Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| from transformers import pipeline | |
| from huggingface_hub import InferenceClient | |
| import requests | |
| from bs4 import BeautifulSoup | |
| # Initialize the text generation pipeline | |
| pipe = pipeline("text-generation", model="microsoft/Phi-3-mini-4k-instruct", trust_remote_code=True) | |
| client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") | |
| def web_search(query): | |
| # Simulate a web search using Google | |
| response = requests.get(f"https://www.google.com/search?q={query}") | |
| soup = BeautifulSoup(response.text, "html.parser") | |
| results = [] | |
| for g in soup.find_all('div', class_='BNeawe vvjwJb AP7Wnd'): | |
| results.append(g.get_text()) | |
| return results | |
| def respond( | |
| message, | |
| history: list[tuple[str, str]], | |
| system_message, | |
| max_tokens, | |
| temperature, | |
| top_p, | |
| ): | |
| messages = [{"role": "system", "content": system_message}] | |
| for val in history: | |
| if val[0]: | |
| messages.append({"role": "user", "content": val[0]}) | |
| if val[1]: | |
| messages.append({"role": "assistant", "content": val[1]}) | |
| # Check if message is a search request | |
| if "search:" in message.lower(): | |
| search_query = message.split("search:", 1)[1].strip() | |
| search_results = web_search(search_query) | |
| response = "\n".join(search_results[:5]) # Return top 5 search results | |
| else: | |
| messages.append({"role": "user", "content": message}) | |
| response = "" | |
| for message in client.chat_completion( | |
| messages, | |
| max_tokens=max_tokens, | |
| stream=True, | |
| temperature=temperature, | |
| top_p=top_p, | |
| ): | |
| token = message.choices[0].delta.content | |
| response += token | |
| yield response | |
| yield response | |
| demo = gr.ChatInterface( | |
| respond, | |
| title="INDONESIAN CHATBOT", | |
| additional_inputs=[ | |
| gr.Textbox(value="You are a friendly AI Assistens Speak in indonesian", label="System message", visible=False), | |
| gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
| gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
| gr.Slider( | |
| minimum=0.1, | |
| maximum=1.0, | |
| value=0.95, | |
| step=0.05, | |
| label="Top-p (nucleus sampling)", | |
| ), | |
| ], | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() | |