Spaces:
Sleeping
Sleeping
| import streamlit as st | |
| import pandas as pd | |
| import json | |
| from tools import sourceformat as sf | |
| #===config=== | |
| st.set_page_config( | |
| page_title="Coconut", | |
| page_icon="π₯₯", | |
| layout="wide", | |
| initial_sidebar_state="collapsed" | |
| ) | |
| hide_streamlit_style = """ | |
| <style> | |
| #MainMenu | |
| {visibility: hidden;} | |
| footer {visibility: hidden;} | |
| [data-testid="collapsedControl"] {display: none} | |
| </style> | |
| """ | |
| st.markdown(hide_streamlit_style, unsafe_allow_html=True) | |
| st.page_link("https://www.coconut-libtool.com/the-app", label="Go to app", icon="π₯₯") | |
| def reset_data(): | |
| st.cache_data.clear() | |
| #===check filetype=== | |
| def get_ext(extype): | |
| extype = uploaded_file.name | |
| return extype | |
| #===upload=== | |
| def upload(extype): | |
| keywords = pd.read_csv(uploaded_file) | |
| if "dimensions" in uploaded_file.name.lower(): | |
| keywords = sf.dim(keywords) | |
| col_dict = {'MeSH terms': 'Keywords', | |
| 'PubYear': 'Year', | |
| 'Times cited': 'Cited by', | |
| 'Publication Type': 'Document Type' | |
| } | |
| keywords.rename(columns=col_dict, inplace=True) | |
| return keywords | |
| def conv_txt(extype): | |
| if("PMID" in (uploaded_file.read()).decode()): | |
| uploaded_file.seek(0) | |
| papers = sf.medline(uploaded_file) | |
| print(papers) | |
| return papers | |
| col_dict = {'TI': 'Title', | |
| 'SO': 'Source title', | |
| 'DE': 'Author Keywords', | |
| 'DT': 'Document Type', | |
| 'AB': 'Abstract', | |
| 'TC': 'Cited by', | |
| 'PY': 'Year', | |
| 'ID': 'Keywords Plus', | |
| 'rights_date_used': 'Year'} | |
| uploaded_file.seek(0) | |
| papers = pd.read_csv(uploaded_file, sep='\t') | |
| if("htid" in papers.columns): | |
| papers = sf.htrc(papers) | |
| papers.rename(columns=col_dict, inplace=True) | |
| print(papers) | |
| return papers | |
| def conv_json(extype): | |
| col_dict={'title': 'title', | |
| 'rights_date_used': 'Year', | |
| 'content_provider_code':'Source title' | |
| } | |
| data = json.load(uploaded_file) | |
| hathifile = data['gathers'] | |
| keywords = pd.DataFrame.from_records(hathifile) | |
| keywords = sf.htrc(keywords) | |
| keywords['Cited by'] = keywords.groupby(['Keywords'])['Keywords'].transform('size') | |
| keywords.rename(columns=col_dict,inplace=True) | |
| return keywords | |
| def conv_pub(extype): | |
| if (get_ext(extype)).endswith('.tar.gz'): | |
| bytedata = extype.read() | |
| keywords = sf.readPub(bytedata) | |
| elif (get_ext(extype)).endswith('.xml'): | |
| bytedata = extype.read() | |
| keywords = sf.readxml(bytedata) | |
| return keywords | |
| st.header('File Checker', anchor=False) | |
| st.subheader('Put your file here...', anchor=False) | |
| #===read data=== | |
| uploaded_file = st.file_uploader('', type=['csv','txt','json', 'tar.gz', 'xml'], on_change=reset_data) | |
| if uploaded_file is not None: | |
| extype = get_ext(uploaded_file) | |
| if extype.endswith('.csv'): | |
| data = upload(extype) | |
| elif extype.endswith('.txt'): | |
| data = conv_txt(extype) | |
| elif extype.endswith('.json'): | |
| data = conv_json(extype) | |
| elif extype.endswith('.tar.gz') or extype.endswith('.xml'): | |
| data = conv_pub(uploaded_file) | |
| col1, col2, col3 = st.columns(3) | |
| with col1: | |
| #===check keywords=== | |
| keycheck = list(data.columns) | |
| keycheck = [k for k in keycheck if 'Keyword' in k] | |
| container1 = st.container(border=True) | |
| if not keycheck: | |
| container1.subheader('β Keyword Stem', divider='red', anchor=False) | |
| container1.write("Unfortunately, you don't have a column containing keywords in your data. Please check again. If you want to use it in another column, please rename it to 'Keywords'.") | |
| else: | |
| container1.subheader('βοΈ Keyword Stem', divider='blue', anchor=False) | |
| container1.write('Congratulations! You can use Keywords Stem') | |
| #===Visualization=== | |
| if 'Publication Year' in data.columns: | |
| data.rename(columns={'Publication Year': 'Year', 'Citing Works Count': 'Cited by', | |
| 'Publication Type': 'Document Type', 'Source Title': 'Source title'}, inplace=True) | |
| col2check = ['Document Type','Source title','Cited by','Year'] | |
| miss_col = [column for column in col2check if column not in data.columns] | |
| container2 = st.container(border=True) | |
| if not miss_col: | |
| container2.subheader('βοΈ Sunburst', divider='blue', anchor=False) | |
| container2.write('Congratulations! You can use Sunburst') | |
| else: | |
| container2.subheader('β Sunburst', divider='red', anchor=False) | |
| miss_col_str = ', '.join(miss_col) | |
| container2.write(f"Unfortunately, you don't have: {miss_col_str}. Please check again.") | |
| with col2: | |
| #===check any obj=== | |
| coldf = sorted(data.select_dtypes(include=['object']).columns.tolist()) | |
| container3 = st.container(border=True) | |
| if not coldf or data.shape[0] < 2: | |
| container3.subheader('β Topic Modeling', divider='red', anchor=False) | |
| container3.write("Unfortunately, you don't have a column containing object in your data. Please check again.") | |
| else: | |
| container3.subheader('βοΈ Topic Modeling', divider='blue', anchor=False) | |
| container3.write('Congratulations! You can use Topic Modeling') | |
| #===Burst=== | |
| container4 = st.container(border=True) | |
| if not coldf or 'Year' not in data.columns: | |
| container4.subheader('β Burst Detection', divider='red', anchor=False) | |
| container4.write("Unfortunately, you don't have a column containing object in your data or a 'Year' column. Please check again.") | |
| else: | |
| container4.subheader('βοΈ Burst Detection', divider='blue', anchor=False) | |
| container4.write('Congratulations! You can use Burst Detection') | |
| with col3: | |
| #===bidirected=== | |
| container5 = st.container(border=True) | |
| if not keycheck: | |
| container5.subheader('β Bidirected Network', divider='red', anchor=False) | |
| container5.write("Unfortunately, you don't have a column containing keywords in your data. Please check again. If you want to use it in another column, please rename it to 'Keywords'.") | |
| else: | |
| container5.subheader('βοΈ Bidirected Network', divider='blue', anchor=False) | |
| container5.write('Congratulations! You can use Bidirected Network') | |
| #===scattertext=== | |
| container6 = st.container(border=True) | |
| if not coldf or data.shape[0] < 2: | |
| container6.subheader('β Scattertext', divider='red', anchor=False) | |
| container6.write("Unfortunately, you don't have a column containing object in your data. Please check again.") | |
| else: | |
| container6.subheader('βοΈ Scattertext', divider='blue', anchor=False) | |
| container6.write('Congratulations! You can use Scattertext') | |