Spaces:
Runtime error
Runtime error
Commit
·
9cedb26
1
Parent(s):
04d64f8
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,309 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import tempfile
|
| 3 |
+
import time
|
| 4 |
+
|
| 5 |
+
import gradio as gr
|
| 6 |
+
import numpy as np
|
| 7 |
+
import torch
|
| 8 |
+
import yt_dlp as youtube_dl
|
| 9 |
+
from gradio_client import Client
|
| 10 |
+
from pyannote.audio import Pipeline
|
| 11 |
+
from transformers.pipelines.audio_utils import ffmpeg_read
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
YT_LENGTH_LIMIT_S = 36000 # limit to 1 hour YouTube files
|
| 15 |
+
SAMPLING_RATE = 16000
|
| 16 |
+
|
| 17 |
+
API_URL = "https://sanchit-gandhi-whisper-jax.hf.space/"
|
| 18 |
+
|
| 19 |
+
# set up the Gradio client
|
| 20 |
+
client = Client(API_URL)
|
| 21 |
+
|
| 22 |
+
# set up the diarization pipeline
|
| 23 |
+
diarization_pipeline = Pipeline.from_pretrained("pyannote/speaker-diarization", use_auth_token=True)
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
def format_string(timestamp):
|
| 27 |
+
"""
|
| 28 |
+
Reformat a timestamp string from (HH:)MM:SS to float seconds. Note that the hour column
|
| 29 |
+
is optional, and is appended within the function if not input.
|
| 30 |
+
|
| 31 |
+
Args:
|
| 32 |
+
timestamp (str):
|
| 33 |
+
Timestamp in string format, either MM:SS or HH:MM:SS.
|
| 34 |
+
Returns:
|
| 35 |
+
seconds (float):
|
| 36 |
+
Total seconds corresponding to the input timestamp.
|
| 37 |
+
"""
|
| 38 |
+
split_time = timestamp.split(":")
|
| 39 |
+
split_time = [float(sub_time) for sub_time in split_time]
|
| 40 |
+
|
| 41 |
+
if len(split_time) == 2:
|
| 42 |
+
split_time.insert(0, 0)
|
| 43 |
+
|
| 44 |
+
seconds = split_time[0] * 3600 + split_time[1] * 60 + split_time[2]
|
| 45 |
+
return seconds
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
# Adapted from https://github.com/openai/whisper/blob/c09a7ae299c4c34c5839a76380ae407e7d785914/whisper/utils.py#L50
|
| 49 |
+
def format_timestamp(seconds: float, always_include_hours: bool = False, decimal_marker: str = "."):
|
| 50 |
+
"""
|
| 51 |
+
Reformat a timestamp from a float of seconds to a string in format (HH:)MM:SS. Note that the hour
|
| 52 |
+
column is optional, and is appended in the function if the number of hours > 0.
|
| 53 |
+
|
| 54 |
+
Args:
|
| 55 |
+
seconds (float):
|
| 56 |
+
Total seconds corresponding to the input timestamp.
|
| 57 |
+
Returns:
|
| 58 |
+
timestamp (str):
|
| 59 |
+
Timestamp in string format, either MM:SS or HH:MM:SS.
|
| 60 |
+
"""
|
| 61 |
+
if seconds is not None:
|
| 62 |
+
milliseconds = round(seconds * 1000.0)
|
| 63 |
+
|
| 64 |
+
hours = milliseconds // 3_600_000
|
| 65 |
+
milliseconds -= hours * 3_600_000
|
| 66 |
+
|
| 67 |
+
minutes = milliseconds // 60_000
|
| 68 |
+
milliseconds -= minutes * 60_000
|
| 69 |
+
|
| 70 |
+
seconds = milliseconds // 1_000
|
| 71 |
+
milliseconds -= seconds * 1_000
|
| 72 |
+
|
| 73 |
+
hours_marker = f"{hours:02d}:" if always_include_hours or hours > 0 else ""
|
| 74 |
+
return f"{hours_marker}{minutes:02d}:{seconds:02d}{decimal_marker}{milliseconds:03d}"
|
| 75 |
+
else:
|
| 76 |
+
# we have a malformed timestamp so just return it as is
|
| 77 |
+
return seconds
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
def format_as_transcription(raw_segments):
|
| 81 |
+
return "\n".join(
|
| 82 |
+
[
|
| 83 |
+
f"{chunk['speaker']} [{format_timestamp(chunk['timestamp'][0])} -> {format_timestamp(chunk['timestamp'][1])}] {chunk['text']}"
|
| 84 |
+
for chunk in raw_segments
|
| 85 |
+
]
|
| 86 |
+
)
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
def _return_yt_html_embed(yt_url):
|
| 90 |
+
video_id = yt_url.split("?v=")[-1]
|
| 91 |
+
HTML_str = (
|
| 92 |
+
f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>'
|
| 93 |
+
" </center>"
|
| 94 |
+
)
|
| 95 |
+
return HTML_str
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
def download_yt_audio(yt_url, filename):
|
| 99 |
+
info_loader = youtube_dl.YoutubeDL()
|
| 100 |
+
try:
|
| 101 |
+
info = info_loader.extract_info(yt_url, download=False)
|
| 102 |
+
except youtube_dl.utils.DownloadError as err:
|
| 103 |
+
raise gr.Error(str(err))
|
| 104 |
+
|
| 105 |
+
file_length = info["duration_string"]
|
| 106 |
+
file_length_s = format_string(file_length)
|
| 107 |
+
|
| 108 |
+
if file_length_s > YT_LENGTH_LIMIT_S:
|
| 109 |
+
yt_length_limit_hms = time.strftime("%HH:%MM:%SS", time.gmtime(YT_LENGTH_LIMIT_S))
|
| 110 |
+
file_length_hms = time.strftime("%HH:%MM:%SS", time.gmtime(file_length_s))
|
| 111 |
+
raise gr.Error(f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video.")
|
| 112 |
+
|
| 113 |
+
ydl_opts = {"outtmpl": filename, "format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best"}
|
| 114 |
+
with youtube_dl.YoutubeDL(ydl_opts) as ydl:
|
| 115 |
+
try:
|
| 116 |
+
ydl.download([yt_url])
|
| 117 |
+
except youtube_dl.utils.ExtractorError as err:
|
| 118 |
+
raise gr.Error(str(err))
|
| 119 |
+
|
| 120 |
+
|
| 121 |
+
def align(transcription, segments, group_by_speaker=True):
|
| 122 |
+
transcription_split = transcription.split("\n")
|
| 123 |
+
|
| 124 |
+
# re-format transcription from string to List[Dict]
|
| 125 |
+
transcript = []
|
| 126 |
+
for chunk in transcription_split:
|
| 127 |
+
start_end, transcription = chunk[1:].split("] ")
|
| 128 |
+
start, end = start_end.split("->")
|
| 129 |
+
|
| 130 |
+
transcript.append({"timestamp": (format_string(start), format_string(end)), "text": transcription})
|
| 131 |
+
|
| 132 |
+
# diarizer output may contain consecutive segments from the same speaker (e.g. {(0 -> 1, speaker_1), (1 -> 1.5, speaker_1), ...})
|
| 133 |
+
# we combine these segments to give overall timestamps for each speaker's turn (e.g. {(0 -> 1.5, speaker_1), ...})
|
| 134 |
+
new_segments = []
|
| 135 |
+
prev_segment = cur_segment = segments[0]
|
| 136 |
+
|
| 137 |
+
for i in range(1, len(segments)):
|
| 138 |
+
cur_segment = segments[i]
|
| 139 |
+
|
| 140 |
+
# check if we have changed speaker ("label")
|
| 141 |
+
if cur_segment["label"] != prev_segment["label"] and i < len(segments):
|
| 142 |
+
# add the start/end times for the super-segment to the new list
|
| 143 |
+
new_segments.append(
|
| 144 |
+
{
|
| 145 |
+
"segment": {"start": prev_segment["segment"]["start"], "end": cur_segment["segment"]["start"]},
|
| 146 |
+
"speaker": prev_segment["label"],
|
| 147 |
+
}
|
| 148 |
+
)
|
| 149 |
+
prev_segment = segments[i]
|
| 150 |
+
|
| 151 |
+
# add the last segment(s) if there was no speaker change
|
| 152 |
+
new_segments.append(
|
| 153 |
+
{
|
| 154 |
+
"segment": {"start": prev_segment["segment"]["start"], "end": cur_segment["segment"]["end"]},
|
| 155 |
+
"speaker": prev_segment["label"],
|
| 156 |
+
}
|
| 157 |
+
)
|
| 158 |
+
|
| 159 |
+
# get the end timestamps for each chunk from the ASR output
|
| 160 |
+
end_timestamps = np.array([chunk["timestamp"][-1] for chunk in transcript])
|
| 161 |
+
segmented_preds = []
|
| 162 |
+
|
| 163 |
+
# align the diarizer timestamps and the ASR timestamps
|
| 164 |
+
for segment in new_segments:
|
| 165 |
+
# get the diarizer end timestamp
|
| 166 |
+
end_time = segment["segment"]["end"]
|
| 167 |
+
# find the ASR end timestamp that is closest to the diarizer's end timestamp and cut the transcript to here
|
| 168 |
+
upto_idx = np.argmin(np.abs(end_timestamps - end_time))
|
| 169 |
+
|
| 170 |
+
if group_by_speaker:
|
| 171 |
+
segmented_preds.append(
|
| 172 |
+
{
|
| 173 |
+
"speaker": segment["speaker"],
|
| 174 |
+
"text": "".join([chunk["text"] for chunk in transcript[: upto_idx + 1]]),
|
| 175 |
+
"timestamp": (transcript[0]["timestamp"][0], transcript[upto_idx]["timestamp"][1]),
|
| 176 |
+
}
|
| 177 |
+
)
|
| 178 |
+
else:
|
| 179 |
+
for i in range(upto_idx + 1):
|
| 180 |
+
segmented_preds.append({"speaker": segment["speaker"], **transcript[i]})
|
| 181 |
+
|
| 182 |
+
# crop the transcripts and timestamp lists according to the latest timestamp (for faster argmin)
|
| 183 |
+
transcript = transcript[upto_idx + 1 :]
|
| 184 |
+
end_timestamps = end_timestamps[upto_idx + 1 :]
|
| 185 |
+
|
| 186 |
+
# final post-processing
|
| 187 |
+
transcription = format_as_transcription(segmented_preds)
|
| 188 |
+
return transcription
|
| 189 |
+
|
| 190 |
+
|
| 191 |
+
def transcribe(audio_path, group_by_speaker=True):
|
| 192 |
+
# run Whisper JAX asynchronously using Gradio client (endpoint)
|
| 193 |
+
job = client.submit(
|
| 194 |
+
audio_path,
|
| 195 |
+
"transcribe",
|
| 196 |
+
True,
|
| 197 |
+
api_name="/predict_1",
|
| 198 |
+
)
|
| 199 |
+
|
| 200 |
+
# run diarization while we wait for Whisper JAX
|
| 201 |
+
diarization = diarization_pipeline(audio_path)
|
| 202 |
+
segments = diarization.for_json()["content"]
|
| 203 |
+
|
| 204 |
+
# only fetch the transcription result after performing diarization
|
| 205 |
+
transcription, _ = job.result()
|
| 206 |
+
|
| 207 |
+
# align the ASR transcriptions and diarization timestamps
|
| 208 |
+
transcription = align(transcription, segments, group_by_speaker=group_by_speaker)
|
| 209 |
+
|
| 210 |
+
return transcription
|
| 211 |
+
|
| 212 |
+
|
| 213 |
+
def transcribe_yt(yt_url, group_by_speaker=True):
|
| 214 |
+
# run Whisper JAX asynchronously using Gradio client (endpoint)
|
| 215 |
+
job = client.submit(
|
| 216 |
+
yt_url,
|
| 217 |
+
"transcribe",
|
| 218 |
+
True,
|
| 219 |
+
api_name="/predict_2",
|
| 220 |
+
)
|
| 221 |
+
|
| 222 |
+
_return_yt_html_embed(yt_url)
|
| 223 |
+
with tempfile.TemporaryDirectory() as tmpdirname:
|
| 224 |
+
filepath = os.path.join(tmpdirname, "video.mp4")
|
| 225 |
+
download_yt_audio(yt_url, filepath)
|
| 226 |
+
|
| 227 |
+
with open(filepath, "rb") as f:
|
| 228 |
+
inputs = f.read()
|
| 229 |
+
|
| 230 |
+
inputs = ffmpeg_read(inputs, SAMPLING_RATE)
|
| 231 |
+
inputs = torch.from_numpy(inputs).float()
|
| 232 |
+
inputs = inputs.unsqueeze(0)
|
| 233 |
+
|
| 234 |
+
diarization = diarization_pipeline(
|
| 235 |
+
{"waveform": inputs, "sample_rate": SAMPLING_RATE},
|
| 236 |
+
)
|
| 237 |
+
segments = diarization.for_json()["content"]
|
| 238 |
+
|
| 239 |
+
# only fetch the transcription result after performing diarization
|
| 240 |
+
transcription, _ = job.result()
|
| 241 |
+
|
| 242 |
+
# align the ASR transcriptions and diarization timestamps
|
| 243 |
+
transcription = align(transcription, segments, group_by_speaker=group_by_speaker)
|
| 244 |
+
|
| 245 |
+
return transcription
|
| 246 |
+
|
| 247 |
+
|
| 248 |
+
title = "Whisper JAX + Speaker Diarization ⚡️"
|
| 249 |
+
|
| 250 |
+
description = """Combine the speed of Whisper JAX with pyannote speaker diarization to transcribe meetings in super fast time.
|
| 251 |
+
"""
|
| 252 |
+
|
| 253 |
+
article = "Whisper large-v2 model by OpenAI. Speaker diarization model by pyannote. Whisper JAX backend running JAX on a TPU v4-8 through the generous support of the [TRC](https://sites.research.google/trc/about/) programme. Whisper JAX [code](https://github.com/sanchit-gandhi/whisper-jax) and Gradio demo by 🤗 Hugging Face."
|
| 254 |
+
|
| 255 |
+
microphone = gr.Interface(
|
| 256 |
+
fn=transcribe,
|
| 257 |
+
inputs=[
|
| 258 |
+
gr.inputs.Audio(source="microphone", optional=True, type="filepath"),
|
| 259 |
+
gr.inputs.Checkbox(default=True, label="Group by speaker"),
|
| 260 |
+
],
|
| 261 |
+
outputs=[
|
| 262 |
+
gr.outputs.Textbox(label="Transcription").style(show_copy_button=True),
|
| 263 |
+
],
|
| 264 |
+
allow_flagging="never",
|
| 265 |
+
title=title,
|
| 266 |
+
description=description,
|
| 267 |
+
article=article,
|
| 268 |
+
)
|
| 269 |
+
|
| 270 |
+
audio_file = gr.Interface(
|
| 271 |
+
fn=transcribe,
|
| 272 |
+
inputs=[
|
| 273 |
+
gr.inputs.Audio(source="upload", optional=True, label="Audio file", type="filepath"),
|
| 274 |
+
gr.inputs.Checkbox(default=True, label="Group by speaker"),
|
| 275 |
+
],
|
| 276 |
+
outputs=[
|
| 277 |
+
gr.outputs.Textbox(label="Transcription").style(show_copy_button=True),
|
| 278 |
+
],
|
| 279 |
+
allow_flagging="never",
|
| 280 |
+
title=title,
|
| 281 |
+
description=description,
|
| 282 |
+
article=article,
|
| 283 |
+
)
|
| 284 |
+
|
| 285 |
+
youtube = gr.Interface(
|
| 286 |
+
fn=transcribe_yt,
|
| 287 |
+
inputs=[
|
| 288 |
+
gr.inputs.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"),
|
| 289 |
+
gr.inputs.Checkbox(default=True, label="Group by speaker"),
|
| 290 |
+
],
|
| 291 |
+
outputs=[
|
| 292 |
+
gr.outputs.HTML(label="Video"),
|
| 293 |
+
gr.outputs.Textbox(label="Transcription").style(show_copy_button=True),
|
| 294 |
+
],
|
| 295 |
+
allow_flagging="never",
|
| 296 |
+
title=title,
|
| 297 |
+
examples=[["https://www.youtube.com/watch?v=m8u-18Q0s7I", True]],
|
| 298 |
+
cache_examples=False,
|
| 299 |
+
description=description,
|
| 300 |
+
article=article,
|
| 301 |
+
)
|
| 302 |
+
|
| 303 |
+
demo = gr.Blocks()
|
| 304 |
+
|
| 305 |
+
with demo:
|
| 306 |
+
gr.TabbedInterface([microphone, audio_file, youtube], ["Microphone", "Audio File", "YouTube"])
|
| 307 |
+
|
| 308 |
+
demo.queue(concurrency_count=1, max_size=5)
|
| 309 |
+
demo.launch()
|