Spaces:
Sleeping
Sleeping
Commit
·
335afa3
1
Parent(s):
e5c93ae
Added all dependencies
Browse files- app.py +34 -0
- ensemble_model.h5 +3 -0
- requirements.txt +2 -0
app.py
ADDED
|
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from tensorflow.keras.models import load_model
|
| 2 |
+
import streamlit as st
|
| 3 |
+
import cv2
|
| 4 |
+
import numpy as np
|
| 5 |
+
from PIL import Image
|
| 6 |
+
# Load the ensemble model using tf.keras.models.load_model()
|
| 7 |
+
loaded_ensemble_model = load_model('ensemble_model.h5')
|
| 8 |
+
|
| 9 |
+
st.markdown('<h1 style="color:red;">Ensemble Image classification model for Alzheimer</h1>', unsafe_allow_html=True)
|
| 10 |
+
st.markdown('<h2 style="color:gray;">The image classification model classifies brain scan image into following categories:</h2>', unsafe_allow_html=True)
|
| 11 |
+
st.markdown('<h3 style="color:gray;"> Moderate,Mild,Very Mild, NonDemented</h3>', unsafe_allow_html=True)
|
| 12 |
+
|
| 13 |
+
upload= st.file_uploader('Insert image for classification', type=['png','jpg'])
|
| 14 |
+
c1, c2= st.columns(2)
|
| 15 |
+
if upload is not None:
|
| 16 |
+
im= Image.open(upload)
|
| 17 |
+
im = im.convert('RGB')
|
| 18 |
+
img= np.asarray(im)
|
| 19 |
+
image= cv2.resize(img,(150, 150))
|
| 20 |
+
img_array = image.reshape(1,150,150,3)
|
| 21 |
+
c1.header('Input Image')
|
| 22 |
+
c1.image(im)
|
| 23 |
+
|
| 24 |
+
loaded_ensemble_model = load_model('ensemble_model.h5')
|
| 25 |
+
pred = loaded_ensemble_model.predict([img_array, img_array])
|
| 26 |
+
labels = {0:'MildDemented',1:'ModerateDemented',2:'NonDemented',3:'VeryMildDemented'}
|
| 27 |
+
output_array = pred
|
| 28 |
+
normalized_array = output_array / np.sum(output_array)
|
| 29 |
+
percentage_array = normalized_array * 100
|
| 30 |
+
c2.header('Output')
|
| 31 |
+
c2.subheader('Predicted class :')
|
| 32 |
+
c2.write(labels[pred.argmax()])
|
| 33 |
+
c2.subheader('With :')
|
| 34 |
+
c2.write(f'{int(np.max(percentage_array))}% assurity')
|
ensemble_model.h5
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b63610a2561116e46a83ad420065ee8e5c679d59b49ddb28e82b1cdf293174dc
|
| 3 |
+
size 193319800
|
requirements.txt
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
tensorflow
|
| 2 |
+
opencv-python
|