singhn9 commited on
Commit
77d1d59
·
verified ·
1 Parent(s): 78877d1

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +42 -3
app.py CHANGED
@@ -147,10 +147,49 @@ def compute_similarity(resume_text, job_list):
147
  best_job = metrics["Average"].idxmax()
148
  reasoning = f"<b>The best job match is {best_job} based on the highest average similarity score.</b>"
149
 
 
150
  description = """
151
  <p><b>Explanation of the Table:</b></p>
152
- <p>See below for model details (same as previous version)...</p>
153
- <p>If you liked this application, feel free to send your feedback to <b>[email protected]</b>.</p>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
154
  """
155
 
156
  return reasoning, styled_df + description
@@ -237,7 +276,7 @@ def add_job_to_list(current_job, job_list):
237
  return updated_list, display_html, "" # Clear the input box
238
 
239
  def clear_jobs():
240
- return [], "", ""
241
 
242
  # --- Main Processing ---
243
  def process_and_display(resume, job_list, request=None):
 
147
  best_job = metrics["Average"].idxmax()
148
  reasoning = f"<b>The best job match is {best_job} based on the highest average similarity score.</b>"
149
 
150
+ # --- RESTORED FULL DESCRIPTION AND REFERENCES ---
151
  description = """
152
  <p><b>Explanation of the Table:</b></p>
153
+ <ul>
154
+ <li><b>Models:</b> Each row corresponds to a pre-trained model used for computing similarity. Below are details about each model:</li>
155
+ <ul>
156
+ <li><b>all-MiniLM-L6-v2:</b> Trained on NLI and STS datasets. Developed by Hugging Face and Microsoft.
157
+ (<a href="https://arxiv.org/abs/2012.15832" target="_blank">Research Paper</a>,
158
+ <a href="https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2" target="_blank">Model Card</a>).</li>
159
+ <li><b>paraphrase-MiniLM-L6-v2:</b> Optimized for paraphrase detection on datasets like Quora Questions and MSRPC.
160
+ (<a href="https://arxiv.org/abs/2012.15832" target="_blank">Research Paper</a>,
161
+ <a href="https://huggingface.co/sentence-transformers/paraphrase-MiniLM-L6-v2" target="_blank">Model Card</a>).</li>
162
+ <li><b>multi-qa-MiniLM-L6-cos-v1:</b> Fine-tuned for question-answering tasks using datasets like SQuAD and Natural Questions.
163
+ (<a href="https://huggingface.co/sentence-transformers/multi-qa-MiniLM-L6-cos-v1" target="_blank">Model Card</a>).</li>
164
+ <li><b>all-mpnet-base-v2:</b> Robust embeddings for high-contextualized tasks.
165
+ (<a href="https://arxiv.org/abs/2004.09297" target="_blank">Research Paper</a>,
166
+ <a href="https://huggingface.co/sentence-transformers/all-mpnet-base-v2" target="_blank">Model Card</a>).</li>
167
+ <li><b>paraphrase-mpnet-base-v2:</b> Reliable for paraphrase tasks, trained on diverse datasets.
168
+ (<a href="https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2" target="_blank">Model Card</a>).</li>
169
+ <li><b>all-distilroberta-v1:</b> A lightweight RoBERTa-based model for sentence embeddings.
170
+ (<a href="https://arxiv.org/abs/1907.11692" target="_blank">Research Paper</a>,
171
+ <a href="https://huggingface.co/sentence-transformers/all-distilroberta-v1" target="_blank">Model Card</a>).</li>
172
+ <li><b>paraphrase-albert-small-v2:</b> Suitable for paraphrasing in resource-constrained environments.
173
+ (<a href="https://huggingface.co/sentence-transformers/paraphrase-albert-small-v2" target="_blank">Model Card</a>).</li>
174
+ <li><b>multi-qa-distilbert-cos-v1:</b> Optimized for multilingual question-answering tasks.
175
+ (<a href="https://huggingface.co/sentence-transformers/multi-qa-distilbert-cos-v1" target="_blank">Model Card</a>).</li>
176
+ <li><b>distiluse-base-multilingual-cased-v2:</b> Trained on multilingual datasets for cross-lingual embeddings.
177
+ (<a href="https://huggingface.co/sentence-transformers/distiluse-base-multilingual-cased-v2" target="_blank">Model Card</a>).</li>
178
+ <li><b>all-MiniLM-L12-v2:</b> Deeper MiniLM variant for enhanced contextual understanding.
179
+ (<a href="https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2" target="_blank">Model Card</a>).</li>
180
+ </ul>
181
+ <li><b>Metrics:</b>
182
+ <ul>
183
+ <li><b>Average:</b> Mean similarity score for each job description.</li>
184
+ <li><b>Variance:</b> Variability in the similarity scores.</li>
185
+ <li><b>Median:</b> Middle value of the similarity scores.</li>
186
+ <li><b>Standard Deviation:</b> Spread of the similarity scores around the mean.</li>
187
+ <li><b>Certainty Score:</b> Indicates model agreement, with 1 being the highest consensus.</li>
188
+ </ul>
189
+ </li>
190
+ </ul>
191
+ <p>If you liked this application, feel free to send your feedback, suggestions, or adulations to
192
+ <b>[email protected]</b>.</p>
193
  """
194
 
195
  return reasoning, styled_df + description
 
276
  return updated_list, display_html, "" # Clear the input box
277
 
278
  def clear_jobs():
279
+ return [], "<i>No jobs added yet...</i>", ""
280
 
281
  # --- Main Processing ---
282
  def process_and_display(resume, job_list, request=None):