Chenguang Li commited on
Commit
f013e2d
·
1 Parent(s): 7681e32

CANN: Support MOE Model MUL_MAT_ID (llama/13042)

Browse files

Signed-off-by: noemotiovon <[email protected]>

ggml/src/ggml-cann/aclnn_ops.cpp CHANGED
@@ -65,6 +65,7 @@
65
  #include <aclnnop/aclnn_eq_tensor.h>
66
  #include <aclnnop/aclnn_gt_scalar.h>
67
  #include <aclnnop/aclnn_pow.h>
 
68
  #include <float.h>
69
 
70
  #include <cmath>
@@ -2587,3 +2588,149 @@ void ggml_cann_step(ggml_backend_cann_context& ctx, ggml_tensor* dst){
2587
 
2588
  ggml_cann_release_resources(ctx, acl_src, acl_dst, alpha);
2589
  }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65
  #include <aclnnop/aclnn_eq_tensor.h>
66
  #include <aclnnop/aclnn_gt_scalar.h>
67
  #include <aclnnop/aclnn_pow.h>
68
+ #include <aclnnop/aclnn_grouped_matmul_v2.h>
69
  #include <float.h>
70
 
71
  #include <cmath>
 
2588
 
2589
  ggml_cann_release_resources(ctx, acl_src, acl_dst, alpha);
2590
  }
2591
+
2592
+ /**
2593
+ * @brief Performs expert-specific matrix multiplication (MoE) with
2594
+ * floating-point precision using the CANN backend.
2595
+ *
2596
+ * This function executes a matrix multiplication operation tailored for
2597
+ * Mixture of Experts (MoE) models, where the input tensor is multiplied
2598
+ * with expert-specific weight matrices. It uses the CANN backend for
2599
+ * efficient computation and stores the result in the destination tensor `dst`.
2600
+ * The operation may leverage identity-based optimizations or routing masks
2601
+ * as part of sparse expert selection.
2602
+ *
2603
+ * @param ctx The context for executing CANN backend operations.
2604
+ * @param dst The destination tensor where the MoE multiplication result
2605
+ * will be stored.
2606
+ *
2607
+ * @note This function assumes floating-point data types and is designed for
2608
+ * MoE architectures, possibly involving sparse expert routing.
2609
+ */
2610
+ static void ggml_cann_mul_mat_id_fp(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
2611
+ //dst [M, K, N, 1]
2612
+ ggml_tensor * src0 = dst->src[0]; //src0 [D, M, A, 1]
2613
+ ggml_tensor * src1 = dst->src[1]; //src1 [D, B, N, 1], B = K or B = 1
2614
+ ggml_tensor * ids = dst->src[2]; //ids [K, N]
2615
+
2616
+ GGML_TENSOR_BINARY_OP_LOCALS
2617
+
2618
+ // copy index from npu to cpu
2619
+ int64_t n_as = ne02; // A
2620
+ int64_t n_ids = ids->ne[0]; // K
2621
+
2622
+ std::vector<char> ids_host(ggml_nbytes(ids));
2623
+ ggml_cann_async_memcpy(ctx, ids_host.data(), ids->data, ggml_nbytes(ids),
2624
+ ACL_MEMCPY_DEVICE_TO_HOST);
2625
+ ACL_CHECK(aclrtSynchronizeStream(ctx.stream()));
2626
+
2627
+ char * src0_original = (char *) src0->data;
2628
+ char * src1_original = (char *) src1->data;
2629
+ char * dst_original = (char *) dst->data;
2630
+ size_t ori_src0_nb[4] = {nb00, nb01, nb02, nb03};
2631
+
2632
+ // src0 is F16, src1 is F32, dst is F32
2633
+ ggml_cann_pool_alloc src0_cast_allocator;
2634
+ if (src0->type == GGML_TYPE_F16) {
2635
+ src0_cast_allocator.alloc(ctx.pool(), sizeof(float) * ggml_nelements(src0));
2636
+ void* src0_cast_buf = src0_cast_allocator.get();
2637
+
2638
+ size_t cast_nb[GGML_MAX_DIMS];
2639
+ cast_nb[0] = sizeof(float_t);
2640
+ for (int i = 1; i < GGML_MAX_DIMS; i++) {
2641
+ cast_nb[i] = cast_nb[i - 1] * src0->ne[i - 1];
2642
+ }
2643
+
2644
+ aclTensor* acl_src0_f16 = ggml_cann_create_tensor(src0);
2645
+ aclTensor* acl_cast = ggml_cann_create_tensor(src0_cast_buf,
2646
+ ACL_FLOAT, sizeof(float), src0->ne, cast_nb, 4);
2647
+ GGML_CANN_CALL_ACLNN_OP(ctx, Cast, acl_src0_f16, ACL_FLOAT, acl_cast);
2648
+ ggml_cann_release_resources(ctx, acl_cast, acl_src0_f16);
2649
+
2650
+ src0_original = (char *) src0_cast_buf;
2651
+ memcpy(ori_src0_nb, cast_nb, sizeof(ori_src0_nb));
2652
+ }
2653
+
2654
+ std::vector<aclTensor*> src0_tensor_vec;
2655
+ std::vector<aclTensor*> src1_tensor_vec;
2656
+ std::vector<aclTensor*> dst_tensor_vec;
2657
+ for (int64_t iid1 = 0; iid1 < ids->ne[1]; iid1++) {
2658
+ for (int64_t id = 0; id < n_ids; id++) {
2659
+ // src0_row [M, D] -> weight && permute
2660
+ int64_t src0_ne[2] = {ne01, ne00};
2661
+ size_t src0_nb[2] = {ori_src0_nb[1], ori_src0_nb[0]};
2662
+ // src1_row [D, 1] -> input
2663
+ int64_t src1_ne[2] = {ne10, 1};
2664
+ size_t src1_nb[2] = {nb10, nb11};
2665
+ // dst_row [M, 1] -> out
2666
+ int64_t dst_ne[2] = {ne0, 1};
2667
+ size_t dst_nb[2] = {nb0, nb1};
2668
+
2669
+ // expert index
2670
+ int32_t i02 = *(int32_t *) (ids_host.data() + iid1*ids->nb[1] + id*ids->nb[0]);
2671
+ GGML_ASSERT(i02 >= 0 && i02 < n_as);
2672
+
2673
+ // If B = 1 (broadcast), always use 0; otherwise, use id.
2674
+ int64_t i11 = (ne11 == 1 ? 0 : id);
2675
+ int64_t i12 = iid1;
2676
+
2677
+ int64_t i1 = id;
2678
+ int64_t i2 = i12;
2679
+
2680
+ void* src0_tmp_ptr = src0_original + i02*ori_src0_nb[2];
2681
+ void* src1_tmp_ptr = src1_original + i11*nb11 + i12*nb12;
2682
+ void* dst_tmp_ptr = dst_original + i1*nb1 + i2*nb2;
2683
+
2684
+ aclTensor* acl_src0 = ggml_cann_create_tensor(src0_tmp_ptr,
2685
+ ACL_FLOAT, sizeof(float),
2686
+ src0_ne, src0_nb, 2);
2687
+ aclTensor* acl_src1 = ggml_cann_create_tensor(src1_tmp_ptr,
2688
+ ACL_FLOAT, sizeof(float),
2689
+ src1_ne, src1_nb, 2);
2690
+ aclTensor* acl_dst = ggml_cann_create_tensor(dst_tmp_ptr,
2691
+ ACL_FLOAT, sizeof(float),
2692
+ dst_ne, dst_nb, 2);
2693
+
2694
+ src0_tensor_vec.push_back(acl_src0);
2695
+ src1_tensor_vec.push_back(acl_src1);
2696
+ dst_tensor_vec.push_back(acl_dst);
2697
+ }
2698
+ }
2699
+
2700
+ // GroupedMatmulV2 required tensor_list.size < 128
2701
+ size_t GROUP_SIZE = 128;
2702
+ std::vector<std::vector<aclTensor*>> src0_tensor_vec_vec;
2703
+ std::vector<std::vector<aclTensor*>> src1_tensor_vec_vec;
2704
+ std::vector<std::vector<aclTensor*>> dst_tensor_vec_vec;
2705
+
2706
+ // split and call GroupedMatmulV2
2707
+ for (size_t i = 0; i < src0_tensor_vec.size(); i += GROUP_SIZE) {
2708
+ size_t end = std::min(i + GROUP_SIZE, src0_tensor_vec.size());
2709
+ std::vector<aclTensor*> src0_tensor_vec_split(src0_tensor_vec.begin() + i, src0_tensor_vec.begin() + end);
2710
+ std::vector<aclTensor*> src1_tensor_vec_split(src1_tensor_vec.begin() + i, src1_tensor_vec.begin() + end);
2711
+ std::vector<aclTensor*> dst_tensor_vec_split(dst_tensor_vec.begin() + i, dst_tensor_vec.begin() + end);
2712
+
2713
+ aclTensorList* src0_tensor_list = aclCreateTensorList(src0_tensor_vec_split.data(), src0_tensor_vec_split.size());
2714
+ aclTensorList* src1_tensor_list = aclCreateTensorList(src1_tensor_vec_split.data(), src1_tensor_vec_split.size());
2715
+ aclTensorList* dst_tensor_list = aclCreateTensorList(dst_tensor_vec_split.data(), dst_tensor_vec_split.size());
2716
+
2717
+ GGML_CANN_CALL_ACLNN_OP(ctx, GroupedMatmulV2, src1_tensor_list, src0_tensor_list,
2718
+ nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, 0, -1, dst_tensor_list);
2719
+
2720
+ ggml_cann_release_resources(ctx, src0_tensor_list, src1_tensor_list, dst_tensor_list);
2721
+ }
2722
+ return;
2723
+ }
2724
+
2725
+ void ggml_cann_mul_mat_id(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
2726
+ const enum ggml_type type = dst->src[0]->type;
2727
+ switch (type) {
2728
+ case GGML_TYPE_F32:
2729
+ case GGML_TYPE_F16:
2730
+ ggml_cann_mul_mat_id_fp(ctx, dst);
2731
+ break;
2732
+ default:
2733
+ GGML_ABORT("Unsupported type for mul_mat_id");
2734
+ break;
2735
+ }
2736
+ }
ggml/src/ggml-cann/aclnn_ops.h CHANGED
@@ -978,6 +978,33 @@ inline void ggml_cann_async_memset(ggml_backend_cann_context & ctx, void * buffe
978
  }
979
  }
980
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
981
  /**
982
  * @brief Applies a element-wise operation to two input tensors using the CANN
983
  * backend.
 
978
  }
979
  }
980
 
981
+ /**
982
+ * @brief Performs sparse expert-based matrix multiplication using the CANN backend.
983
+ *
984
+ * @details This function implements a MoE-style batched matrix multiplication, where each input token
985
+ * is routed to one or more experts, and each expert corresponds to a specific [D, M] weight matrix
986
+ * in the source tensor `src0`. The routing indices are provided via the `ids` tensor.
987
+ *
988
+ * For each token (from `src1`), the function selects the corresponding expert(s) as specified by `ids`,
989
+ * performs the matrix multiplication with the selected expert's weight submatrix (from `src0`),
990
+ * and stores the results in `dst`. This operation is optimized and executed on the CANN backend.
991
+ *
992
+ * Dimensions:
993
+ * - src0: [D, M, A, 1], where A is the number of experts
994
+ * - src1: [D, B, N, 1], where N is batch size and B is the slot count per sample
995
+ * - ids : [K, N], where K is the number of experts each token is routed to
996
+ * - dst : [M, K, N, 1], output tensor storing the result of expert × token multiplication
997
+ *
998
+ * The function handles two main modes:
999
+ * - If `ne12 == 1`, a simpler per-token loop is used.
1000
+ * - TODO: If `ne12 > 1`, grouped multiplication and memory copying is used for efficiency.
1001
+ *
1002
+ * @param ctx The CANN context used for operations.
1003
+ * @param dst The destination tensor where the expert-weighted token outputs are stored.
1004
+ * Expected to be of shape [M, K, N, 1].
1005
+ */
1006
+ void ggml_cann_mul_mat_id(ggml_backend_cann_context& ctx, ggml_tensor* dst);
1007
+
1008
  /**
1009
  * @brief Applies a element-wise operation to two input tensors using the CANN
1010
  * backend.
ggml/src/ggml-cann/ggml-cann.cpp CHANGED
@@ -1672,7 +1672,8 @@ static bool ggml_cann_compute_forward(ggml_backend_cann_context& ctx,
1672
  ggml_cann_mul_mat(ctx, dst);
1673
  break;
1674
  case GGML_OP_MUL_MAT_ID:
1675
- return false;
 
1676
  case GGML_OP_SCALE:
1677
  ggml_cann_scale(ctx, dst);
1678
  break;
@@ -2030,7 +2031,13 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev,
2030
  }
2031
  }
2032
  case GGML_OP_MUL_MAT_ID:
2033
- return false;
 
 
 
 
 
 
2034
  // embedding
2035
  case GGML_OP_GET_ROWS: {
2036
  switch (op->src[0]->type) {
 
1672
  ggml_cann_mul_mat(ctx, dst);
1673
  break;
1674
  case GGML_OP_MUL_MAT_ID:
1675
+ ggml_cann_mul_mat_id(ctx, dst);
1676
+ break;
1677
  case GGML_OP_SCALE:
1678
  ggml_cann_scale(ctx, dst);
1679
  break;
 
2031
  }
2032
  }
2033
  case GGML_OP_MUL_MAT_ID:
2034
+ switch (op->src[0]->type) {
2035
+ case GGML_TYPE_F16:
2036
+ case GGML_TYPE_F32:
2037
+ return true;
2038
+ default:
2039
+ return false;
2040
+ }
2041
  // embedding
2042
  case GGML_OP_GET_ROWS: {
2043
  switch (op->src[0]->type) {