LibTesting / pages /10 WordCloud.py
T Le
Update to latest version
e0f3355
raw
history blame
6.17 kB
import streamlit as st
import pandas as pd
import matplotlib.pyplot as plt
from wordcloud import WordCloud
from tools import sourceformat as sf
# ===config===
st.set_page_config(
page_title="Coconut",
page_icon="🥥",
layout="wide",
initial_sidebar_state="collapsed"
)
hide_streamlit_style = """
<style>
#MainMenu
{visibility: hidden;}
footer {visibility: hidden;}
[data-testid="collapsedControl"] {display: none}
</style>
"""
st.markdown(hide_streamlit_style, unsafe_allow_html=True)
with st.popover("🔗 Menu"):
st.page_link("https://www.coconut-libtool.com/", label="Home", icon="🏠")
st.page_link("pages/1 Scattertext.py", label="Scattertext", icon="1️⃣")
st.page_link("pages/2 Topic Modeling.py", label="Topic Modeling", icon="2️⃣")
st.page_link("pages/3 Bidirected Network.py", label="Bidirected Network", icon="3️⃣")
st.page_link("pages/4 Sunburst.py", label="Sunburst", icon="4️⃣")
st.page_link("pages/5 Burst Detection.py", label="Burst Detection", icon="5️⃣")
st.page_link("pages/6 Keywords Stem.py", label="Keywords Stem", icon="6️⃣")
st.page_link("pages/7 Sentiment Analysis.py", label="Sentiment Analysis", icon="7️⃣")
st.page_link("pages/8 Shifterator.py", label="Shifterator", icon="8️⃣")
st.page_link("pages/9 Summarization.py", label = "Summarization",icon ="9️⃣")
st.page_link("pages/10 WordCloud.py", label = "WordCloud", icon = "🔟")
st.header("Wordcloud", anchor=False)
st.subheader('Put your file here...', anchor=False)
#========unique id========
@st.cache_resource(ttl=3600)
def create_list():
l = [1, 2, 3]
return l
l = create_list()
first_list_value = l[0]
l[0] = first_list_value + 1
uID = str(l[0])
@st.cache_data(ttl=3600)
def get_ext(uploaded_file):
extype = uID+uploaded_file.name
return extype
#===clear cache===
def reset_all():
st.cache_data.clear()
#===text reading===
@st.cache_data(ttl=3600)
def read_txt(intext):
return (intext.read()).decode()
@st.cache_data(ttl=3600)
def conv_txt(extype):
if("PMID" in (uploaded_file.read()).decode()):
uploaded_file.seek(0)
papers = sf.medline(uploaded_file)
print(papers)
return papers
col_dict = {'TI': 'Title',
'SO': 'Source title',
'DE': 'Author Keywords',
'DT': 'Document Type',
'AB': 'Abstract',
'TC': 'Cited by',
'PY': 'Year',
'ID': 'Keywords Plus',
'rights_date_used': 'Year'}
uploaded_file.seek(0)
papers = pd.read_csv(uploaded_file, sep='\t')
#if text just has one column (or is not csv) return nothing
if(len(papers.columns)==1):
return
if("htid" in papers.columns):
papers = sf.htrc(papers)
papers.rename(columns=col_dict, inplace=True)
print(papers)
return papers
#===csv reading===
@st.cache_data(ttl=3600)
def upload(file):
papers = pd.read_csv(uploaded_file)
if "About the data" in papers.columns[0]:
papers = sf.dim(papers)
col_dict = {'MeSH terms': 'Keywords',
'PubYear': 'Year',
'Times cited': 'Cited by',
'Publication Type': 'Document Type'
}
papers.rename(columns=col_dict, inplace=True)
return papers
#===Read data===
uploaded_file = st.file_uploader('', type=['txt','csv'], on_change=reset_all)
if uploaded_file is not None:
tab1, tab2, tab3 = st.tabs(["📈 Generate visualization", "📃 Reference", "⬇️ Download Help"])
with tab1:
c1, c2 = st.columns(2)
with c1:
max_font = st.number_input("Max Font Size", min_value = 1, value = 100)
max_words = st.number_input("Max Word Count", min_value = 1, value = 250)
background = st.selectbox("Background color", ["white","black"])
with c2:
words_to_remove = st.text_input("Remove specific words. Separate words by semicolons (;)")
stopwords = words_to_remove.split(';')
image_width = st.number_input("Image width", value = 400)
image_height = st.number_input("Image height", value = 200)
scale = st.number_input("Scale", value = 1)
try:
extype = get_ext(uploaded_file)
if extype.endswith(".txt"):
try:
texts = conv_txt(uploaded_file)
colcho = c1.selectbox("Choose Column", list(texts))
fulltext = " ".join(list(texts[colcho]))
except:
fulltext = read_txt(uploaded_file)
if st.button("Submit"):
wordcloud = WordCloud(max_font_size = max_font,
max_words = max_words,
background_color=background,
stopwords = stopwords,
height = image_height,
width = image_width,
scale = scale).generate(fulltext)
img = wordcloud.to_image()
with st.container(border=True):
st.image(img, use_container_width=True)
elif extype.endswith(".csv"):
texts = upload(uploaded_file)
colcho = c1.selectbox("Choose Column", list(texts))
fullcolumn = " ".join(list(texts[colcho]))
if st.button("Submit"):
wordcloud = WordCloud(max_font_size = max_font,
max_words = max_words,
background_color=background,
stopwords = stopwords,
height = image_height,
width = image_width,
scale = scale).generate(fullcolumn)
img = wordcloud.to_image()
with st.container(border=True):
st.image(img, use_container_width=True)
except Exception as e:
st.write(e)