File size: 1,772 Bytes
5742bb7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import streamlit as st
import pandas as pd

# Function to export data based on format choice
def export_data(data, format_choice):
    if format_choice == 'CSV':
        data.to_csv('exported_data.csv', index=False)
    elif format_choice == 'JSON':
        data.to_json('exported_data.json', orient='records')
    elif format_choice == 'Excel':
        data.to_excel('exported_data.xlsx', index=False)
    else:
        st.error("Unsupported format choice!")

# Streamlit app
def main():
    st.title("Research Data Export")

    # File upload section
    st.header("Upload your data")
    uploaded_file = st.file_uploader("Choose a file", type=["csv", "json", "xlsx"])

    if uploaded_file is not None:
        file_extension = uploaded_file.name.split(".")[-1]

        try:
            if file_extension == 'csv':
                data = pd.read_csv(uploaded_file)
            elif file_extension == 'json':
                data = pd.read_json(uploaded_file)
            elif file_extension in ['xlsx', 'xls']:
                data = pd.read_excel(uploaded_file)
            else:
                st.error("Unsupported file format!")
                return

            st.success("Data loaded successfully!")
            
            # Display loaded data
            st.subheader("Loaded Data")
            st.dataframe(data)

            # Format export section
            st.header("Export your data")
            export_format = st.selectbox("Select export format", ["CSV", "JSON", "Excel"])

            if st.button("Export"):
                export_data(data, export_format)
                st.success(f"Data exported successfully as {export_format}")

        except Exception as e:
            st.error(f"Error: {e}")

if __name__ == "__main__":
    main()