Spaces:
Running
Running
Zihao Wang
commited on
Commit
·
3119d85
1
Parent(s):
ba30d19
update sk
Browse files
app.py
CHANGED
|
@@ -1,9 +1,13 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
from langchain.tools import Tool
|
| 3 |
from langchain_community.utilities import GoogleSearchAPIWrapper
|
| 4 |
-
import os
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
-
|
|
|
|
| 7 |
search = GoogleSearchAPIWrapper(k=k)
|
| 8 |
def search_results(query):
|
| 9 |
return search.results(query, k)
|
|
@@ -13,17 +17,416 @@ def get_search(query:str="", k:int=1):
|
|
| 13 |
func=search_results,
|
| 14 |
)
|
| 15 |
ref_text = tool.run(query)
|
| 16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
|
| 26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
|
| 28 |
-
|
| 29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
from langchain.tools import Tool
|
| 3 |
from langchain_community.utilities import GoogleSearchAPIWrapper
|
| 4 |
+
import os
|
| 5 |
+
|
| 6 |
+
from langchain.tools import Tool
|
| 7 |
+
from langchain_community.utilities import GoogleSearchAPIWrapper
|
| 8 |
|
| 9 |
+
|
| 10 |
+
def get_search(query:str="", k:int=1): # get the top-k resources with google
|
| 11 |
search = GoogleSearchAPIWrapper(k=k)
|
| 12 |
def search_results(query):
|
| 13 |
return search.results(query, k)
|
|
|
|
| 17 |
func=search_results,
|
| 18 |
)
|
| 19 |
ref_text = tool.run(query)
|
| 20 |
+
if 'Result' not in ref_text[0].keys():
|
| 21 |
+
return ref_text
|
| 22 |
+
else:
|
| 23 |
+
return None
|
| 24 |
+
|
| 25 |
+
from langchain_community.document_transformers import Html2TextTransformer
|
| 26 |
+
from langchain_community.document_loaders import AsyncHtmlLoader
|
| 27 |
+
def get_page_content(link:str):
|
| 28 |
+
loader = AsyncHtmlLoader([link])
|
| 29 |
+
docs = loader.load()
|
| 30 |
+
html2text = Html2TextTransformer()
|
| 31 |
+
docs_transformed = html2text.transform_documents(docs)
|
| 32 |
+
if len(docs_transformed) > 0:
|
| 33 |
+
return docs_transformed[0].page_content
|
| 34 |
+
else:
|
| 35 |
+
return None
|
| 36 |
+
|
| 37 |
+
import tiktoken
|
| 38 |
+
def num_tokens_from_string(string: str, encoding_name: str = "cl100k_base") -> int:
|
| 39 |
+
"""Returns the number of tokens in a text string."""
|
| 40 |
+
encoding = tiktoken.get_encoding(encoding_name)
|
| 41 |
+
num_tokens = len(encoding.encode(string))
|
| 42 |
+
return num_tokens
|
| 43 |
+
|
| 44 |
+
def chunk_text_by_sentence(text, chunk_size=2048):
|
| 45 |
+
"""Chunk the $text into sentences with less than 2k tokens."""
|
| 46 |
+
sentences = text.split('. ')
|
| 47 |
+
chunked_text = []
|
| 48 |
+
curr_chunk = []
|
| 49 |
+
# 逐句添加文本片段,确保每个段落都小于2k个token
|
| 50 |
+
for sentence in sentences:
|
| 51 |
+
if num_tokens_from_string(". ".join(curr_chunk)) + num_tokens_from_string(sentence) + 2 <= chunk_size:
|
| 52 |
+
curr_chunk.append(sentence)
|
| 53 |
+
else:
|
| 54 |
+
chunked_text.append(". ".join(curr_chunk))
|
| 55 |
+
curr_chunk = [sentence]
|
| 56 |
+
# 添加最后一个片段
|
| 57 |
+
if curr_chunk:
|
| 58 |
+
chunked_text.append(". ".join(curr_chunk))
|
| 59 |
+
return chunked_text[0]
|
| 60 |
+
|
| 61 |
+
def chunk_text_front(text, chunk_size = 2048):
|
| 62 |
+
'''
|
| 63 |
+
get the first `trunk_size` token of text
|
| 64 |
+
'''
|
| 65 |
+
chunked_text = ""
|
| 66 |
+
tokens = num_tokens_from_string(text)
|
| 67 |
+
if tokens < chunk_size:
|
| 68 |
+
return text
|
| 69 |
+
else:
|
| 70 |
+
ratio = float(chunk_size) / tokens
|
| 71 |
+
char_num = int(len(text) * ratio)
|
| 72 |
+
return text[:char_num]
|
| 73 |
+
|
| 74 |
+
def chunk_texts(text, chunk_size = 2048):
|
| 75 |
+
'''
|
| 76 |
+
trunk the text into n parts, return a list of text
|
| 77 |
+
[text, text, text]
|
| 78 |
+
'''
|
| 79 |
+
tokens = num_tokens_from_string(text)
|
| 80 |
+
if tokens < chunk_size:
|
| 81 |
+
return [text]
|
| 82 |
+
else:
|
| 83 |
+
texts = []
|
| 84 |
+
n = int(tokens/chunk_size) + 1
|
| 85 |
+
# 计算每个部分的长度
|
| 86 |
+
part_length = len(text) // n
|
| 87 |
+
# 如果不能整除,则最后一个部分会包含额外的字符
|
| 88 |
+
extra = len(text) % n
|
| 89 |
+
parts = []
|
| 90 |
+
start = 0
|
| 91 |
+
|
| 92 |
+
for i in range(n):
|
| 93 |
+
# 对于前extra个部分,每个部分多分配一个字符
|
| 94 |
+
end = start + part_length + (1 if i < extra else 0)
|
| 95 |
+
parts.append(text[start:end])
|
| 96 |
+
start = end
|
| 97 |
+
return parts
|
| 98 |
+
|
| 99 |
+
from datetime import datetime
|
| 100 |
+
from utils import *
|
| 101 |
+
|
| 102 |
+
from openai import OpenAI
|
| 103 |
+
import os
|
| 104 |
+
|
| 105 |
+
chatgpt_system_prompt = f'''
|
| 106 |
+
You are ChatGPT, a large language model trained by OpenAI, based on the GPT-4 architecture.
|
| 107 |
+
Knowledge cutoff: 2023-04
|
| 108 |
+
Current date: {datetime.now().strftime('%Y-%m-%d')}
|
| 109 |
+
'''
|
| 110 |
+
|
| 111 |
+
def get_draft(question):
|
| 112 |
+
# Getting the draft answer
|
| 113 |
+
draft_prompt = '''
|
| 114 |
+
IMPORTANT:
|
| 115 |
+
Try to answer this question/instruction with step-by-step thoughts and make the answer more structural.
|
| 116 |
+
Use `\n\n` to split the answer into several paragraphs.
|
| 117 |
+
Just respond to the instruction directly. DO NOT add additional explanations or introducement in the answer unless you are asked to.
|
| 118 |
+
'''
|
| 119 |
+
openai_client = OpenAI()
|
| 120 |
+
draft = openai_client.chat.completions.create(
|
| 121 |
+
model="gpt-3.5-turbo",
|
| 122 |
+
messages=[
|
| 123 |
+
{
|
| 124 |
+
"role": "system",
|
| 125 |
+
"content": chatgpt_system_prompt
|
| 126 |
+
},
|
| 127 |
+
{
|
| 128 |
+
"role": "user",
|
| 129 |
+
"content": f"{question}" + draft_prompt
|
| 130 |
+
}
|
| 131 |
+
],
|
| 132 |
+
temperature = 1.0
|
| 133 |
+
).choices[0].message.content
|
| 134 |
+
return draft
|
| 135 |
+
|
| 136 |
+
def split_draft(draft, split_char = '\n\n'):
|
| 137 |
+
# 将draft切分为多个段落
|
| 138 |
+
# split_char: '\n\n'
|
| 139 |
+
draft_paragraphs = draft.split(split_char)
|
| 140 |
+
draft_paragraphs = [d for d in draft_paragraphs if d]
|
| 141 |
+
# print(f"The draft answer has {len(draft_paragraphs)}")
|
| 142 |
+
return draft_paragraphs
|
| 143 |
+
|
| 144 |
+
def get_query(question, answer):
|
| 145 |
+
query_prompt = '''
|
| 146 |
+
I want to verify the content correctness of the given question, especially the last sentences.
|
| 147 |
+
Please summarize the content with the corresponding question.
|
| 148 |
+
This summarization will be used as a query to search with Bing search engine.
|
| 149 |
+
The query should be short but need to be specific to promise Bing can find related knowledge or pages.
|
| 150 |
+
You can also use search syntax to make the query short and clear enough for the search engine to find relevant language data.
|
| 151 |
+
Try to make the query as relevant as possible to the last few sentences in the content.
|
| 152 |
+
**IMPORTANT**
|
| 153 |
+
Just output the query directly. DO NOT add additional explanations or introducement in the answer unless you are asked to.
|
| 154 |
+
'''
|
| 155 |
+
openai_client = OpenAI()
|
| 156 |
+
query = openai_client.chat.completions.create(
|
| 157 |
+
model="gpt-3.5-turbo",
|
| 158 |
+
messages=[
|
| 159 |
+
{
|
| 160 |
+
"role": "system",
|
| 161 |
+
"content": chatgpt_system_prompt
|
| 162 |
+
},
|
| 163 |
+
{
|
| 164 |
+
"role": "user",
|
| 165 |
+
"content": f"##Question: {question}\n\n##Content: {answer}\n\n##Instruction: {query_prompt}"
|
| 166 |
+
}
|
| 167 |
+
],
|
| 168 |
+
temperature = 1.0
|
| 169 |
+
).choices[0].message.content
|
| 170 |
+
return query
|
| 171 |
+
|
| 172 |
+
def get_content(query):
|
| 173 |
+
res = get_search(query, 1)
|
| 174 |
+
if not res:
|
| 175 |
+
print(">>> No good Google Search Result was found")
|
| 176 |
+
return None
|
| 177 |
+
search_results = res[0]
|
| 178 |
+
link = search_results['link'] # title, snippet
|
| 179 |
+
res = get_page_content(link)
|
| 180 |
+
if not res:
|
| 181 |
+
print(f">>> No content was found in {link}")
|
| 182 |
+
return None
|
| 183 |
+
retrieved_text = res
|
| 184 |
+
trunked_texts = chunk_texts(retrieved_text, 1500)
|
| 185 |
+
trunked_texts = [trunked_text.replace('\n', " ") for trunked_text in trunked_texts]
|
| 186 |
+
return trunked_texts
|
| 187 |
+
|
| 188 |
+
def get_revise_answer(question, answer, content):
|
| 189 |
+
revise_prompt = '''
|
| 190 |
+
I want to revise the answer according to retrieved related text of the question in WIKI pages.
|
| 191 |
+
You need to check whether the answer is correct.
|
| 192 |
+
If you find some errors in the answer, revise the answer to make it better.
|
| 193 |
+
If you find some necessary details are ignored, add it to make the answer more plausible according to the related text.
|
| 194 |
+
If you find the answer is right and do not need to add more details, just output the original answer directly.
|
| 195 |
+
**IMPORTANT**
|
| 196 |
+
Try to keep the structure (multiple paragraphs with its subtitles) in the revised answer and make it more structual for understanding.
|
| 197 |
+
Add more details from retrieved text to the answer.
|
| 198 |
+
Split the paragraphs with `\n\n` characters.
|
| 199 |
+
Just output the revised answer directly. DO NOT add additional explanations or annoucement in the revised answer unless you are asked to.
|
| 200 |
+
'''
|
| 201 |
+
openai_client = OpenAI()
|
| 202 |
+
revised_answer = openai_client.chat.completions.create(
|
| 203 |
+
model="gpt-3.5-turbo",
|
| 204 |
+
messages=[
|
| 205 |
+
{
|
| 206 |
+
"role": "system",
|
| 207 |
+
"content": chatgpt_system_prompt
|
| 208 |
+
},
|
| 209 |
+
{
|
| 210 |
+
"role": "user",
|
| 211 |
+
"content": f"##Existing Text in Wiki Web: {content}\n\n##Question: {question}\n\n##Answer: {answer}\n\n##Instruction: {revise_prompt}"
|
| 212 |
+
}
|
| 213 |
+
],
|
| 214 |
+
temperature = 1.0
|
| 215 |
+
).choices[0].message.content
|
| 216 |
+
return revised_answer
|
| 217 |
+
|
| 218 |
+
def get_query_wrapper(q, question, answer):
|
| 219 |
+
result = get_query(question, answer)
|
| 220 |
+
q.put(result) # 将结果放入队列
|
| 221 |
+
|
| 222 |
+
def get_content_wrapper(q, query):
|
| 223 |
+
result = get_content(query)
|
| 224 |
+
q.put(result) # 将结果放入队列
|
| 225 |
+
|
| 226 |
+
def get_revise_answer_wrapper(q, question, answer, content):
|
| 227 |
+
result = get_revise_answer(question, answer, content)
|
| 228 |
+
q.put(result)
|
| 229 |
+
|
| 230 |
+
from multiprocessing import Process, Queue
|
| 231 |
+
def run_with_timeout(func, timeout, *args, **kwargs):
|
| 232 |
+
q = Queue() # 创建一个Queue对象用于进程间通信
|
| 233 |
+
# 创建一个进程来执行传入的函数,将Queue和其他*args、**kwargs作为参数传递
|
| 234 |
+
p = Process(target=func, args=(q, *args), kwargs=kwargs)
|
| 235 |
+
p.start()
|
| 236 |
+
# 等待进程完成或超时
|
| 237 |
+
p.join(timeout)
|
| 238 |
+
if p.is_alive():
|
| 239 |
+
print(f"{datetime.now()} [INFO] 函数{str(func)}执行已超时({timeout}s),正在终止进程...")
|
| 240 |
+
p.terminate() # 终止进程
|
| 241 |
+
p.join() # 确保进程已经终止
|
| 242 |
+
result = None # 超时情况下,我们没有结果
|
| 243 |
+
else:
|
| 244 |
+
print(f"{datetime.now()} [INFO] 函数{str(func)}执行成功完成")
|
| 245 |
+
result = q.get() # 从队列中获取结果
|
| 246 |
+
return result
|
| 247 |
+
|
| 248 |
+
from difflib import unified_diff
|
| 249 |
+
from IPython.display import display, HTML
|
| 250 |
+
|
| 251 |
+
def generate_diff_html(text1, text2):
|
| 252 |
+
diff = unified_diff(text1.splitlines(keepends=True),
|
| 253 |
+
text2.splitlines(keepends=True),
|
| 254 |
+
fromfile='text1', tofile='text2')
|
| 255 |
|
| 256 |
+
diff_html = ""
|
| 257 |
+
for line in diff:
|
| 258 |
+
if line.startswith('+'):
|
| 259 |
+
diff_html += f"<div style='color:green;'>{line.rstrip()}</div>"
|
| 260 |
+
elif line.startswith('-'):
|
| 261 |
+
diff_html += f"<div style='color:red;'>{line.rstrip()}</div>"
|
| 262 |
+
elif line.startswith('@'):
|
| 263 |
+
diff_html += f"<div style='color:blue;'>{line.rstrip()}</div>"
|
| 264 |
+
else:
|
| 265 |
+
diff_html += f"{line.rstrip()}<br>"
|
| 266 |
+
return diff_html
|
| 267 |
|
| 268 |
+
newline_char = '\n'
|
| 269 |
+
|
| 270 |
+
def rat(question):
|
| 271 |
+
print(f"{datetime.now()} [INFO] 生成草稿中...")
|
| 272 |
+
draft = get_draft(question)
|
| 273 |
+
print(f"{datetime.now()} [INFO] 获得草稿")
|
| 274 |
+
# print(f"##################### DRAFT #######################")
|
| 275 |
+
# print(draft)
|
| 276 |
+
# print(f"##################### END #######################")
|
| 277 |
+
|
| 278 |
+
print(f"{datetime.now()} [INFO] 处理草稿...")
|
| 279 |
+
draft_paragraphs = split_draft(draft)
|
| 280 |
+
print(f"{datetime.now()} [INFO] 草稿被切分为{len(draft_paragraphs)}部分")
|
| 281 |
+
answer = ""
|
| 282 |
+
for i, p in enumerate(draft_paragraphs):
|
| 283 |
+
print(str(i)*80)
|
| 284 |
+
print(f"{datetime.now()} [INFO] 修改第{i+1}/{len(draft_paragraphs)}部分...")
|
| 285 |
+
answer = answer + '\n\n' + p
|
| 286 |
+
# print(f"[{i}/{len(draft_paragraphs)}] Original Answer:\n{answer.replace(newline_char, ' ')}")
|
| 287 |
+
|
| 288 |
+
# query = get_query(question, answer)
|
| 289 |
+
print(f"{datetime.now()} [INFO] 生成对应Query...")
|
| 290 |
+
res = run_with_timeout(get_query_wrapper, 3, question, answer)
|
| 291 |
+
if not res:
|
| 292 |
+
print(f"{datetime.now()} [INFO] 生成检索词超时,跳过后续步骤...")
|
| 293 |
+
continue
|
| 294 |
+
else:
|
| 295 |
+
query = res
|
| 296 |
+
print(f">>> {i}/{len(draft_paragraphs)} Query: {query.replace(newline_char, ' ')}")
|
| 297 |
+
|
| 298 |
+
print(f"{datetime.now()} [INFO] 获取网页内容...")
|
| 299 |
+
# content = get_content(query)
|
| 300 |
+
res = run_with_timeout(get_content_wrapper, 5, query)
|
| 301 |
+
if not res:
|
| 302 |
+
print(f"{datetime.now()} [INFO] 获取网页内容超时,跳过后续步骤...")
|
| 303 |
+
continue
|
| 304 |
+
else:
|
| 305 |
+
content = res
|
| 306 |
+
|
| 307 |
+
for j, c in enumerate(content):
|
| 308 |
+
if j > 2:
|
| 309 |
+
break
|
| 310 |
+
print(f"{datetime.now()} [INFO] 根据网页内容修改对应答案...[{j}/{min(len(content),3)}]")
|
| 311 |
+
# answer = get_revise_answer(question, answer, c)
|
| 312 |
+
res = run_with_timeout(get_revise_answer_wrapper, 15, question, answer, c)
|
| 313 |
+
if not res:
|
| 314 |
+
print(f"{datetime.now()} [INFO] 修改答案超时,跳过后续步骤...")
|
| 315 |
+
continue
|
| 316 |
+
else:
|
| 317 |
+
diff_html = generate_diff_html(answer, res)
|
| 318 |
+
display(HTML(diff_html))
|
| 319 |
+
answer = res
|
| 320 |
+
print(f"{datetime.now()} [INFO] 答案修改完成[{j}/{min(len(content),3)}]")
|
| 321 |
+
# print(f"[{i}/{len(draft_paragraphs)}] REVISED ANSWER:\n {answer.replace(newline_char, ' ')}")
|
| 322 |
+
# print()
|
| 323 |
+
return draft, answer
|
| 324 |
+
# return answer
|
| 325 |
+
|
| 326 |
+
from utils import *
|
| 327 |
+
|
| 328 |
+
page_title = "RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Horizon Generation"
|
| 329 |
+
page_md = """
|
| 330 |
+
# RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Horizon Generation
|
| 331 |
+
|
| 332 |
+
We explore how iterative revising a chain of thoughts with the help of information retrieval significantly improves large language models' reasoning and generation ability in long-horizon generation tasks, while hugely mitigating hallucination. In particular, the proposed method — retrieval-augmented thoughts (RAT) — revises each thought step one by one with retrieved information relevant to the task query, the current and the past thought steps, after the initial zero-shot CoT is generated.
|
| 333 |
+
|
| 334 |
+
Applying RAT to various base models substantially improves their performances on various long-horizon generation tasks; on average of relatively increasing rating scores by 13.63% on code generation, 16.96% on mathematical reasoning, 19.2% on creative writing, and 42.78% on embodied task planning.
|
| 335 |
+
|
| 336 |
+
Feel free to try our demo!
|
| 337 |
+
|
| 338 |
+
"""
|
| 339 |
+
|
| 340 |
+
def clear_func():
|
| 341 |
+
return "", "", ""
|
| 342 |
+
|
| 343 |
+
def set_openai_api_key(api_key):
|
| 344 |
+
if api_key and api_key.startswith("sk-") and len(api_key) > 50:
|
| 345 |
+
import openai
|
| 346 |
+
openai.api_key = api_key
|
| 347 |
+
|
| 348 |
+
with gr.Blocks(title = page_title) as demo:
|
| 349 |
+
|
| 350 |
+
gr.Markdown(page_md)
|
| 351 |
+
|
| 352 |
+
with gr.Row():
|
| 353 |
+
chatgpt_box = gr.Textbox(
|
| 354 |
+
label = "ChatGPT",
|
| 355 |
+
placeholder = "Response from ChatGPT with zero-shot chain-of-thought.",
|
| 356 |
+
elem_id = "chatgpt"
|
| 357 |
+
)
|
| 358 |
+
|
| 359 |
+
with gr.Row():
|
| 360 |
+
stream_box = gr.Textbox(
|
| 361 |
+
label = "Streaming",
|
| 362 |
+
placeholder = "Interactive response with RAT...",
|
| 363 |
+
elem_id = "stream",
|
| 364 |
+
lines = 10,
|
| 365 |
+
visible = False
|
| 366 |
+
)
|
| 367 |
|
| 368 |
+
with gr.Row():
|
| 369 |
+
rat_box = gr.Textbox(
|
| 370 |
+
label = "RAT",
|
| 371 |
+
placeholder = "Final response with RAT ...",
|
| 372 |
+
elem_id = "rat",
|
| 373 |
+
lines = 6
|
| 374 |
+
)
|
| 375 |
+
|
| 376 |
+
with gr.Column(elem_id="instruction_row"):
|
| 377 |
+
with gr.Row():
|
| 378 |
+
instruction_box = gr.Textbox(
|
| 379 |
+
label = "instruction",
|
| 380 |
+
placeholder = "Enter your instruction here",
|
| 381 |
+
lines = 2,
|
| 382 |
+
elem_id="instruction",
|
| 383 |
+
interactive=True,
|
| 384 |
+
visible=True
|
| 385 |
+
)
|
| 386 |
+
with gr.Row():
|
| 387 |
+
model_radio = gr.Radio(["gpt-3.5-turbo", "gpt-4", "GPT-4-turbo"], elem_id="model_radio", value="gpt-3.5-turbo",
|
| 388 |
+
label='GPT model: ', show_label=True,interactive=True, visible=True)
|
| 389 |
+
openai_api_key_textbox = gr.Textbox(placeholder="Paste your OpenAI API key (sk-...) and hit Enter",
|
| 390 |
+
show_label=False, lines=1, type='password')
|
| 391 |
+
|
| 392 |
+
openai_api_key_textbox.change(set_openai_api_key,
|
| 393 |
+
inputs=[openai_api_key_textbox],
|
| 394 |
+
outputs=[])
|
| 395 |
+
|
| 396 |
+
with gr.Row():
|
| 397 |
+
submit_btn = gr.Button(
|
| 398 |
+
value="submit", visible=True, interactive=True
|
| 399 |
+
)
|
| 400 |
+
clear_btn = gr.Button(
|
| 401 |
+
value="clear", visible=True, interactive=True
|
| 402 |
+
)
|
| 403 |
+
regenerate_btn = gr.Button(
|
| 404 |
+
value="regenerate", visible=True, interactive=True
|
| 405 |
+
)
|
| 406 |
+
|
| 407 |
+
submit_btn.click(
|
| 408 |
+
fn = rat,
|
| 409 |
+
inputs = [instruction_box],
|
| 410 |
+
outputs = [chatgpt_box, rat_box]
|
| 411 |
+
)
|
| 412 |
+
|
| 413 |
+
clear_btn.click(
|
| 414 |
+
fn = clear_func,
|
| 415 |
+
inputs = [],
|
| 416 |
+
outputs = [instruction_box, chatgpt_box, rat_box]
|
| 417 |
+
)
|
| 418 |
+
|
| 419 |
+
regenerate_btn.click(
|
| 420 |
+
fn = rat,
|
| 421 |
+
inputs = [instruction_box],
|
| 422 |
+
outputs = [chatgpt_box, rat_box]
|
| 423 |
+
)
|
| 424 |
+
|
| 425 |
+
examples = gr.Examples(
|
| 426 |
+
examples=[
|
| 427 |
+
"I went to the supermarket yesterday.",
|
| 428 |
+
"Helen is a good swimmer."],
|
| 429 |
+
inputs=[instruction_box]
|
| 430 |
+
)
|
| 431 |
+
|
| 432 |
+
demo.launch(server_name="0.0.0.0", debug=True)
|