File size: 11,978 Bytes
79f14e8
c65b2a4
 
 
 
79f14e8
 
c65b2a4
 
 
 
79f14e8
 
c65b2a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
---
title: OpenSpiel Environment Server
emoji: ๐ŸŽฎ
colorFrom: blue
colorTo: purple
sdk: docker
pinned: false
app_port: 8000
base_path: /web
tags:
  - openenv
---

# OpenSpiel Environment

Integration of OpenSpiel games with the OpenEnv framework. [OpenSpiel](https://github.com/google-deepmind/open_spiel) is DeepMind's collection of 70+ game environments for RL research.

## Supported Games

This environment supports 6 games across different categories:

### Single-Player Games (No Opponent)
1. **Catch** - Move horizontally to catch a falling ball
2. **Cliff Walking** - Navigate grid without falling off cliff (Sutton & Barto benchmark)
3. **2048** - Classic tile-merging puzzle game
4. **Blackjack** - Simplified blackjack (HIT/STAND only)

### Multi-Player Games (with Bot Opponent)
5. **Tic-Tac-Toe** - Classic 3x3 game
6. **Kuhn Poker** - 2-player simplified poker (game theory benchmark)

## Quick Start

The simplest way to use the OpenSpiel environment is through the `OpenSpielEnv` class:

```python
from openspiel_env import OpenSpielEnv, OpenSpielAction

try:
    # Create environment from Docker image
    env = OpenSpielEnv.from_docker_image("openspiel-env:latest")

    # Reset to start a new episode
    result = env.reset()
    print(f"Initial state: {result.observation.info_state}")
    print(f"Legal actions: {result.observation.legal_actions}")

    # Play until done
    while not result.done:
        action_id = result.observation.legal_actions[0]
        result = env.step(OpenSpielAction(action_id=action_id))
        print(f"Reward: {result.reward}, Done: {result.done}")

finally:
    # Always clean up
    env.close()
```

That's it! The `OpenSpielEnv.from_docker_image()` method handles:
- Starting the Docker container
- Waiting for the server to be ready
- Connecting to the environment
- Container cleanup when you call `close()`

## Building the Docker Image

OpenSpiel requires compilation from C++ source. The Docker build uses a **pre-built base image** by default to avoid long build times.

### Default Build (Recommended)

From the **environment directory** (`envs/openspiel_env/`):

```bash
# Uses pre-built base image from GHCR (fast, ~1-2 min)
docker build -t openspiel-env:latest -f server/Dockerfile .
```

This uses the pre-built `ghcr.io/meta-pytorch/openenv-openspiel-base` image which already contains compiled OpenSpiel.

### Building Your Own Base Image (Optional)

If you need to customize OpenSpiel or can't access the pre-built image:

```bash
# Step 1: Build the base image (compiles OpenSpiel, ~30-60 min)
docker build -t openspiel-base:latest -f server/Dockerfile.openspiel-base .

# Step 2: Build the environment using your local base image
docker build -t openspiel-env:latest \
  --build-arg OPENSPIEL_BASE_IMAGE=openspiel-base:latest \
  -f server/Dockerfile .
```

## Deploying to Hugging Face Spaces

You can easily deploy your OpenEnv environment to Hugging Face Spaces using the `openenv push` command:

```bash
# From the environment directory (envs/openspiel_env/)
openenv push

# Or specify options
openenv push --namespace my-org --private
```

The `openenv push` command will:
1. Validate that the directory is an OpenEnv environment (checks for `openenv.yaml`)
2. Prepare a custom build for Hugging Face Docker space (enables web interface)
3. Upload to Hugging Face (ensuring you're logged in)

### Prerequisites

- Authenticate with Hugging Face: The command will prompt for login if not already authenticated

### Options

- `--directory`, `-d`: Directory containing the OpenEnv environment (defaults to current directory)
- `--repo-id`, `-r`: Repository ID in format 'username/repo-name' (defaults to 'username/env-name' from openenv.yaml)
- `--base-image`, `-b`: Base Docker image to use (overrides Dockerfile FROM)
- `--private`: Deploy the space as private (default: public)

### Examples

```bash
# Push to your personal namespace (defaults to username/env-name from openenv.yaml)
openenv push

# Push to a specific repository
openenv push --repo-id my-org/openspiel-env

# Push as a private space
openenv push --private

# Combine options
openenv push --repo-id my-org/openspiel-env --private
```

After deployment, your space will be available at:
`https://huggingface.co/spaces/<repo-id>`

The deployed space includes:
- **Web Interface** at `/web` - Interactive UI for exploring the environment
- **API Documentation** at `/docs` - Full OpenAPI/Swagger interface
- **Health Check** at `/health` - Container health monitoring

> **Note**: The default Dockerfile uses a pre-built base image with OpenSpiel already compiled, so deployment is fast and works with standard CPU hardware. If you build your own base image, compilation requires more resources and time.

## Running Specific Games

```bash
# Catch (default)
docker run -p 8000:8000 openspiel-env:latest

# Tic-Tac-Toe with random opponent
docker run -p 8000:8000 -e OPENSPIEL_GAME=tic_tac_toe openspiel-env:latest

# Kuhn Poker
docker run -p 8000:8000 -e OPENSPIEL_GAME=kuhn_poker openspiel-env:latest

# 2048
docker run -p 8000:8000 -e OPENSPIEL_GAME=2048 openspiel-env:latest

# Blackjack
docker run -p 8000:8000 -e OPENSPIEL_GAME=blackjack openspiel-env:latest

# Cliff Walking
docker run -p 8000:8000 -e OPENSPIEL_GAME=cliff_walking openspiel-env:latest
```

## Environment Details

### Action
**OpenSpielAction**: Contains the action to take
- `action_id` (int) - Action ID to execute
- `game_name` (str) - Game name (default: "catch")
- `game_params` (Dict) - Optional game parameters

### Observation
**OpenSpielObservation**: Contains the game state
- `info_state` (List[float]) - Agent's information state vector
- `legal_actions` (List[int]) - Legal action IDs
- `game_phase` (str) - "initial", "playing", or "terminal"
- `current_player_id` (int) - Current player (-1 for simultaneous)
- `opponent_last_action` (Optional[int]) - Last opponent action
- `done` (bool) - Whether the episode has ended
- `reward` (Optional[float]) - Reward for the last action

### State
**OpenSpielState**: Server-side state snapshot
- `episode_id` (str) - Unique identifier for the current episode
- `step_count` (int) - Number of steps taken
- `game_name` (str) - Game name
- `agent_player` (int) - Agent's player ID
- `opponent_policy` (str) - Opponent policy name
- `num_players` (int) - Total players

## Configuration

### Environment Variables

- `OPENSPIEL_GAME`: Game name (default: "catch")
- `OPENSPIEL_AGENT_PLAYER`: Player ID for agent (default: 0)
- `OPENSPIEL_OPPONENT_POLICY`: Opponent policy for multi-player games
  - `random`: Uniform random (default)
  - `first`: Always picks first legal action
  - `last`: Always picks last legal action

### Example: Tic-Tac-Toe with Fixed Opponent

```bash
docker run -p 8000:8000 \
  -e OPENSPIEL_GAME=tic_tac_toe \
  -e OPENSPIEL_OPPONENT_POLICY=first \
  openspiel-env:latest
```

## Advanced Usage

### Connecting to an Existing Server

If you already have an OpenSpiel environment server running:

```python
from openspiel_env import OpenSpielEnv, OpenSpielAction

# Connect to existing server
env = OpenSpielEnv(base_url="http://localhost:8000")

# Use as normal
result = env.reset()
result = env.step(OpenSpielAction(action_id=result.observation.legal_actions[0]))

# Close connection (does NOT stop the server)
env.close()
```

### Connecting to HuggingFace Space

```python
from openspiel_env import OpenSpielEnv, OpenSpielAction

# Connect to remote Space
env = OpenSpielEnv(base_url="https://your-username-openspiel.hf.space")

result = env.reset()
print(f"Game: {result.observation.game_phase}")
print(f"Legal actions: {result.observation.legal_actions}")

result = env.step(OpenSpielAction(action_id=result.observation.legal_actions[0]))
env.close()
```

## Game-Specific Information

### 1. Catch
- **Type**: Single-player
- **Action Space**: 3 actions (left, stay, right)
- **Observation**: 5x5 grid flattened (25 dimensions)
- **Reward**: +1 for catching ball, 0 otherwise
- **Episode Length**: ~10 steps

### 2. Tic-Tac-Toe
- **Type**: 2-player turn-based, perfect information
- **Players**: Agent (X) vs Random Bot (O)
- **Action Space**: 9 positions
- **Observation**: 27 dimensions (3x3 board + game state)
- **Reward**: +1 win, -1 loss, 0 draw/mid-game

### 3. Kuhn Poker
- **Type**: 2-player turn-based, imperfect information
- **Players**: Agent vs Random Bot
- **Action Space**: 2 actions (pass/fold, bet/call)
- **Observation**: 6 dimensions (card + betting history)
- **Reward**: Pot winnings (typically -1, 0, +1, +2)
- **Notes**: THE benchmark for imperfect-information RL

### 4. Cliff Walking
- **Type**: Single-player grid world
- **Action Space**: 4 actions (up, down, left, right)
- **Observation**: Position encoding
- **Reward**: -1 per step, -100 for falling off cliff
- **Notes**: Classic RL benchmark from Sutton & Barto

### 5. 2048
- **Type**: Single-player puzzle
- **Action Space**: 4 actions (up, down, left, right)
- **Observation**: 4x4 grid with tile values
- **Reward**: Points from merging tiles
- **Notes**: Stochastic tile spawning

### 6. Blackjack
- **Type**: Single-player vs dealer
- **Action Space**: 2 actions (HIT, STAND)
- **Observation**: Player hand + dealer's visible card
- **Reward**: +1 win, -1 loss, 0 draw
- **Notes**: Simplified version, no double/split

## Development & Testing

### Direct Environment Testing

Test the environment logic directly without starting the HTTP server (requires OpenSpiel installed locally):

```python
from openspiel_env.server.openspiel_environment import OpenSpielEnvironment
from openspiel_env.models import OpenSpielAction

# Create environment directly
env = OpenSpielEnvironment(game_name="catch")

# Test reset
obs = env.reset()
print(f"Info state: {obs.info_state}")

# Test step
obs = env.step(OpenSpielAction(action_id=0))
print(f"Done: {obs.done}, Reward: {obs.reward}")
```

### Running Locally

Run the server locally for development (requires OpenSpiel installed):

```bash
# From the environment directory
cd envs/openspiel_env

# Install dependencies
uv venv && source .venv/bin/activate
uv pip install -e .

# Start the server
python -m uvicorn server.app:app --reload
```

Or using the CLI entry point:

```bash
uv run --project . server --port 8000
```

### Automated Testing (All 6 Games)

```bash
./test_docker_all_games.sh
```

This script will build and test all 6 supported games in Docker.

## Project Structure

```
openspiel_env/
โ”œโ”€โ”€ __init__.py                    # Module exports
โ”œโ”€โ”€ README.md                      # This file
โ”œโ”€โ”€ openenv.yaml                   # OpenEnv manifest
โ”œโ”€โ”€ pyproject.toml                 # Project metadata and dependencies
โ”œโ”€โ”€ client.py                      # OpenSpielEnv client implementation
โ”œโ”€โ”€ models.py                      # Action, Observation, and State models
โ”œโ”€โ”€ test_docker_all_games.sh       # Automated test script
โ””โ”€โ”€ server/
    โ”œโ”€โ”€ __init__.py                # Server module exports
    โ”œโ”€โ”€ openspiel_environment.py   # Core OpenSpielEnvironment implementation
    โ”œโ”€โ”€ opponent_policies.py       # Opponent policies (random, fixed)
    โ”œโ”€โ”€ app.py                     # FastAPI application
    โ”œโ”€โ”€ Dockerfile                 # Environment container (uses pre-built base)
    โ””โ”€โ”€ Dockerfile.openspiel-base  # Base image with compiled OpenSpiel
```

## Limitations

- **Simultaneous-move games**: Only agent_player=0 supported
- **Multi-agent training**: Single agent only (no self-play yet)
- **Opponent policies**: Random and fixed only (no MCTS yet)
- **Build time**: Building your own base image takes ~30-60 min (compiles OpenSpiel C++). Using the pre-built image is fast (~1-2 min) and works with standard hardware.

## References

- [OpenSpiel Paper (2019)](https://arxiv.org/abs/1908.09453)
- [OpenSpiel GitHub](https://github.com/google-deepmind/open_spiel)
- [OpenSpiel Documentation](https://openspiel.readthedocs.io/)