use pipeline instead of endpoint
Browse files- .gitignore +2 -1
- inference.py +8 -1
.gitignore
CHANGED
|
@@ -2,4 +2,5 @@
|
|
| 2 |
*.pyc
|
| 3 |
__pycache__
|
| 4 |
.env
|
| 5 |
-
*.env
|
|
|
|
|
|
| 2 |
*.pyc
|
| 3 |
__pycache__
|
| 4 |
.env
|
| 5 |
+
*.env
|
| 6 |
+
.idea
|
inference.py
CHANGED
|
@@ -4,6 +4,8 @@ import io
|
|
| 4 |
import config
|
| 5 |
import random
|
| 6 |
|
|
|
|
|
|
|
| 7 |
|
| 8 |
class DiffusionInference:
|
| 9 |
def __init__(self, api_key=None):
|
|
@@ -64,7 +66,7 @@ class DiffusionInference:
|
|
| 64 |
|
| 65 |
try:
|
| 66 |
# Call the API with all parameters as kwargs
|
| 67 |
-
image = self.
|
| 68 |
return image
|
| 69 |
except Exception as e:
|
| 70 |
print(f"Error generating image: {e}")
|
|
@@ -159,3 +161,8 @@ class DiffusionInference:
|
|
| 159 |
os.remove(temp_file)
|
| 160 |
except Exception as e:
|
| 161 |
print(f"Warning: Could not delete temporary file {temp_file}: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
import config
|
| 5 |
import random
|
| 6 |
|
| 7 |
+
from diffusers import AutoPipelineForText2Image
|
| 8 |
+
import torch
|
| 9 |
|
| 10 |
class DiffusionInference:
|
| 11 |
def __init__(self, api_key=None):
|
|
|
|
| 66 |
|
| 67 |
try:
|
| 68 |
# Call the API with all parameters as kwargs
|
| 69 |
+
image = self.run_text_to_image_pipeline(**params)
|
| 70 |
return image
|
| 71 |
except Exception as e:
|
| 72 |
print(f"Error generating image: {e}")
|
|
|
|
| 161 |
os.remove(temp_file)
|
| 162 |
except Exception as e:
|
| 163 |
print(f"Warning: Could not delete temporary file {temp_file}: {e}")
|
| 164 |
+
|
| 165 |
+
def run_text_to_image_pipeline(self,model_name, **kwargs):
|
| 166 |
+
pipeline = AutoPipelineForText2Image.from_pretrained(model=model_name, torch_dtype=torch.float16).to("cuda")
|
| 167 |
+
image = pipeline(**kwargs).images[0]
|
| 168 |
+
return image
|