=model_inference,
additional_inputs=[
model_dropdown,
temperature,
top_p,
top_k,
max_tokens,
do_sample,
num_beams,
early_stopping,
length_penalty,
no_repeat_ngram_size,
repetition_penalty
],
examples=examples,
fill_height=True,
textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image", "video"], file_count="multiple"),
stop_btn="Stop",
multimodal=True,
cache_examples=False,
type="messages",
)
return demo
demo = create_interface()
demo.launch(debug=True, mcp=True) |