Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -3,7 +3,6 @@ import torch
|
|
| 3 |
from transformers import AutoProcessor, PaliGemmaForConditionalGeneration
|
| 4 |
from PIL import Image
|
| 5 |
|
| 6 |
-
# Load model and processor
|
| 7 |
model_id = "brucewayne0459/paligemma_derm"
|
| 8 |
processor = AutoProcessor.from_pretrained(model_id)
|
| 9 |
model = PaliGemmaForConditionalGeneration.from_pretrained(model_id)
|
|
@@ -59,11 +58,9 @@ elif uploaded_file:
|
|
| 59 |
st.error(f"Error loading image: {str(e)}")
|
| 60 |
input_image = None
|
| 61 |
|
| 62 |
-
# Display and process the image
|
| 63 |
with col2:
|
| 64 |
if input_image:
|
| 65 |
try:
|
| 66 |
-
# Display the uploaded or captured image
|
| 67 |
resized_image = input_image.resize((300, 300))
|
| 68 |
st.image(resized_image, caption="Selected Image (300x300)", use_container_width=True)
|
| 69 |
|
|
@@ -72,7 +69,6 @@ with col2:
|
|
| 72 |
processed_image = input_image.resize(max_size)
|
| 73 |
|
| 74 |
with st.spinner("Processing..."):
|
| 75 |
-
# Prepare inputs for the model
|
| 76 |
inputs = processor(
|
| 77 |
text=prompt,
|
| 78 |
images=processed_image,
|
|
@@ -80,12 +76,10 @@ with col2:
|
|
| 80 |
padding="longest"
|
| 81 |
).to(device)
|
| 82 |
|
| 83 |
-
|
| 84 |
-
default_max_tokens = 50 # Default value for max tokens
|
| 85 |
with torch.no_grad():
|
| 86 |
outputs = model.generate(**inputs, max_new_tokens=default_max_tokens)
|
| 87 |
|
| 88 |
-
# Decode and clean the output
|
| 89 |
decoded_output = processor.decode(outputs[0], skip_special_tokens=True)
|
| 90 |
if prompt in decoded_output:
|
| 91 |
decoded_output = decoded_output.replace(prompt, "").strip()
|
|
|
|
| 3 |
from transformers import AutoProcessor, PaliGemmaForConditionalGeneration
|
| 4 |
from PIL import Image
|
| 5 |
|
|
|
|
| 6 |
model_id = "brucewayne0459/paligemma_derm"
|
| 7 |
processor = AutoProcessor.from_pretrained(model_id)
|
| 8 |
model = PaliGemmaForConditionalGeneration.from_pretrained(model_id)
|
|
|
|
| 58 |
st.error(f"Error loading image: {str(e)}")
|
| 59 |
input_image = None
|
| 60 |
|
|
|
|
| 61 |
with col2:
|
| 62 |
if input_image:
|
| 63 |
try:
|
|
|
|
| 64 |
resized_image = input_image.resize((300, 300))
|
| 65 |
st.image(resized_image, caption="Selected Image (300x300)", use_container_width=True)
|
| 66 |
|
|
|
|
| 69 |
processed_image = input_image.resize(max_size)
|
| 70 |
|
| 71 |
with st.spinner("Processing..."):
|
|
|
|
| 72 |
inputs = processor(
|
| 73 |
text=prompt,
|
| 74 |
images=processed_image,
|
|
|
|
| 76 |
padding="longest"
|
| 77 |
).to(device)
|
| 78 |
|
| 79 |
+
default_max_tokens = 50
|
|
|
|
| 80 |
with torch.no_grad():
|
| 81 |
outputs = model.generate(**inputs, max_new_tokens=default_max_tokens)
|
| 82 |
|
|
|
|
| 83 |
decoded_output = processor.decode(outputs[0], skip_special_tokens=True)
|
| 84 |
if prompt in decoded_output:
|
| 85 |
decoded_output = decoded_output.replace(prompt, "").strip()
|