File size: 42,987 Bytes
3c837c8 bfa9c6a 3c837c8 bfa9c6a 3c837c8 bfa9c6a 3c837c8 f1e43d0 3c837c8 bfa9c6a 3c837c8 bfa9c6a 3c837c8 bfa9c6a 3c837c8 bfa9c6a 3c837c8 077ff17 3c837c8 69108a1 3c837c8 077ff17 3c837c8 077ff17 3c837c8 bfa9c6a 3c837c8 077ff17 3c837c8 bfa9c6a 3c837c8 69108a1 3c837c8 077ff17 0e2fbef 077ff17 e95f4cc 077ff17 e95f4cc 077ff17 e95f4cc 077ff17 e95f4cc 0e2fbef e95f4cc 0e2fbef 077ff17 0e2fbef 3c837c8 0e2fbef 3c837c8 0e2fbef 3c837c8 e95f4cc 3c837c8 bfa9c6a 3c837c8 bfa9c6a 3c837c8 e95f4cc 69108a1 bfa9c6a 3c837c8 bfa9c6a 3c837c8 e914516 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 |
"""
Gradio Chatbot Interface for CGT-LLM-Beta RAG System
This application provides a web interface for the RAG chatbot with OAuth authentication.
It uses Hugging Face Inference API with OAuth tokens for authentication.
"""
import gradio as gr
import argparse
import sys
import os
from typing import Tuple, Optional, List
import logging
import textstat
import torch
# Set up logging first (before any logger usage)
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Import from bot.py - wrap in try/except to handle import errors gracefully
try:
from bot import RAGBot, parse_args, Chunk
BOT_AVAILABLE = True
except ImportError as e:
logger.error(f"Failed to import bot module: {e}")
BOT_AVAILABLE = False
# Create dummy classes so the module can still load
class RAGBot:
pass
class Chunk:
pass
def parse_args():
return None
# For Hugging Face Inference API
try:
from huggingface_hub import InferenceClient
HF_INFERENCE_AVAILABLE = True
except ImportError:
HF_INFERENCE_AVAILABLE = False
logger.warning("huggingface_hub not available, InferenceClient will not work")
# Model mapping: short name -> full HuggingFace path
MODEL_MAP = {
"Llama-3.2-3B-Instruct": "meta-llama/Llama-3.2-3B-Instruct",
"Mistral-7B-Instruct-v0.2": "mistralai/Mistral-7B-Instruct-v0.2",
"Llama-4-Scout-17B-16E-Instruct": "meta-llama/Llama-4-Scout-17B-16E-Instruct",
"MediPhi-Instruct": "microsoft/MediPhi-Instruct",
"MediPhi": "microsoft/MediPhi",
"Phi-4-reasoning": "microsoft/Phi-4-reasoning",
}
# Education level mapping
EDUCATION_LEVELS = {
"Middle School": "middle_school",
"High School": "high_school",
"College": "college",
"Doctoral": "doctoral"
}
# Example questions from the results CSV (hardcoded for easy access)
EXAMPLE_QUESTIONS = [
"Can a BRCA2 variant skip a generation?",
"Can a PMS2 variant skip a generation?",
"Can an EPCAM/MSH2 variant skip a generation?",
"Can an MLH1 variant skip a generation?",
"Can an MSH2 variant skip a generation?",
"Can an MSH6 variant skip a generation?",
"Can I pass this MSH2 variant to my kids?",
"Can only women carry a BRCA inherited mutation?",
"Does GINA cover life or disability insurance?",
"Does having a BRCA1 mutation mean I will definitely have cancer?",
"Does having a BRCA2 mutation mean I will definitely have cancer?",
"Does having a PMS2 mutation mean I will definitely have cancer?",
"Does having an EPCAM/MSH2 mutation mean I will definitely have cancer?",
"Does having an MLH1 mutation mean I will definitely have cancer?",
"Does having an MSH2 mutation mean I will definitely have cancer?",
"Does having an MSH6 mutation mean I will definitely have cancer?",
"Does this BRCA1 genetic variant affect my cancer treatment?",
"Does this BRCA2 genetic variant affect my cancer treatment?",
"Does this EPCAM/MSH2 genetic variant affect my cancer treatment?",
"Does this MLH1 genetic variant affect my cancer treatment?",
"Does this MSH2 genetic variant affect my cancer treatment?",
"Does this MSH6 genetic variant affect my cancer treatment?",
"Does this PMS2 genetic variant affect my cancer treatment?",
"How can I cope with this diagnosis?",
"How can I get my kids tested?",
"How can I help others with my condition?",
"How might my genetic test results change over time?",
"I don't talk to my family/parents/sister/brother. How can I share this with them?",
"I have a BRCA pathogenic variant and I want to have children, what are my options?",
"Is genetic testing for my family members covered by insurance?",
"Is new research being done on my condition?",
"Is this BRCA1 variant something I inherited?",
"Is this BRCA2 variant something I inherited?",
"Is this EPCAM/MSH2 variant something I inherited?",
"Is this MLH1 variant something I inherited?",
"Is this MSH2 variant something I inherited?",
"Is this MSH6 variant something I inherited?",
"Is this PMS2 variant something I inherited?",
"My relative doesn't have insurance. What should they do?",
"People who test positive for a genetic mutation are they at risk of losing their health insurance?",
"Should I contact my male and female relatives?",
"Should my family members get tested?",
"What are the Risks and Benefits of Risk-Reducing Surgeries for Lynch Syndrome?",
"What are the recommendations for my family members if I have a BRCA1 mutation?",
"What are the recommendations for my family members if I have a BRCA2 mutation?",
"What are the recommendations for my family members if I have a PMS2 mutation?",
"What are the recommendations for my family members if I have an EPCAM/MSH2 mutation?",
"What are the recommendations for my family members if I have an MLH1 mutation?",
"What are the recommendations for my family members if I have an MSH2 mutation?",
"What are the recommendations for my family members if I have an MSH6 mutation?",
"What are the surveillance and preventions I can take to reduce my risk of cancer or detecting cancer early if I have a BRCA mutation?",
"What are the surveillance and preventions I can take to reduce my risk of cancer or detecting cancer early if I have an EPCAM/MSH2 mutation?",
"What are the surveillance and preventions I can take to reduce my risk of cancer or detecting cancer early if I have an MSH2 mutation?",
"What does a BRCA1 genetic variant mean for me?",
"What does a BRCA2 genetic variant mean for me?",
"What does a PMS2 genetic variant mean for me?",
"What does an EPCAM/MSH2 genetic variant mean for me?",
"What does an MLH1 genetic variant mean for me?",
"What does an MSH2 genetic variant mean for me?",
"What does an MSH6 genetic variant mean for me?",
"What if I feel overwhelmed?",
"What if I want to have children and have a hereditary cancer gene? What are my reproductive options?",
"What if a family member doesn't want to get tested?",
"What is Lynch Syndrome?",
"What is my cancer risk if I have BRCA1 Hereditary Breast and Ovarian Cancer syndrome?",
"What is my cancer risk if I have BRCA2 Hereditary Breast and Ovarian Cancer syndrome?",
"What is my cancer risk if I have MLH1 Lynch syndrome?",
"What is my cancer risk if I have MSH2 or EPCAM-associated Lynch syndrome?",
"What is my cancer risk if I have MSH6 Lynch syndrome?",
"What is my cancer risk if I have PMS2 Lynch syndrome?",
"What other resources are available to help me?",
"What screening tests do you recommend for BRCA1 carriers?",
"What screening tests do you recommend for BRCA2 carriers?",
"What screening tests do you recommend for EPCAM/MSH2 carriers?",
"What screening tests do you recommend for MLH1 carriers?",
"What screening tests do you recommend for MSH2 carriers?",
"What screening tests do you recommend for MSH6 carriers?",
"What screening tests do you recommend for PMS2 carriers?",
"What steps can I take to manage my cancer risk if I have Lynch syndrome?",
"What types of cancers am I at risk for with a BRCA1 mutation?",
"What types of cancers am I at risk for with a BRCA2 mutation?",
"What types of cancers am I at risk for with a PMS2 mutation?",
"What types of cancers am I at risk for with an EPCAM/MSH2 mutation?",
"What types of cancers am I at risk for with an MLH1 mutation?",
"What types of cancers am I at risk for with an MSH2 mutation?",
"What types of cancers am I at risk for with an MSH6 mutation?",
"Where can I find a genetic counselor?",
"Which of my relatives are at risk?",
"Who are my first-degree relatives?",
"Who do my family members call to have genetic testing?",
"Why do some families with Lynch syndrome have more cases of cancer than others?",
"Why should I share my BRCA1 genetic results with family?",
"Why should I share my BRCA2 genetic results with family?",
"Why should I share my EPCAM/MSH2 genetic results with family?",
"Why should I share my MLH1 genetic results with family?",
"Why should I share my MSH2 genetic results with family?",
"Why should I share my MSH6 genetic results with family?",
"Why should I share my PMS2 genetic results with family?",
"Why would my relatives want to know if they have this? What can they do about it?",
"Will my insurance cover testing for my parents/brother/sister?",
"Will this affect my health insurance?",
]
class InferenceAPIBot:
"""Wrapper that uses Hugging Face Inference API with OAuth token"""
def __init__(self, bot: RAGBot):
"""Initialize with a RAGBot (for vector DB)"""
self.bot = bot # Use bot for vector DB and formatting
self.current_model = bot.args.model
logger.info(f"InferenceAPIBot initialized with model: {self.current_model}")
def _get_client(self, hf_token: Optional[str] = None) -> InferenceClient:
"""Create InferenceClient with token (can be None for public models)"""
if hf_token:
return InferenceClient(token=hf_token)
else:
# Try without token (works for public models)
return InferenceClient()
@property
def args(self):
"""Access args from the wrapped bot"""
return self.bot.args
def generate_answer(self, prompt: str, hf_token: Optional[str] = None, **kwargs) -> str:
"""Generate answer using Inference API"""
try:
max_tokens = kwargs.get('max_new_tokens', 512)
temperature = kwargs.get('temperature', 0.2)
top_p = kwargs.get('top_p', 0.9)
# Create client with token
client = self._get_client(hf_token)
# Use text_generation API directly
logger.info(f"Calling Inference API for model: {self.current_model} (token: {'provided' if hf_token else 'not provided'})")
response = client.text_generation(
prompt,
model=self.current_model,
max_new_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
return_full_text=False,
)
logger.info(f"Inference API response received (length: {len(response) if response else 0})")
return response
except Exception as e:
error_msg = str(e).lower()
logger.error(f"Error calling Inference API: {e}", exc_info=True)
# Provide helpful error messages
if 'authentication' in error_msg or 'token' in error_msg or '401' in error_msg or '403' in error_msg:
return "β οΈ **Authentication Required**\n\nThis model requires authentication. Please log in using the Hugging Face login button in the sidebar, or ensure you have a valid HF_TOKEN set."
elif 'not found' in error_msg or '404' in error_msg:
return f"β οΈ **Model Not Found**\n\nThe model '{self.current_model}' could not be found. Please check the model name or try a different model."
else:
return f"β οΈ **Error generating answer**\n\n{str(e)}\n\nPlease check the logs for more details or try again."
def enhance_readability(self, answer: str, target_level: str = "middle_school", hf_token: Optional[str] = None) -> Tuple[str, float]:
"""Enhance readability using Inference API"""
try:
# Define prompts for different reading levels
if target_level == "middle_school":
level_description = "middle school reading level (ages 12-14, 6th-8th grade)"
instructions = """
- Use simpler medical terms or explain them
- Medium-length sentences
- Clear, structured explanations
- Keep important medical information accessible"""
elif target_level == "high_school":
level_description = "high school reading level (ages 15-18, 9th-12th grade)"
instructions = """
- Use appropriate medical terminology with context
- Varied sentence length
- Comprehensive yet accessible explanations
- Maintain technical accuracy while ensuring clarity"""
elif target_level == "college":
level_description = "college reading level (undergraduate level, ages 18-22)"
instructions = """
- Use standard medical terminology with brief explanations
- Professional and clear writing style
- Include relevant clinical context
- Maintain scientific accuracy and precision
- Appropriate for undergraduate students in health sciences"""
elif target_level == "doctoral":
level_description = "doctoral/professional reading level (graduate level, medical professionals)"
instructions = """
- Use advanced medical and scientific terminology
- Include detailed clinical and research context
- Reference specific mechanisms, pathways, and evidence
- Provide comprehensive technical explanations
- Appropriate for medical professionals, researchers, and graduate students
- Include nuanced discussions of clinical implications and research findings"""
else:
raise ValueError(f"Unknown target_level: {target_level}")
system_message = f"""You are a helpful medical assistant who specializes in explaining complex medical information at appropriate reading levels. Rewrite the following medical answer for {level_description}:
{instructions}
- Keep the same important information but adapt the complexity
- Provide context for technical terms
- Ensure the answer is informative yet understandable"""
user_message = f"Please rewrite this medical answer for {level_description}:\n\n{answer}"
# Combine system and user messages for text generation
combined_prompt = f"{system_message}\n\n{user_message}"
logger.info(f"Enhancing readability for {target_level} level")
# Create client with token
client = self._get_client(hf_token)
max_tokens = 512 if target_level in ["college", "doctoral"] else 384
temperature = 0.4 if target_level in ["college", "doctoral"] else 0.3
enhanced_answer = client.text_generation(
combined_prompt,
model=self.current_model,
max_new_tokens=max_tokens,
temperature=temperature,
return_full_text=False,
)
# Clean the answer (same as bot.py)
cleaned = self.bot._clean_readability_answer(enhanced_answer, target_level)
# Calculate Flesch score
try:
flesch_score = textstat.flesch_kincaid_grade(cleaned)
except:
flesch_score = 0.0
return cleaned, flesch_score
except Exception as e:
logger.error(f"Error enhancing readability: {e}", exc_info=True)
return answer, 0.0
# Delegate other methods to bot
def format_prompt(self, context_chunks: List[Chunk], question: str) -> str:
return self.bot.format_prompt(context_chunks, question)
def retrieve_with_scores(self, query: str, k: int) -> Tuple[List[Chunk], List[float]]:
return self.bot.retrieve_with_scores(query, k)
def _categorize_question(self, question: str) -> str:
return self.bot._categorize_question(question)
@property
def vector_retriever(self):
return self.bot.vector_retriever
class GradioRAGInterface:
"""Wrapper class to integrate RAGBot with Gradio using OAuth"""
def __init__(self, initial_bot: RAGBot):
# Always use Inference API on Spaces
if HF_INFERENCE_AVAILABLE:
self.bot = InferenceAPIBot(initial_bot)
self.use_inference_api = True
logger.info("Using Hugging Face Inference API with OAuth")
else:
self.bot = initial_bot
self.use_inference_api = False
logger.warning("Inference API not available, falling back to local model")
# Get current model from bot args
self.current_model = self.bot.args.model if hasattr(self.bot, 'args') else getattr(self.bot, 'current_model', None)
if self.current_model is None and hasattr(self.bot, 'bot'):
self.current_model = self.bot.bot.args.model
self.data_dir = initial_bot.args.data_dir
logger.info("GradioRAGInterface initialized")
def _find_file_path(self, filename: str) -> str:
"""Find the full file path for a given filename"""
from pathlib import Path
data_path = Path(self.data_dir)
if not data_path.exists():
return ""
# Search for the file recursively
for file_path in data_path.rglob(filename):
return str(file_path)
return ""
def reload_model(self, model_short_name: str) -> str:
"""Reload the model when user selects a different one"""
if model_short_name not in MODEL_MAP:
return f"Error: Unknown model '{model_short_name}'"
new_model_path = MODEL_MAP[model_short_name]
# If same model, no need to reload
if new_model_path == self.current_model:
return f"Model already loaded: {model_short_name}"
try:
logger.info(f"Switching model from {self.current_model} to {new_model_path}")
if self.use_inference_api:
# For Inference API, just update the model name
self.bot.current_model = new_model_path
self.current_model = new_model_path
return f"β Model switched to: {model_short_name} (using Inference API)"
else:
# For local model, reload it
self.bot.args.model = new_model_path
# Clear old model from memory
if hasattr(self.bot, 'model') and self.bot.model is not None:
del self.bot.model
del self.bot.tokenizer
torch.cuda.empty_cache() if torch.cuda.is_available() else None
# Load new model
self.bot._load_model()
self.current_model = new_model_path
return f"β Model loaded: {model_short_name}"
except Exception as e:
logger.error(f"Error reloading model: {e}", exc_info=True)
return f"β Error loading model: {str(e)}"
def process_question(
self,
question: str,
model_name: str,
education_level: str,
k: int,
temperature: float,
max_tokens: int,
hf_token: Optional[str] = None
) -> Tuple[str, str, str, str, str]:
"""
Process a single question and return formatted results
Returns:
Tuple of (answer, flesch_score, sources, similarity_scores, question_category)
"""
import time
if not question or not question.strip():
return "Please enter a question.", "N/A", "", "", ""
# Note: Token is optional for public models, but required for gated models
# We'll try to proceed without token first (for public models)
# If it fails, we'll show an error message
try:
start_time = time.time()
logger.info(f"Processing question: {question[:50]}...")
# Reload model if changed
if model_name in MODEL_MAP:
model_path = MODEL_MAP[model_name]
if model_path != self.current_model:
logger.info(f"Model changed, reloading from {self.current_model} to {model_path}")
reload_status = self.reload_model(model_name)
if reload_status.startswith("β"):
return f"Error: {reload_status}", "N/A", "", "", ""
logger.info(f"Model reloaded in {time.time() - start_time:.1f}s")
# Update bot args for this query
self.bot.args.k = k
self.bot.args.temperature = temperature
self.bot.args.max_new_tokens = min(max_tokens, 512) # Cap at 512 for faster responses
# Categorize question
logger.info("Categorizing question...")
question_group = self.bot._categorize_question(question)
# Retrieve relevant chunks with similarity scores
logger.info("Retrieving relevant documents...")
retrieve_start = time.time()
context_chunks, similarity_scores = self.bot.retrieve_with_scores(question, k)
logger.info(f"Retrieved {len(context_chunks)} chunks in {time.time() - retrieve_start:.2f}s")
if not context_chunks:
return (
"I don't have enough information to answer this question. Please try rephrasing or asking about a different topic.",
"N/A",
"No sources found",
"No matches found",
question_group
)
# Format similarity scores
similarity_scores_str = ", ".join([f"{score:.3f}" for score in similarity_scores])
# Format sources with chunk text and file paths
sources_list = []
for i, (chunk, score) in enumerate(zip(context_chunks, similarity_scores)):
file_path = self._find_file_path(chunk.filename)
source_info = f"""
{'='*80}
SOURCE {i+1} | Similarity: {score:.3f}
{'='*80}
π File: {chunk.filename}
π Path: {file_path if file_path else 'File path not found (search in Data Resources directory)'}
π Chunk: {chunk.chunk_id + 1}/{chunk.total_chunks} (Position: {chunk.start_pos}-{chunk.end_pos})
π Full Chunk Text:
{chunk.text}
"""
sources_list.append(source_info)
sources = "\n".join(sources_list)
# Generation kwargs
gen_kwargs = {
'max_new_tokens': min(max_tokens, 512),
'temperature': temperature,
'top_p': self.bot.args.top_p,
'repetition_penalty': self.bot.args.repetition_penalty
}
# Generate answer based on education level
answer = ""
flesch_score = 0.0
# Generate original answer first
logger.info("Generating original answer...")
gen_start = time.time()
prompt = self.bot.format_prompt(context_chunks, question)
original_answer = self.bot.generate_answer(prompt, hf_token=hf_token, **gen_kwargs)
logger.info(f"Original answer generated in {time.time() - gen_start:.1f}s")
# Enhance based on education level
logger.info(f"Enhancing answer for {education_level} level...")
enhance_start = time.time()
if education_level == "middle_school":
answer, flesch_score = self.bot.enhance_readability(original_answer, target_level="middle_school", hf_token=hf_token)
elif education_level == "high_school":
answer, flesch_score = self.bot.enhance_readability(original_answer, target_level="high_school", hf_token=hf_token)
elif education_level == "college":
answer, flesch_score = self.bot.enhance_readability(original_answer, target_level="college", hf_token=hf_token)
elif education_level == "doctoral":
answer, flesch_score = self.bot.enhance_readability(original_answer, target_level="doctoral", hf_token=hf_token)
else:
answer = "Invalid education level selected."
flesch_score = 0.0
logger.info(f"Answer enhanced in {time.time() - enhance_start:.1f}s")
total_time = time.time() - start_time
logger.info(f"Total processing time: {total_time:.1f}s")
# Clean the answer - remove special tokens and formatting
import re
cleaned_answer = answer
# Remove special tokens (case-insensitive)
special_tokens = [
"<|end|>",
"<|endoftext|>",
"<|end_of_text|>",
"<|eot_id|>",
"<|start_header_id|>",
"<|end_header_id|>",
"<|assistant|>",
"<|endoftext|>",
"<|end_of_text|>",
]
for token in special_tokens:
cleaned_answer = re.sub(re.escape(token), '', cleaned_answer, flags=re.IGNORECASE)
# Remove any remaining special token patterns
cleaned_answer = re.sub(r'<\|[^|]+\|>', '', cleaned_answer)
cleaned_answer = re.sub(r'^\*\*.*?\*\*.*?\n', '', cleaned_answer, flags=re.MULTILINE)
cleaned_answer = re.sub(r'\n\s*\n\s*\n+', '\n\n', cleaned_answer)
cleaned_answer = re.sub(r'^\s+|\s+$', '', cleaned_answer, flags=re.MULTILINE)
cleaned_answer = cleaned_answer.strip()
return (
cleaned_answer,
f"{flesch_score:.1f}",
sources,
similarity_scores_str,
question_group
)
except Exception as e:
logger.error(f"Error processing question: {e}", exc_info=True)
return (
f"An error occurred while processing your question: {str(e)}",
"N/A",
"",
"",
"Error"
)
def create_interface(initial_bot: RAGBot) -> gr.Blocks:
"""Create and configure the Gradio interface with OAuth"""
try:
interface = GradioRAGInterface(initial_bot)
except Exception as e:
logger.error(f"Failed to create GradioRAGInterface: {e}")
with gr.Blocks(title="CGT-LLM-Beta RAG Chatbot") as demo:
gr.Markdown(f"""
# β οΈ Initialization Error
Failed to initialize the chatbot interface.
**Error:** {str(e)}
Please check the logs for more details.
""")
return demo
# Get initial model name from bot
initial_model_short = None
for short_name, full_path in MODEL_MAP.items():
if full_path == initial_bot.args.model:
initial_model_short = short_name
break
if initial_model_short is None:
initial_model_short = list(MODEL_MAP.keys())[0]
# Create the Gradio interface
try:
with gr.Blocks(title="CGT-LLM-Beta RAG Chatbot") as demo:
with gr.Sidebar():
gr.LoginButton()
gr.Markdown("### π Authentication")
gr.Markdown("Please log in with your Hugging Face account to use the Inference API.")
gr.Markdown("""
# 𧬠CGT-LLM-Beta: Genetic Counseling RAG Chatbot
Ask questions about genetic counseling, cascade genetic testing, hereditary cancer syndromes, and related topics.
The chatbot uses a Retrieval-Augmented Generation (RAG) system to provide evidence-based answers from medical literature.
""")
with gr.Row():
with gr.Column(scale=2):
question_input = gr.Textbox(
label="Your Question",
placeholder="e.g., What is Lynch Syndrome? What screening is recommended for BRCA1 carriers?",
lines=3
)
with gr.Row():
model_dropdown = gr.Dropdown(
choices=list(MODEL_MAP.keys()),
value=initial_model_short,
label="Select Model",
info="Choose which LLM model to use for generating answers"
)
education_dropdown = gr.Dropdown(
choices=list(EDUCATION_LEVELS.keys()),
value=list(EDUCATION_LEVELS.keys())[0],
label="Education Level",
info="Select your education level for personalized answers"
)
with gr.Accordion("Advanced Settings", open=False):
k_slider = gr.Slider(
minimum=1,
maximum=10,
value=5,
step=1,
label="Number of document chunks to retrieve (k)"
)
temperature_slider = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.2,
step=0.1,
label="Temperature (lower = more focused)"
)
max_tokens_slider = gr.Slider(
minimum=128,
maximum=1024,
value=512,
step=128,
label="Max Tokens (lower = faster responses)"
)
submit_btn = gr.Button("Ask Question", variant="primary", size="lg")
with gr.Column(scale=3):
answer_output = gr.Textbox(
label="Answer",
lines=20,
interactive=False,
elem_classes=["answer-box"]
)
with gr.Row():
flesch_output = gr.Textbox(
label="Flesch-Kincaid Grade Level",
value="N/A",
interactive=False,
scale=1
)
similarity_output = gr.Textbox(
label="Similarity Scores",
value="",
interactive=False,
scale=1
)
category_output = gr.Textbox(
label="Question Category",
value="",
interactive=False,
scale=1
)
sources_output = gr.Textbox(
label="Source Documents (with Chunk Text)",
lines=15,
interactive=False,
info="Shows the retrieved document chunks with full text. File paths are shown for easy access."
)
# Example questions
gr.Markdown("### π‘ Example Questions")
gr.Markdown(f"Select a question below to use it in the chatbot ({len(EXAMPLE_QUESTIONS)} questions - scrollable dropdown):")
example_questions_dropdown = gr.Dropdown(
choices=EXAMPLE_QUESTIONS,
label="Example Questions",
value=None,
info="Open the dropdown and scroll through all questions. Select one to use it.",
interactive=True,
container=True,
scale=1
)
def update_question_from_dropdown(selected_question):
return selected_question if selected_question else ""
example_questions_dropdown.change(
fn=update_question_from_dropdown,
inputs=example_questions_dropdown,
outputs=question_input
)
# Footer
gr.Markdown("""
---
**Note:** This chatbot provides informational answers based on medical literature.
It is not a substitute for professional medical advice, diagnosis, or treatment.
Always consult with qualified healthcare providers for medical decisions.
""")
# Connect the submit button with OAuth token
# In Gradio 5.x with hf_oauth enabled, the token is automatically injected via gr.Request
def process_with_education_level(question, model, education, k, temp, max_tok, request: gr.Request = None):
# Get OAuth token from the request if available
# When hf_oauth is enabled, Gradio provides the token in the request
token = None
# Try to get token from request (OAuth token from logged-in user)
try:
if request is not None:
# Check if request has client with hf_token attribute
if hasattr(request, 'client') and request.client is not None:
if hasattr(request.client, 'hf_token') and request.client.hf_token:
token = request.client.hf_token
elif hasattr(request.client, 'token') and request.client.token:
token = request.client.token
# Also check request headers
if not token and hasattr(request, 'headers') and request.headers:
auth_header = request.headers.get('authorization', '') or request.headers.get('Authorization', '')
if auth_header and auth_header.startswith('Bearer '):
token = auth_header[7:]
except Exception as e:
logger.debug(f"Could not get token from request: {e}")
# Fallback to environment variable if OAuth token not available
# This allows the app to work even without user login (for public models)
if not token:
token = os.getenv("HF_TOKEN") or os.getenv("HUGGING_FACE_HUB_TOKEN")
education_key = EDUCATION_LEVELS[education]
return interface.process_question(question, model, education_key, k, temp, max_tok, hf_token=token)
submit_btn.click(
fn=process_with_education_level,
inputs=[
question_input,
model_dropdown,
education_dropdown,
k_slider,
temperature_slider,
max_tokens_slider
],
outputs=[
answer_output,
flesch_output,
sources_output,
similarity_output,
category_output
]
)
# Also allow Enter key to submit
question_input.submit(
fn=process_with_education_level,
inputs=[
question_input,
model_dropdown,
education_dropdown,
k_slider,
temperature_slider,
max_tokens_slider
],
outputs=[
answer_output,
flesch_output,
sources_output,
similarity_output,
category_output
]
)
except Exception as interface_error:
logger.error(f"Error setting up Gradio interface components: {interface_error}", exc_info=True)
import traceback
error_trace = traceback.format_exc()
with gr.Blocks(title="CGT-LLM-Beta RAG Chatbot") as demo:
gr.Markdown(f"""
# β οΈ Interface Setup Error
An error occurred while setting up the interface components.
**Error:** {str(interface_error)}
**Traceback:**
```
{error_trace[:1000]}...
```
Please check the logs for more details.
""")
return demo
logger.info("Gradio interface created successfully")
logger.info(f"Demo type: {type(demo)}, Demo ID: {id(demo)}")
return demo
# Check if we're on Spaces
IS_SPACES = (
os.getenv("SPACE_ID") is not None or
os.getenv("SYSTEM") == "spaces" or
os.getenv("HF_SPACE_ID") is not None
)
# Initialize demo variable
demo = None
def _create_demo():
"""Create the demo - separated into function for better error handling"""
try:
logger.info("=" * 80)
logger.info("Starting demo creation...")
logger.info(f"IS_SPACES: {IS_SPACES}")
logger.info(f"BOT_AVAILABLE: {BOT_AVAILABLE}")
if not BOT_AVAILABLE:
raise ImportError("bot module is not available - cannot create demo")
# Initialize with default args
parser = argparse.ArgumentParser()
parser.add_argument('--model', type=str, default='meta-llama/Llama-3.2-3B-Instruct')
parser.add_argument('--vector-db-dir', default='./chroma_db')
parser.add_argument('--data-dir', default='./Data Resources')
parser.add_argument('--max-new-tokens', type=int, default=1024)
parser.add_argument('--temperature', type=float, default=0.2)
parser.add_argument('--top-p', type=float, default=0.9)
parser.add_argument('--repetition-penalty', type=float, default=1.1)
parser.add_argument('--k', type=int, default=5)
parser.add_argument('--skip-indexing', action='store_true', default=True)
parser.add_argument('--verbose', action='store_true', default=False)
parser.add_argument('--seed', type=int, default=42)
args = parser.parse_args([]) # Empty args
args.skip_model_loading = IS_SPACES # Skip model loading on Spaces, use Inference API
logger.info("Creating RAGBot...")
bot = RAGBot(args)
if bot.vector_retriever is None:
raise Exception("Vector database not available")
# Check if vector database has documents
collection_stats = bot.vector_retriever.get_collection_stats()
if collection_stats.get('total_chunks', 0) == 0:
logger.warning("Vector database is empty. The chatbot may not find relevant documents.")
logger.info("Creating interface...")
demo = create_interface(bot)
logger.info(f"Demo created successfully: {type(demo)}")
return demo
except Exception as bot_error:
logger.error(f"Error initializing: {bot_error}", exc_info=True)
import traceback
error_trace = traceback.format_exc()
logger.error(f"Full traceback: {error_trace}")
with gr.Blocks(title="CGT-LLM-Beta RAG Chatbot") as error_demo:
gr.Markdown(f"""
# β οΈ Initialization Error
The chatbot encountered an error during initialization:
**Error:** {str(bot_error)}
**Possible causes:**
- Missing vector database (chroma_db directory)
- Missing dependencies
- Configuration issues
**Error Details:**
```
{error_trace[:1000]}...
```
""")
logger.info(f"Error demo created: {type(error_demo)}")
return error_demo
# Create demo at module level
try:
if IS_SPACES:
logger.info("Creating demo directly at module level for Spaces...")
else:
logger.info("Creating demo for local execution...")
demo = _create_demo()
if demo is None or not isinstance(demo, (gr.Blocks, gr.Interface)):
raise ValueError(f"Demo creation returned invalid result: {type(demo)}")
logger.info("Demo creation completed successfully")
except Exception as e:
logger.error(f"CRITICAL: Error creating demo: {e}", exc_info=True)
import traceback
error_trace = traceback.format_exc()
logger.error(f"Full traceback: {error_trace}")
with gr.Blocks(title="CGT-LLM-Beta RAG Chatbot") as demo:
gr.Markdown(f"""
# Error Initializing Chatbot
A critical error occurred while initializing the chatbot.
**Error:** {str(e)}
**Traceback:**
```
{error_trace[:1500]}...
```
Please check the logs for more details.
""")
logger.info(f"Fallback error demo created: {type(demo)}")
# Final verification
if demo is None:
logger.error("CRITICAL: Demo variable is None! Creating fallback demo.")
with gr.Blocks(title="CGT-LLM-Beta RAG Chatbot") as demo:
gr.Markdown("# Error: Demo was not created properly\n\nPlease check the logs for details.")
elif not isinstance(demo, (gr.Blocks, gr.Interface)):
logger.error(f"CRITICAL: Demo is not a valid Gradio object: {type(demo)}")
with gr.Blocks(title="CGT-LLM-Beta RAG Chatbot") as demo:
gr.Markdown(f"# Error: Invalid demo type\n\nDemo type: {type(demo)}\n\nPlease check the logs for details.")
else:
logger.info(f"β
Final demo check passed: demo type={type(demo)}")
# Explicitly ensure demo is accessible for Spaces
if IS_SPACES:
logger.info(f"Spaces mode: Demo is ready and accessible")
# Print confirmation for debugging
print(f"DEMO_READY: {type(demo)}")
print(f"DEMO_VALID: {isinstance(demo, (gr.Blocks, gr.Interface))}")
# Ensure demo is in globals for Spaces to find it
import sys
current_module = sys.modules[__name__]
if not hasattr(current_module, 'demo') or current_module.demo is not demo:
current_module.demo = demo
logger.info("Demo explicitly set in module namespace")
# For local execution only (not on Spaces)
if __name__ == "__main__":
if not IS_SPACES:
# For local use, we can launch it
demo.launch()
|