Spaces:
Running
Running
Avijit Ghosh
commited on
Commit
·
fd50825
1
Parent(s):
ce43639
fixed bugs
Browse files- README.md +1 -1
- app.py +102 -61
- requirements.txt +1 -1
README.md
CHANGED
|
@@ -4,7 +4,7 @@ emoji: 🚀
|
|
| 4 |
colorFrom: blue
|
| 5 |
colorTo: green
|
| 6 |
sdk: gradio
|
| 7 |
-
sdk_version:
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
license: apache-2.0
|
|
|
|
| 4 |
colorFrom: blue
|
| 5 |
colorTo: green
|
| 6 |
sdk: gradio
|
| 7 |
+
sdk_version: 6.1.0
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
license: apache-2.0
|
app.py
CHANGED
|
@@ -2,7 +2,8 @@ import gradio as gr
|
|
| 2 |
import pandas as pd
|
| 3 |
import plotly.express as px
|
| 4 |
import time
|
| 5 |
-
|
|
|
|
| 6 |
# Using the stable, community-built RangeSlider component
|
| 7 |
from gradio_rangeslider import RangeSlider
|
| 8 |
import datetime # Import the datetime module
|
|
@@ -19,25 +20,22 @@ PIPELINE_TAGS = [ 'text-generation', 'text-to-image', 'text-classification', 'te
|
|
| 19 |
|
| 20 |
def load_models_data():
|
| 21 |
overall_start_time = time.time()
|
| 22 |
-
print(f"Attempting to load dataset from Hugging Face Hub: {HF_DATASET_ID}")
|
| 23 |
try:
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
if
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
|
| 31 |
-
|
| 32 |
-
df['createdAt'] = pd.to_datetime(df['createdAt'], errors='coerce')
|
| 33 |
-
|
| 34 |
-
msg = f"Successfully loaded dataset in {time.time() - overall_start_time:.2f}s."
|
| 35 |
print(msg)
|
| 36 |
-
return
|
| 37 |
except Exception as e:
|
| 38 |
-
err_msg = f"Failed to load dataset. Error: {e}"
|
| 39 |
print(err_msg)
|
| 40 |
-
return
|
| 41 |
|
| 42 |
def get_param_range_values(param_range_labels):
|
| 43 |
min_label, max_label = param_range_labels
|
|
@@ -45,44 +43,76 @@ def get_param_range_values(param_range_labels):
|
|
| 45 |
max_val = float('inf') if '>' in max_label else float(max_label.replace('B', ''))
|
| 46 |
return min_val, max_val
|
| 47 |
|
| 48 |
-
def make_treemap_data(
|
| 49 |
-
if
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
col_map = { "Audio & Speech": "is_audio_speech", "Music": "has_music", "Robotics": "has_robot", "Biomedical": "is_biomed", "Time series": "has_series", "Sciences": "has_science", "Video": "has_video", "Images": "has_image", "Text": "has_text" }
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
|
|
|
|
|
|
|
|
|
| 60 |
if param_range:
|
| 61 |
min_params, max_params = get_param_range_values(param_range)
|
| 62 |
is_default_range = (param_range[0] == PARAM_CHOICES[0] and param_range[1] == PARAM_CHOICES[-1])
|
| 63 |
-
if not is_default_range
|
| 64 |
-
|
| 65 |
-
if
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
|
| 72 |
-
|
| 73 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
treemap_data =
|
| 86 |
treemap_data["root"] = "models"
|
| 87 |
return treemap_data
|
| 88 |
|
|
@@ -109,7 +139,7 @@ custom_css = """
|
|
| 109 |
"""
|
| 110 |
|
| 111 |
with gr.Blocks(title="🤗 ModelVerse Explorer", fill_width=True, css=custom_css) as demo:
|
| 112 |
-
models_data_state = gr.State(
|
| 113 |
loading_complete_state = gr.State(False)
|
| 114 |
|
| 115 |
with gr.Row():
|
|
@@ -166,19 +196,30 @@ with gr.Blocks(title="🤗 ModelVerse Explorer", fill_width=True, css=custom_css
|
|
| 166 |
filter_choice_radio, [tag_filter_dropdown, pipeline_filter_dropdown])
|
| 167 |
|
| 168 |
def load_and_generate_initial_plot(progress=gr.Progress()):
|
| 169 |
-
progress(0, desc=f"Loading dataset '{HF_DATASET_ID}'...")
|
| 170 |
-
|
| 171 |
try:
|
| 172 |
-
|
| 173 |
if load_success_flag:
|
| 174 |
-
progress(0.5, desc="Processing
|
| 175 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 176 |
date_display = ts.strftime('%B %d, %Y, %H:%M:%S %Z') if ts else "Pre-processed (date unavailable)"
|
| 177 |
|
| 178 |
-
param_count = (current_df['params'] != -1).sum()
|
| 179 |
data_info_text = (f"### Data Information\n- Source: `{HF_DATASET_ID}`\n- Status: {status_msg_from_load}\n"
|
| 180 |
-
f"- Total models loaded: {
|
| 181 |
-
f"- Models with unknown parameter counts: {
|
| 182 |
else:
|
| 183 |
data_info_text = f"### Data Load Failed\n- {status_msg_from_load}"
|
| 184 |
except Exception as e:
|
|
@@ -189,21 +230,21 @@ with gr.Blocks(title="🤗 ModelVerse Explorer", fill_width=True, css=custom_css
|
|
| 189 |
progress(0.6, desc="Generating initial plot...")
|
| 190 |
initial_plot, initial_status = ui_generate_plot_controller(
|
| 191 |
"downloads", "None", None, None, PARAM_CHOICES_DEFAULT_INDICES, 25,
|
| 192 |
-
"TheBloke,MaziyarPanahi,unsloth,modularai,Gensyn,bartowski", True, None,
|
| 193 |
)
|
| 194 |
-
return
|
| 195 |
|
| 196 |
def ui_generate_plot_controller(metric_choice, filter_type, tag_choice, pipeline_choice,
|
| 197 |
param_range_indices, k_orgs, skip_orgs_input, include_unknown_param_size_flag,
|
| 198 |
-
created_after_date,
|
| 199 |
-
if
|
| 200 |
return create_treemap(pd.DataFrame(), metric_choice, "Error: Model Data Not Loaded"), "Model data is not loaded."
|
| 201 |
|
| 202 |
progress(0.1, desc="Preparing data...")
|
| 203 |
param_labels = [PARAM_CHOICES[int(param_range_indices[0])], PARAM_CHOICES[int(param_range_indices[1])]]
|
| 204 |
|
| 205 |
treemap_df = make_treemap_data(
|
| 206 |
-
|
| 207 |
tag_choice if filter_type == "Tag Filter" else None,
|
| 208 |
pipeline_choice if filter_type == "Pipeline Filter" else None,
|
| 209 |
param_labels, [org.strip() for org in skip_orgs_input.split(',') if org.strip()],
|
|
|
|
| 2 |
import pandas as pd
|
| 3 |
import plotly.express as px
|
| 4 |
import time
|
| 5 |
+
import duckdb
|
| 6 |
+
from huggingface_hub import list_repo_files
|
| 7 |
# Using the stable, community-built RangeSlider component
|
| 8 |
from gradio_rangeslider import RangeSlider
|
| 9 |
import datetime # Import the datetime module
|
|
|
|
| 20 |
|
| 21 |
def load_models_data():
|
| 22 |
overall_start_time = time.time()
|
| 23 |
+
print(f"Attempting to load dataset metadata from Hugging Face Hub: {HF_DATASET_ID}")
|
| 24 |
try:
|
| 25 |
+
files = list_repo_files(HF_DATASET_ID, repo_type="dataset")
|
| 26 |
+
parquet_files = [f for f in files if f.endswith('.parquet')]
|
| 27 |
+
if not parquet_files:
|
| 28 |
+
return [], False, "No parquet files found in dataset."
|
| 29 |
+
|
| 30 |
+
urls = [f"https://huggingface.co/datasets/{HF_DATASET_ID}/resolve/main/{f}" for f in parquet_files]
|
| 31 |
|
| 32 |
+
msg = f"Successfully identified {len(urls)} parquet files in {time.time() - overall_start_time:.2f}s."
|
|
|
|
|
|
|
|
|
|
| 33 |
print(msg)
|
| 34 |
+
return urls, True, msg
|
| 35 |
except Exception as e:
|
| 36 |
+
err_msg = f"Failed to load dataset metadata. Error: {e}"
|
| 37 |
print(err_msg)
|
| 38 |
+
return [], False, err_msg
|
| 39 |
|
| 40 |
def get_param_range_values(param_range_labels):
|
| 41 |
min_label, max_label = param_range_labels
|
|
|
|
| 43 |
max_val = float('inf') if '>' in max_label else float(max_label.replace('B', ''))
|
| 44 |
return min_val, max_val
|
| 45 |
|
| 46 |
+
def make_treemap_data(parquet_urls, count_by, top_k=25, tag_filter=None, pipeline_filter=None, param_range=None, skip_orgs=None, include_unknown_param_size=True, created_after_date: float = None):
|
| 47 |
+
if not parquet_urls: return pd.DataFrame()
|
| 48 |
+
|
| 49 |
+
con = duckdb.connect()
|
| 50 |
+
con.execute("INSTALL httpfs; LOAD httpfs;")
|
| 51 |
+
|
| 52 |
+
urls_str = ", ".join([f"'{u}'" for u in parquet_urls])
|
| 53 |
+
con.execute(f"CREATE VIEW models AS SELECT * FROM read_parquet([{urls_str}])")
|
| 54 |
+
|
| 55 |
+
where_clauses = []
|
| 56 |
+
|
| 57 |
+
if not include_unknown_param_size:
|
| 58 |
+
where_clauses.append("params IS NOT NULL AND params != -1")
|
| 59 |
+
|
| 60 |
col_map = { "Audio & Speech": "is_audio_speech", "Music": "has_music", "Robotics": "has_robot", "Biomedical": "is_biomed", "Time series": "has_series", "Sciences": "has_science", "Video": "has_video", "Images": "has_image", "Text": "has_text" }
|
| 61 |
+
|
| 62 |
+
if tag_filter and tag_filter in col_map:
|
| 63 |
+
where_clauses.append(f"{col_map[tag_filter]} = true")
|
| 64 |
+
|
| 65 |
+
if pipeline_filter:
|
| 66 |
+
where_clauses.append(f"pipeline_tag = '{pipeline_filter}'")
|
| 67 |
+
|
| 68 |
if param_range:
|
| 69 |
min_params, max_params = get_param_range_values(param_range)
|
| 70 |
is_default_range = (param_range[0] == PARAM_CHOICES[0] and param_range[1] == PARAM_CHOICES[-1])
|
| 71 |
+
if not is_default_range:
|
| 72 |
+
conditions = []
|
| 73 |
+
if min_params is not None:
|
| 74 |
+
conditions.append(f"params >= {min_params}")
|
| 75 |
+
if max_params is not None and max_params != float('inf'):
|
| 76 |
+
conditions.append(f"params < {max_params}")
|
| 77 |
+
if conditions:
|
| 78 |
+
where_clauses.append("(" + " AND ".join(conditions) + ")")
|
| 79 |
+
|
| 80 |
+
if created_after_date is not None:
|
| 81 |
+
where_clauses.append(f"CAST(createdAt AS TIMESTAMPTZ) > to_timestamp({created_after_date})")
|
| 82 |
+
|
| 83 |
+
if skip_orgs and len(skip_orgs) > 0:
|
| 84 |
+
orgs_str = ", ".join([f"'{o}'" for o in skip_orgs])
|
| 85 |
+
where_clauses.append(f"organization NOT IN ({orgs_str})")
|
| 86 |
|
| 87 |
+
where_sql = " WHERE " + " AND ".join(where_clauses) if where_clauses else ""
|
| 88 |
+
|
| 89 |
+
metric = f"COALESCE({count_by}, 0)"
|
| 90 |
+
|
| 91 |
+
query = f"""
|
| 92 |
+
SELECT organization, SUM({metric}) as total_metric
|
| 93 |
+
FROM models
|
| 94 |
+
{where_sql}
|
| 95 |
+
GROUP BY organization
|
| 96 |
+
ORDER BY total_metric DESC
|
| 97 |
+
LIMIT {top_k}
|
| 98 |
+
"""
|
| 99 |
+
|
| 100 |
+
top_orgs_df = con.execute(query).df()
|
| 101 |
+
|
| 102 |
+
if top_orgs_df.empty:
|
| 103 |
+
return pd.DataFrame()
|
| 104 |
|
| 105 |
+
top_orgs_list = top_orgs_df['organization'].tolist()
|
| 106 |
+
orgs_filter = ", ".join([f"'{o}'" for o in top_orgs_list])
|
| 107 |
+
|
| 108 |
+
detail_query = f"""
|
| 109 |
+
SELECT id, organization, {metric} as {count_by}
|
| 110 |
+
FROM models
|
| 111 |
+
{where_sql}
|
| 112 |
+
AND organization IN ({orgs_filter})
|
| 113 |
+
"""
|
| 114 |
+
|
| 115 |
+
treemap_data = con.execute(detail_query).df()
|
| 116 |
treemap_data["root"] = "models"
|
| 117 |
return treemap_data
|
| 118 |
|
|
|
|
| 139 |
"""
|
| 140 |
|
| 141 |
with gr.Blocks(title="🤗 ModelVerse Explorer", fill_width=True, css=custom_css) as demo:
|
| 142 |
+
models_data_state = gr.State([])
|
| 143 |
loading_complete_state = gr.State(False)
|
| 144 |
|
| 145 |
with gr.Row():
|
|
|
|
| 196 |
filter_choice_radio, [tag_filter_dropdown, pipeline_filter_dropdown])
|
| 197 |
|
| 198 |
def load_and_generate_initial_plot(progress=gr.Progress()):
|
| 199 |
+
progress(0, desc=f"Loading dataset metadata '{HF_DATASET_ID}'...")
|
| 200 |
+
parquet_urls, load_success_flag, status_msg_from_load = [], False, ""
|
| 201 |
try:
|
| 202 |
+
parquet_urls, load_success_flag, status_msg_from_load = load_models_data()
|
| 203 |
if load_success_flag:
|
| 204 |
+
progress(0.5, desc="Processing metadata...")
|
| 205 |
+
|
| 206 |
+
# Quick query to get stats
|
| 207 |
+
con = duckdb.connect()
|
| 208 |
+
con.execute("INSTALL httpfs; LOAD httpfs;")
|
| 209 |
+
urls_str = ", ".join([f"'{u}'" for u in parquet_urls])
|
| 210 |
+
con.execute(f"CREATE VIEW models AS SELECT * FROM read_parquet([{urls_str}])")
|
| 211 |
+
|
| 212 |
+
# Get total count and timestamp
|
| 213 |
+
stats = con.execute("SELECT count(*), max(data_download_timestamp), count(params) FROM models").fetchone()
|
| 214 |
+
total_count = stats[0]
|
| 215 |
+
ts = stats[1] # Timestamp object
|
| 216 |
+
param_count = stats[2]
|
| 217 |
+
|
| 218 |
date_display = ts.strftime('%B %d, %Y, %H:%M:%S %Z') if ts else "Pre-processed (date unavailable)"
|
| 219 |
|
|
|
|
| 220 |
data_info_text = (f"### Data Information\n- Source: `{HF_DATASET_ID}`\n- Status: {status_msg_from_load}\n"
|
| 221 |
+
f"- Total models loaded: {total_count:,}\n- Models with known parameter counts: {param_count:,}\n"
|
| 222 |
+
f"- Models with unknown parameter counts: {total_count - param_count:,}\n- Data as of: {date_display}\n")
|
| 223 |
else:
|
| 224 |
data_info_text = f"### Data Load Failed\n- {status_msg_from_load}"
|
| 225 |
except Exception as e:
|
|
|
|
| 230 |
progress(0.6, desc="Generating initial plot...")
|
| 231 |
initial_plot, initial_status = ui_generate_plot_controller(
|
| 232 |
"downloads", "None", None, None, PARAM_CHOICES_DEFAULT_INDICES, 25,
|
| 233 |
+
"TheBloke,MaziyarPanahi,unsloth,modularai,Gensyn,bartowski", True, None, parquet_urls, progress
|
| 234 |
)
|
| 235 |
+
return parquet_urls, load_success_flag, data_info_text, initial_status, initial_plot
|
| 236 |
|
| 237 |
def ui_generate_plot_controller(metric_choice, filter_type, tag_choice, pipeline_choice,
|
| 238 |
param_range_indices, k_orgs, skip_orgs_input, include_unknown_param_size_flag,
|
| 239 |
+
created_after_date, parquet_urls, progress=gr.Progress()):
|
| 240 |
+
if not parquet_urls:
|
| 241 |
return create_treemap(pd.DataFrame(), metric_choice, "Error: Model Data Not Loaded"), "Model data is not loaded."
|
| 242 |
|
| 243 |
progress(0.1, desc="Preparing data...")
|
| 244 |
param_labels = [PARAM_CHOICES[int(param_range_indices[0])], PARAM_CHOICES[int(param_range_indices[1])]]
|
| 245 |
|
| 246 |
treemap_df = make_treemap_data(
|
| 247 |
+
parquet_urls, metric_choice, k_orgs,
|
| 248 |
tag_choice if filter_type == "Tag Filter" else None,
|
| 249 |
pipeline_choice if filter_type == "Pipeline Filter" else None,
|
| 250 |
param_labels, [org.strip() for org in skip_orgs_input.split(',') if org.strip()],
|
requirements.txt
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
plotly
|
| 2 |
duckdb
|
| 3 |
-
gradio-rangeslider
|
|
|
|
| 1 |
plotly
|
| 2 |
duckdb
|
| 3 |
+
gradio-rangeslider
|