qnixsynapse commited on
Commit
fdb1fe5
·
1 Parent(s): 9b2706e

SYCL: Add gated linear attention kernel (llama/11175)

Browse files

* SYCL: Add Gated Linear attention kernel

* glahpp: add a space at the end of file

* gla: Put the barrier inside the main logic loop

ggml/src/ggml-sycl/backend.hpp CHANGED
@@ -29,5 +29,6 @@
29
  #include "wkv6.hpp"
30
  #include "outprod.hpp"
31
  #include "element_wise.hpp"
 
32
 
33
  #endif // GGML_SYCL_BACKEND_HPP
 
29
  #include "wkv6.hpp"
30
  #include "outprod.hpp"
31
  #include "element_wise.hpp"
32
+ #include "gla.hpp"
33
 
34
  #endif // GGML_SYCL_BACKEND_HPP
ggml/src/ggml-sycl/ggml-sycl.cpp CHANGED
@@ -4040,6 +4040,9 @@ bool ggml_sycl_compute_forward(ggml_backend_sycl_context & ctx, struct ggml_tens
4040
  case GGML_OP_RWKV_WKV6:
4041
  ggml_sycl_op_rwkv_wkv6(ctx, dst);
4042
  break;
 
 
 
4043
  default:
4044
  return false;
4045
  }
@@ -4507,6 +4510,7 @@ static bool ggml_backend_sycl_device_supports_op(ggml_backend_dev_t dev, const g
4507
  case GGML_OP_LEAKY_RELU:
4508
  case GGML_OP_TIMESTEP_EMBEDDING:
4509
  case GGML_OP_RWKV_WKV6:
 
4510
  return true;
4511
  default:
4512
  return false;
 
4040
  case GGML_OP_RWKV_WKV6:
4041
  ggml_sycl_op_rwkv_wkv6(ctx, dst);
4042
  break;
4043
+ case GGML_OP_GATED_LINEAR_ATTN:
4044
+ ggml_sycl_op_gated_linear_attn(ctx, dst);
4045
+ break;
4046
  default:
4047
  return false;
4048
  }
 
4510
  case GGML_OP_LEAKY_RELU:
4511
  case GGML_OP_TIMESTEP_EMBEDDING:
4512
  case GGML_OP_RWKV_WKV6:
4513
+ case GGML_OP_GATED_LINEAR_ATTN:
4514
  return true;
4515
  default:
4516
  return false;
ggml/src/ggml-sycl/gla.cpp ADDED
@@ -0,0 +1,105 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #include <sycl/sycl.hpp>
2
+
3
+ #include "common.hpp"
4
+
5
+ template <u_int HEAD_SIZE>
6
+ static void gated_linear_attn_f32_kernel(const dpct::queue_ptr stream, u_int B, u_int T, u_int C, u_int H, float scale,
7
+ const float * k, const float * v, const float * r, const float * td,
8
+ const float * s, float * dst) {
9
+ const u_int head_size = HEAD_SIZE;
10
+ const u_int state_size = C * head_size;
11
+ const u_int n_seq_tokens = T / B;
12
+ sycl::range<1> block_dims((C / H));
13
+ sycl::range<1> grid_dims((B * H));
14
+ stream->submit([&](sycl::handler & cgh) {
15
+ /* local memory accessors*/
16
+ auto _k = sycl::local_accessor<float, 1>(sycl::range<1>(head_size), cgh);
17
+ auto _r = sycl::local_accessor<float, 1>(sycl::range<1>(head_size), cgh);
18
+ auto _td = sycl::local_accessor<float, 1>(sycl::range<1>(head_size), cgh);
19
+
20
+ cgh.parallel_for(sycl::nd_range<1>(grid_dims * block_dims, block_dims), [=](sycl::nd_item<1> item) {
21
+ u_int tid = item.get_local_id(0);
22
+ u_int bid = item.get_group(0);
23
+
24
+ u_int batch_i = bid / H;
25
+ u_int head_i = bid % H;
26
+
27
+ float state[head_size];
28
+
29
+ #pragma unroll
30
+ for (u_int i = 0; i < head_size; i++) {
31
+ state[i] = s[batch_i * state_size + head_i * head_size * head_size + i * head_size + tid];
32
+ }
33
+
34
+ for (u_int t = batch_i * n_seq_tokens * C + head_i * head_size + tid;
35
+ t < (batch_i + 1) * n_seq_tokens * C + head_i * head_size + tid; t += C) {
36
+
37
+ item.barrier(sycl::access::fence_space::local_space); //sync threads
38
+ _k[tid] = k[t];
39
+ _r[tid] = r[t];
40
+ _td[tid] = td[t];
41
+ item.barrier(sycl::access::fence_space::local_space); //sync threads
42
+
43
+ const float _v = v[t];
44
+ float y = 0;
45
+
46
+ for (u_int j = 0; j < head_size; j += 4) {
47
+ const sycl::float4 & k = (sycl::float4 &) (_k[j]);
48
+ const sycl::float4 & r = (sycl::float4 &) (_r[j]);
49
+ const sycl::float4 & td = (sycl::float4 &) (_td[j]);
50
+ sycl::float4 & s = (sycl::float4 &) (state[j]);
51
+ sycl::float4 kv;
52
+
53
+ kv.x() = k.x() * _v;
54
+ kv.y() = k.y() * _v;
55
+ kv.z() = k.z() * _v;
56
+ kv.w() = k.w() * _v;
57
+
58
+ s.x() = s.x() * td.x() + kv.x();
59
+ s.y() = s.y() * td.y() + kv.y();
60
+ s.z() = s.z() * td.z() + kv.z();
61
+ s.w() = s.w() * td.w() + kv.w();
62
+
63
+ y += r.x() * s.x();
64
+ y += r.y() * s.y();
65
+ y += r.z() * s.z();
66
+ y += r.w() * s.w();
67
+ }
68
+ dst[t] = y * scale;
69
+ }
70
+ #pragma unroll
71
+ for (u_int i = 0; i < head_size; i++) {
72
+ dst[T * C + batch_i * state_size + head_i * head_size * head_size + i * head_size + tid] = state[i];
73
+ }
74
+ });
75
+ });
76
+ }
77
+
78
+ void ggml_sycl_op_gated_linear_attn(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
79
+ const float * k_d = static_cast<const float *>(dst->src[0]->data);
80
+ const float * v_d = static_cast<const float *>(dst->src[1]->data);
81
+ const float * r_d = static_cast<const float *>(dst->src[2]->data);
82
+ const float * td_d = static_cast<const float *>(dst->src[3]->data);
83
+ const float * s_d = static_cast<const float *>(dst->src[4]->data);
84
+
85
+ const int64_t B = dst->src[4]->ne[1];
86
+ const int64_t T = dst->src[0]->ne[2];
87
+ const int64_t C = dst->ne[0];
88
+ const int64_t H = dst->src[0]->ne[1];
89
+
90
+ dpct::queue_ptr stream = ctx.stream();
91
+ GGML_ASSERT(dst->src[4]->type == GGML_TYPE_F32);
92
+ GGML_ASSERT(C % H == 0);
93
+ GGML_ASSERT(C / H == 64 || C / H == 128);
94
+
95
+ float scale;
96
+ memcpy(&scale, dst->op_params, sizeof(float));
97
+
98
+ float * dst_d = (float *) dst->data;
99
+
100
+ if (C / H == 64) {
101
+ gated_linear_attn_f32_kernel<64>(stream, B, T, C, H, scale, k_d, v_d, r_d, td_d, s_d, dst_d);
102
+ } else {
103
+ gated_linear_attn_f32_kernel<128>(stream, B, T, C, H, scale, k_d, v_d, r_d, td_d, s_d, dst_d);
104
+ }
105
+ }
ggml/src/ggml-sycl/gla.hpp ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ #ifndef GGML_SYCL_GLA_HPP
2
+ #define GGML_SYCL_GLA_HPP
3
+
4
+ #include "common.hpp"
5
+
6
+ void ggml_sycl_op_gated_linear_attn(ggml_backend_sycl_context & ctx, ggml_tensor * dst);
7
+
8
+ #endif // GGML_SYCL_GLA_HPP