Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from torchvision.utils import make_grid
|
| 3 |
+
from torchvision import transforms
|
| 4 |
+
import torchvision.transforms.functional as TF
|
| 5 |
+
from torch import nn, optim
|
| 6 |
+
from torch.optim.lr_scheduler import CosineAnnealingLR
|
| 7 |
+
from torch.utils.data import DataLoader, Dataset
|
| 8 |
+
from huggingface_hub import hf_hub_download
|
| 9 |
+
import requests
|
| 10 |
+
import gradio as gr
|
| 11 |
+
|
| 12 |
+
class Upsample(nn.Module):
|
| 13 |
+
def __init__(self, in_channels, out_channels, kernel_size=4, stride=2, padding=1, dropout=True):
|
| 14 |
+
super(Upsample, self).__init__()
|
| 15 |
+
self.dropout = dropout
|
| 16 |
+
self.block = nn.Sequential(
|
| 17 |
+
nn.ConvTranspose2d(in_channels, out_channels, kernel_size, stride, padding, bias=nn.InstanceNorm2d),
|
| 18 |
+
nn.InstanceNorm2d(out_channels),
|
| 19 |
+
nn.ReLU(inplace=True)
|
| 20 |
+
)
|
| 21 |
+
self.dropout_layer = nn.Dropout2d(0.5)
|
| 22 |
+
|
| 23 |
+
def forward(self, x, shortcut=None):
|
| 24 |
+
x = self.block(x)
|
| 25 |
+
if self.dropout:
|
| 26 |
+
x = self.dropout_layer(x)
|
| 27 |
+
|
| 28 |
+
if shortcut is not None:
|
| 29 |
+
x = torch.cat([x, shortcut], dim=1)
|
| 30 |
+
|
| 31 |
+
return x
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
class Downsample(nn.Module):
|
| 35 |
+
def __init__(self, in_channels, out_channels, kernel_size=4, stride=2, padding=1, apply_instancenorm=True):
|
| 36 |
+
super(Downsample, self).__init__()
|
| 37 |
+
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding, bias=nn.InstanceNorm2d)
|
| 38 |
+
self.norm = nn.InstanceNorm2d(out_channels)
|
| 39 |
+
self.relu = nn.LeakyReLU(0.2, inplace=True)
|
| 40 |
+
self.apply_norm = apply_instancenorm
|
| 41 |
+
|
| 42 |
+
def forward(self, x):
|
| 43 |
+
x = self.conv(x)
|
| 44 |
+
if self.apply_norm:
|
| 45 |
+
x = self.norm(x)
|
| 46 |
+
x = self.relu(x)
|
| 47 |
+
|
| 48 |
+
return x
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
class CycleGAN_Unet_Generator(nn.Module):
|
| 52 |
+
def __init__(self, filter=64):
|
| 53 |
+
super(CycleGAN_Unet_Generator, self).__init__()
|
| 54 |
+
self.downsamples = nn.ModuleList([
|
| 55 |
+
Downsample(3, filter, kernel_size=4, apply_instancenorm=False), # (b, filter, 128, 128)
|
| 56 |
+
Downsample(filter, filter * 2), # (b, filter * 2, 64, 64)
|
| 57 |
+
Downsample(filter * 2, filter * 4), # (b, filter * 4, 32, 32)
|
| 58 |
+
Downsample(filter * 4, filter * 8), # (b, filter * 8, 16, 16)
|
| 59 |
+
Downsample(filter * 8, filter * 8), # (b, filter * 8, 8, 8)
|
| 60 |
+
Downsample(filter * 8, filter * 8), # (b, filter * 8, 4, 4)
|
| 61 |
+
Downsample(filter * 8, filter * 8), # (b, filter * 8, 2, 2)
|
| 62 |
+
])
|
| 63 |
+
|
| 64 |
+
self.upsamples = nn.ModuleList([
|
| 65 |
+
Upsample(filter * 8, filter * 8),
|
| 66 |
+
Upsample(filter * 16, filter * 8),
|
| 67 |
+
Upsample(filter * 16, filter * 8),
|
| 68 |
+
Upsample(filter * 16, filter * 4, dropout=False),
|
| 69 |
+
Upsample(filter * 8, filter * 2, dropout=False),
|
| 70 |
+
Upsample(filter * 4, filter, dropout=False)
|
| 71 |
+
])
|
| 72 |
+
|
| 73 |
+
self.last = nn.Sequential(
|
| 74 |
+
nn.ConvTranspose2d(filter * 2, 3, kernel_size=4, stride=2, padding=1),
|
| 75 |
+
nn.Tanh()
|
| 76 |
+
)
|
| 77 |
+
|
| 78 |
+
def forward(self, x):
|
| 79 |
+
skips = []
|
| 80 |
+
for l in self.downsamples:
|
| 81 |
+
x = l(x)
|
| 82 |
+
skips.append(x)
|
| 83 |
+
|
| 84 |
+
skips = reversed(skips[:-1])
|
| 85 |
+
for l, s in zip(self.upsamples, skips):
|
| 86 |
+
x = l(x, s)
|
| 87 |
+
|
| 88 |
+
out = self.last(x)
|
| 89 |
+
|
| 90 |
+
return out
|
| 91 |
+
|
| 92 |
+
class ImageTransform:
|
| 93 |
+
def __init__(self, img_size=256):
|
| 94 |
+
self.transform = {
|
| 95 |
+
'train': transforms.Compose([
|
| 96 |
+
transforms.Resize((img_size, img_size)),
|
| 97 |
+
transforms.RandomHorizontalFlip(),
|
| 98 |
+
transforms.RandomVerticalFlip(),
|
| 99 |
+
transforms.ToTensor(),
|
| 100 |
+
transforms.Normalize(mean=[0.5], std=[0.5])
|
| 101 |
+
]),
|
| 102 |
+
'test': transforms.Compose([
|
| 103 |
+
transforms.Resize((img_size, img_size)),
|
| 104 |
+
transforms.ToTensor(),
|
| 105 |
+
transforms.Normalize(mean=[0.5], std=[0.5])
|
| 106 |
+
})}
|
| 107 |
+
|
| 108 |
+
def __call__(self, img, phase='train'):
|
| 109 |
+
img = self.transform[phase](img)
|
| 110 |
+
|
| 111 |
+
return img
|
| 112 |
+
|
| 113 |
+
|
| 114 |
+
path = hf_hub_download('huggan/NeonGAN', 'model.bin')
|
| 115 |
+
model_gen_n = torch.load(path, map_location=torch.device('cpu'))
|
| 116 |
+
|
| 117 |
+
|
| 118 |
+
|
| 119 |
+
|
| 120 |
+
|
| 121 |
+
|