ggerganov commited on
Commit
dd296e7
·
unverified ·
1 Parent(s): a54c4ff

Flash + language support (ref #2)

Browse files

- Achieved big performance improvement + memory usage reduction
- Can now translate / transcribe different languages

Files changed (6) hide show
  1. Makefile +7 -2
  2. README.md +51 -21
  3. download-ggml-model.sh +1 -1
  4. ggml.c +939 -34
  5. ggml.h +25 -0
  6. main.cpp +254 -80
Makefile CHANGED
@@ -30,11 +30,16 @@ samples:
30
  # runs it on all samples in the folder "./samples":
31
 
32
  .PHONY: tiny.en
 
33
  .PHONY: base.en
34
- .PHONY: medium.en
35
  .PHONY: small.en
 
 
 
 
36
 
37
- tiny.en base.en medium.en small.en: main
38
  bash ./download-ggml-model.sh $@
39
  @echo ""
40
  @echo "==============================================="
 
30
  # runs it on all samples in the folder "./samples":
31
 
32
  .PHONY: tiny.en
33
+ .PHONY: tiny
34
  .PHONY: base.en
35
+ .PHONY: base
36
  .PHONY: small.en
37
+ .PHONY: small
38
+ .PHONY: medium.en
39
+ .PHONY: medium
40
+ .PHONY: large
41
 
42
+ tiny.en tiny base.en base small.en small medium.en medium large: main
43
  bash ./download-ggml-model.sh $@
44
  @echo ""
45
  @echo "==============================================="
README.md CHANGED
@@ -4,7 +4,8 @@ C/C++ port of [OpenAI's Whisper](https://github.com/openai/whisper) speech-to-te
4
 
5
  - Plain C/C++ implementation without dependencies
6
  - ARM_NEON and AVX intrinsics support
7
- - F16 support
 
8
 
9
  ## Usage
10
 
@@ -27,9 +28,33 @@ For a quick demo, simply run `make base.en`:
27
  ```bash
28
  $ make base.en
29
 
30
- Downloading base.en (142 MB just once)
31
- mkdir -p models
32
- models/ggml-base.en.bin 100%[=================================>] 141.11M 7.50MB/s in 19s
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33
 
34
  ===============================================
35
  Running base.en on all samples in ./samples ...
@@ -52,23 +77,24 @@ whisper_model_load: n_text_layer = 6
52
  whisper_model_load: n_mels = 80
53
  whisper_model_load: f16 = 1
54
  whisper_model_load: type = 2
55
- whisper_model_load: mem_required = 782.00 MB
56
  whisper_model_load: adding 1607 extra tokens
57
- whisper_model_load: ggml ctx size = 186.26 MB
58
- whisper_model_load: memory size = 45.66 MB
59
  whisper_model_load: model size = 140.54 MB
60
  log_mel_spectrogram: n_sample = 176000, n_len = 1100
61
  log_mel_spectrogram: recording length: 11.000000 s
62
 
63
- And so my fellow Americans ask not what your country can do for you. Ask what you can do for your country.
64
 
65
- main: load time = 60.62 ms
66
- main: mel time = 38.69 ms
67
- main: sample time = 2.36 ms
68
- main: encode time = 875.63 ms / 145.94 ms per layer
69
- main: decode time = 103.17 ms
70
- main: total time = 1081.13 ms
71
 
 
 
 
 
 
 
72
  ```
73
 
74
  The command downloads the `base.en` model converted to custom `ggml` format and runs the inference on all `.wav` samples in the folder `samples`.
@@ -81,13 +107,18 @@ make samples
81
 
82
  This will download a few more audio files from Wikipedia and convert them to 16-bit WAV format via `ffmpeg`.
83
 
84
- You can download and run the other `.en` models as follows:
85
 
86
  ```
87
  make tiny.en
 
88
  make base.en
 
89
  make small.en
 
90
  make medium.en
 
 
91
  ```
92
 
93
  For detailed usage instructions, run: `./main -h`
@@ -101,10 +132,8 @@ ffmpeg -i input.mp3 -ar 16000 -ac 1 -c:a pcm_s16le output.wav
101
 
102
  ## Limitations
103
 
104
- - Only `.en` models are supported
105
  - Very basic greedy sampling scheme - always pick up the top token
106
  - No timestamps
107
- - English only
108
  - Inference only
109
  - Runs on the CPU
110
  - Only mono-channel 16-bit WAV is supported
@@ -113,10 +142,11 @@ ffmpeg -i input.mp3 -ar 16000 -ac 1 -c:a pcm_s16le output.wav
113
 
114
  | Model | Disk | Mem |
115
  | --- | --- | --- |
116
- | tiny.en | 75 MB | ~600 MB |
117
- | base.en | 142 MB | ~800 MB |
118
- | small.en | 466 MB | ~1.6 GB |
119
- | medium.en | 1.5 GB | ~3.5 GB |
 
120
 
121
  ## ggml format
122
 
 
4
 
5
  - Plain C/C++ implementation without dependencies
6
  - ARM_NEON and AVX intrinsics support
7
+ - Mixed F16 / F32 support
8
+ - Low memory usage (Flash Attention + Flash Forward)
9
 
10
  ## Usage
11
 
 
28
  ```bash
29
  $ make base.en
30
 
31
+ gcc -pthread -O3 -mavx -mavx2 -mfma -mf16c -c ggml.c
32
+ g++ -pthread -O3 -std=c++11 -c main.cpp
33
+ g++ -o main ggml.o main.o
34
+ ./main -h
35
+
36
+ usage: ./main [options]
37
+
38
+ options:
39
+ -h, --help show this help message and exit
40
+ -s SEED, --seed SEED RNG seed (default: -1)
41
+ -t N, --threads N number of threads to use during computation (default: 4)
42
+ -T N, --tokens N maximum number of tokens to generate per iteration (default: 64)
43
+ -v, --verbose verbose output
44
+ --translate translate from source language to english
45
+ -ps, --print_special print special tokens
46
+ -l LANG, --language LANG spoken language (default: en)
47
+ -m FNAME, --model FNAME model path (default: models/ggml-base.en.bin)
48
+ -f FNAME, --file FNAME input WAV file path (default: samples/jfk.wav)
49
+
50
+ bash ./download-ggml-model.sh base.en
51
+ Downloading ggml model base.en ...
52
+ models/ggml-base.en.bin 100%[=====================================>] 141.11M 7.84MB/s in 18s
53
+ Done! Model 'base.en' saved in 'models/ggml-base.en.bin'
54
+ You can now use it like this:
55
+
56
+ $ ./main -m models/ggml-base.en.bin -f samples/jfk.wav
57
+
58
 
59
  ===============================================
60
  Running base.en on all samples in ./samples ...
 
77
  whisper_model_load: n_mels = 80
78
  whisper_model_load: f16 = 1
79
  whisper_model_load: type = 2
80
+ whisper_model_load: mem_required = 611.00 MB
81
  whisper_model_load: adding 1607 extra tokens
82
+ whisper_model_load: ggml ctx size = 163.43 MB
83
+ whisper_model_load: memory size = 22.83 MB
84
  whisper_model_load: model size = 140.54 MB
85
  log_mel_spectrogram: n_sample = 176000, n_len = 1100
86
  log_mel_spectrogram: recording length: 11.000000 s
87
 
88
+ main: processing 176000 samples (11.0 sec), 4 threads, lang = english, task = transcribe ...
89
 
90
+ And so my fellow Americans ask not what your country can do for you. Ask what you can do for your country.
 
 
 
 
 
91
 
92
+ main: load time = 71.89 ms
93
+ main: mel time = 36.95 ms
94
+ main: sample time = 2.10 ms
95
+ main: encode time = 700.94 ms / 116.82 ms per layer
96
+ main: decode time = 86.14 ms
97
+ main: total time = 898.72 ms
98
  ```
99
 
100
  The command downloads the `base.en` model converted to custom `ggml` format and runs the inference on all `.wav` samples in the folder `samples`.
 
107
 
108
  This will download a few more audio files from Wikipedia and convert them to 16-bit WAV format via `ffmpeg`.
109
 
110
+ You can download and run the other models as follows:
111
 
112
  ```
113
  make tiny.en
114
+ make tiny
115
  make base.en
116
+ make base
117
  make small.en
118
+ make small
119
  make medium.en
120
+ make medium
121
+ make large
122
  ```
123
 
124
  For detailed usage instructions, run: `./main -h`
 
132
 
133
  ## Limitations
134
 
 
135
  - Very basic greedy sampling scheme - always pick up the top token
136
  - No timestamps
 
137
  - Inference only
138
  - Runs on the CPU
139
  - Only mono-channel 16-bit WAV is supported
 
142
 
143
  | Model | Disk | Mem |
144
  | --- | --- | --- |
145
+ | tiny | 75 MB | ~460 MB |
146
+ | base | 142 MB | ~620 MB |
147
+ | small | 466 MB | ~1.3 GB |
148
+ | medium | 1.5 GB | ~2.8 GB |
149
+ | large | 2.9 GB | ~4.9 GB |
150
 
151
  ## ggml format
152
 
download-ggml-model.sh CHANGED
@@ -6,7 +6,7 @@
6
  ggml_path=$(dirname $(realpath $0))
7
 
8
  # Whisper models
9
- models=( "tiny.en" "base.en" "small.en" "medium.en" )
10
 
11
  # list available models
12
  function list_models {
 
6
  ggml_path=$(dirname $(realpath $0))
7
 
8
  # Whisper models
9
+ models=( "tiny.en" "tiny" "base.en" "base" "small.en" "small" "medium.en" "medium" "large" )
10
 
11
  # list available models
12
  function list_models {
ggml.c CHANGED
@@ -20,7 +20,13 @@
20
  #define UNUSED(x) (void)(x)
21
  #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
22
 
23
- #define GGML_ASSERT(x) assert(x)
 
 
 
 
 
 
24
 
25
  #ifdef GGML_USE_ACCELERATE
26
  #include <Accelerate/Accelerate.h>
@@ -118,6 +124,16 @@ ggml_fp16_t ggml_fp32_to_fp16(float f) {
118
  }
119
  #endif
120
 
 
 
 
 
 
 
 
 
 
 
121
  //
122
  // timing
123
  //
@@ -331,7 +347,6 @@ inline static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t
331
 
332
  // leftovers
333
  for (int i = n32; i < n; ++i) {
334
- GGML_ASSERT(false); // should not end up here
335
  sumf += ggml_fp16_to_fp32(x[i])*ggml_fp16_to_fp32(y[i]);
336
  }
337
  #elif defined(__AVX2__)
@@ -375,7 +390,7 @@ inline static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t
375
 
376
  // leftovers
377
  for (int i = n32; i < n; ++i) {
378
- GGML_ASSERT(false);
379
  sumf += ggml_fp16_to_fp32(x[i])*ggml_fp16_to_fp32(y[i]);
380
  }
381
  #else
@@ -558,12 +573,20 @@ inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) {
558
  const ggml_float GELU_COEF_A = 0.044715;
559
  const ggml_float SQRT_2_OVER_PI = 0.79788456080286535587989211986876;
560
 
561
- inline static void ggml_vec_gelu_f32 (const int n, float * y, const float * x) {
 
 
 
 
562
  for (int i = 0; i < n; ++i) {
563
- //y[i] = 0.5f*x[i]*(1.f + tanhf(SQRT_2_OVER_PI*(x[i] + 0.044715f*x[i]*x[i]*x[i])));
564
- //0.5*x*(1+tf.tanh(np.sqrt(2/np.pi)*(x+0.044715*tf.pow(x, 3))))
565
- const ggml_float xx = x[i];
566
- y[i] = 0.5*xx*(1.0 + tanh(SQRT_2_OVER_PI*xx*(1.0 + GELU_COEF_A*xx*xx)));
 
 
 
 
567
  }
568
  }
569
 
@@ -641,6 +664,9 @@ const char * GGML_OP_LABEL[GGML_OP_COUNT] = {
641
  "ROPE",
642
  "CONV_1D_1S",
643
  "CONV_1D_2S",
 
 
 
644
  };
645
 
646
  const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
@@ -678,6 +704,9 @@ const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
678
  "rope(x)",
679
  "conv_1d_1s(x)",
680
  "conv_1d_2s(x)",
 
 
 
681
  };
682
 
683
  //
@@ -878,6 +907,24 @@ int ggml_up64(int n) {
878
  ////////////////////////////////////////////////////////////////////////////////
879
 
880
  struct ggml_context * ggml_init(struct ggml_init_params params) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
881
  // find non-used context in g_state
882
  struct ggml_context * ctx = NULL;
883
 
@@ -900,7 +947,7 @@ struct ggml_context * ggml_init(struct ggml_init_params params) {
900
  }
901
 
902
  if (ctx == NULL) {
903
- GGML_PRINT_DEBUG("%s\n", "ggml_init: no unused context found");
904
  return NULL;
905
  }
906
 
@@ -923,8 +970,8 @@ void ggml_free(struct ggml_context * ctx) {
923
  if (&g_state.contexts[i].context == ctx) {
924
  g_state.contexts[i].used = false;
925
 
926
- GGML_PRINT_DEBUG("ggml_free: context %d with %d objects has been freed. memory used = %zu\n",
927
- i, ctx->n_objects, ctx->objects_end->offset + ctx->objects_end->size);
928
 
929
  if (ctx->mem_buffer_owned) {
930
  free(ctx->mem_buffer);
@@ -1010,6 +1057,7 @@ struct ggml_tensor * ggml_new_tensor_impl(
1010
  /*.grad =*/ NULL,
1011
  /*.src0 =*/ NULL,
1012
  /*.src1 =*/ NULL,
 
1013
  /*.n_tasks =*/ 0,
1014
  /*.perf_runs =*/ 0,
1015
  /*.perf_cycles =*/ 0,
@@ -1079,6 +1127,14 @@ struct ggml_tensor * ggml_new_tensor_4d(
1079
  return ggml_new_tensor(ctx, type, 4, ne);
1080
  }
1081
 
 
 
 
 
 
 
 
 
1082
  struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
1083
  struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
1084
 
@@ -1096,6 +1152,58 @@ struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
1096
  return tensor;
1097
  }
1098
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1099
  struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
1100
  const int n = ggml_nrows(tensor);
1101
  const int nc = tensor->ne[0];
@@ -1148,40 +1256,109 @@ struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
1148
  return tensor;
1149
  }
1150
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1151
  float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
1152
  switch (tensor->type) {
1153
  case GGML_TYPE_I8:
1154
  {
1155
- assert(tensor->nb[0] == sizeof(int8_t));
1156
  return ((int8_t *)(tensor->data))[i];
1157
  } break;
1158
  case GGML_TYPE_I16:
1159
  {
1160
- assert(tensor->nb[0] == sizeof(int16_t));
1161
  return ((int16_t *)(tensor->data))[i];
1162
  } break;
1163
  case GGML_TYPE_I32:
1164
  {
1165
- assert(tensor->nb[0] == sizeof(int32_t));
1166
  return ((int32_t *)(tensor->data))[i];
1167
  } break;
1168
  case GGML_TYPE_F16:
1169
  {
1170
- assert(tensor->nb[0] == sizeof(ggml_fp16_t));
1171
  return ggml_fp16_to_fp32(((ggml_fp16_t *)(tensor->data))[i]);
1172
  } break;
1173
  case GGML_TYPE_F32:
1174
  {
1175
- assert(tensor->nb[0] == sizeof(float));
1176
  return ((float *)(tensor->data))[i];
1177
  } break;
1178
  case GGML_TYPE_COUNT:
1179
  {
1180
- assert(false);
1181
  } break;
1182
  }
1183
 
1184
- assert(false);
1185
  return 0.0f;
1186
  }
1187
 
@@ -1189,32 +1366,32 @@ void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
1189
  switch (tensor->type) {
1190
  case GGML_TYPE_I8:
1191
  {
1192
- assert(tensor->nb[0] == sizeof(int8_t));
1193
  ((int8_t *)(tensor->data))[i] = value;
1194
  } break;
1195
  case GGML_TYPE_I16:
1196
  {
1197
- assert(tensor->nb[0] == sizeof(int16_t));
1198
  ((int16_t *)(tensor->data))[i] = value;
1199
  } break;
1200
  case GGML_TYPE_I32:
1201
  {
1202
- assert(tensor->nb[0] == sizeof(int32_t));
1203
  ((int32_t *)(tensor->data))[i] = value;
1204
  } break;
1205
  case GGML_TYPE_F16:
1206
  {
1207
- assert(tensor->nb[0] == sizeof(ggml_fp16_t));
1208
  ((ggml_fp16_t *)(tensor->data))[i] = ggml_fp32_to_fp16(value);
1209
  } break;
1210
  case GGML_TYPE_F32:
1211
  {
1212
- assert(tensor->nb[0] == sizeof(float));
1213
  ((float *)(tensor->data))[i] = value;
1214
  } break;
1215
  case GGML_TYPE_COUNT:
1216
  {
1217
- assert(false);
1218
  } break;
1219
  }
1220
  }
@@ -2308,6 +2485,70 @@ struct ggml_tensor * ggml_conv_1d_2s(
2308
  return result;
2309
  }
2310
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2311
  ////////////////////////////////////////////////////////////////////////////////
2312
 
2313
  void ggml_set_param(
@@ -2415,7 +2656,7 @@ void ggml_compute_forward_dup_f32(
2415
  GGML_ASSERT(false); // TODO: implement
2416
  }
2417
  } else {
2418
- printf("%s: this is not optimal - fix me\n", __func__);
2419
 
2420
  if (dst->type == GGML_TYPE_F32) {
2421
  int id = 0;
@@ -4185,10 +4426,17 @@ void ggml_compute_forward_soft_max_f32(
4185
  }
4186
 
4187
  ggml_float sum = 0.0;
 
4188
  for (int i = 0; i < nc; i++) {
4189
- const ggml_float v = (p[i] == -INFINITY) ? 0.0 : exp(p[i] - max);
4190
- sum += v;
4191
- p[i] = v;
 
 
 
 
 
 
4192
  }
4193
 
4194
  assert(sum > 0.0f);
@@ -4362,7 +4610,6 @@ void ggml_compute_forward_conv_1d_1s_f16_f32(
4362
  GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
4363
  GGML_ASSERT(nb10 == sizeof(float));
4364
 
4365
- // WHISPER
4366
  if (params->type == GGML_TASK_INIT) {
4367
  // TODO: fix this memset (wsize is overestimated)
4368
  memset(params->wdata, 0, params->wsize);
@@ -4483,7 +4730,6 @@ void ggml_compute_forward_conv_1d_1s_f32(
4483
  GGML_ASSERT(nb00 == sizeof(float));
4484
  GGML_ASSERT(nb10 == sizeof(float));
4485
 
4486
- // WHISPER
4487
  if (params->type == GGML_TASK_INIT) {
4488
  // TODO: fix this memset (wsize is overestimated)
4489
  memset(params->wdata, 0, params->wsize);
@@ -4630,7 +4876,6 @@ void ggml_compute_forward_conv_1d_2s_f16_f32(
4630
  GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
4631
  GGML_ASSERT(nb10 == sizeof(float));
4632
 
4633
- // WHISPER
4634
  if (params->type == GGML_TASK_INIT) {
4635
  // TODO: fix this memset (wsize is overestimated)
4636
  memset(params->wdata, 0, params->wsize);
@@ -4751,7 +4996,6 @@ void ggml_compute_forward_conv_1d_2s_f32(
4751
  GGML_ASSERT(nb00 == sizeof(float));
4752
  GGML_ASSERT(nb10 == sizeof(float));
4753
 
4754
- // WHISPER
4755
  if (params->type == GGML_TASK_INIT) {
4756
  // TODO: fix this memset (wsize is overestimated)
4757
  memset(params->wdata, 0, params->wsize);
@@ -4841,6 +5085,607 @@ void ggml_compute_forward_conv_1d_2s(
4841
  }
4842
  }
4843
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4844
  /////////////////////////////////
4845
 
4846
  void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
@@ -4967,13 +5812,24 @@ void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tenso
4967
  {
4968
  ggml_compute_forward_conv_1d_2s(params, tensor->src0, tensor->src1, tensor);
4969
  } break;
 
 
 
 
 
 
 
 
 
 
 
4970
  case GGML_OP_NONE:
4971
  {
4972
  // nop
4973
  } break;
4974
  case GGML_OP_COUNT:
4975
  {
4976
- assert(false);
4977
  } break;
4978
  };
4979
  }
@@ -5205,6 +6061,14 @@ void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tenso
5205
  {
5206
  GGML_ASSERT(false); // TODO: not implemented
5207
  } break;
 
 
 
 
 
 
 
 
5208
  case GGML_OP_NONE:
5209
  {
5210
  // nop
@@ -5246,6 +6110,12 @@ void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node)
5246
  ggml_visit_parents(cgraph, node->src1);
5247
  }
5248
 
 
 
 
 
 
 
5249
  if (node->op == GGML_OP_NONE && node->grad == NULL) {
5250
  // reached a leaf node, not part of the gradient graph (e.g. a constant)
5251
  assert(cgraph->n_leafs < GGML_MAX_NODES);
@@ -5591,7 +6461,6 @@ void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph)
5591
  case GGML_OP_CONV_1D_1S:
5592
  case GGML_OP_CONV_1D_2S:
5593
  {
5594
- // WHISPER
5595
  node->n_tasks = n_threads;
5596
 
5597
  GGML_ASSERT(node->src0->ne[3] == 1);
@@ -5617,6 +6486,42 @@ void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph)
5617
  GGML_ASSERT(false);
5618
  }
5619
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5620
  work_size = MAX(work_size, cur);
5621
  } break;
5622
  case GGML_OP_NONE:
 
20
  #define UNUSED(x) (void)(x)
21
  #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
22
 
23
+ #define GGML_ASSERT(x) \
24
+ do { \
25
+ if (!(x)) { \
26
+ fprintf(stderr, "GGML_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
27
+ abort(); \
28
+ } \
29
+ } while (0)
30
 
31
  #ifdef GGML_USE_ACCELERATE
32
  #include <Accelerate/Accelerate.h>
 
124
  }
125
  #endif
126
 
127
+ //
128
+ // global data
129
+ //
130
+
131
+ // precomputed gelu table for f16 (128 KB)
132
+ static ggml_fp16_t table_gelu_f16[1 << 16];
133
+
134
+ // precomputed exp table for f16 (128 KB)
135
+ static ggml_fp16_t table_exp_f16[1 << 16];
136
+
137
  //
138
  // timing
139
  //
 
347
 
348
  // leftovers
349
  for (int i = n32; i < n; ++i) {
 
350
  sumf += ggml_fp16_to_fp32(x[i])*ggml_fp16_to_fp32(y[i]);
351
  }
352
  #elif defined(__AVX2__)
 
390
 
391
  // leftovers
392
  for (int i = n32; i < n; ++i) {
393
+ //GGML_ASSERT(false);
394
  sumf += ggml_fp16_to_fp32(x[i])*ggml_fp16_to_fp32(y[i]);
395
  }
396
  #else
 
573
  const ggml_float GELU_COEF_A = 0.044715;
574
  const ggml_float SQRT_2_OVER_PI = 0.79788456080286535587989211986876;
575
 
576
+ inline static float ggml_gelu_f32(float x) {
577
+ return 0.5*x*(1.0 + tanh(SQRT_2_OVER_PI*x*(1.0 + GELU_COEF_A*x*x)));
578
+ }
579
+
580
+ inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
581
  for (int i = 0; i < n; ++i) {
582
+ y[i] = ggml_gelu_f32(x[i]);
583
+ }
584
+ }
585
+
586
+ inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
587
+ const uint16_t * i16 = (const uint16_t *) x;
588
+ for (int i = 0; i < n; ++i) {
589
+ y[i] = table_gelu_f16[i16[i]];
590
  }
591
  }
592
 
 
664
  "ROPE",
665
  "CONV_1D_1S",
666
  "CONV_1D_2S",
667
+
668
+ "FLASH_ATTN",
669
+ "FLASH_FF",
670
  };
671
 
672
  const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
 
704
  "rope(x)",
705
  "conv_1d_1s(x)",
706
  "conv_1d_2s(x)",
707
+
708
+ "flash_attn(x)",
709
+ "flash_ff(x)",
710
  };
711
 
712
  //
 
907
  ////////////////////////////////////////////////////////////////////////////////
908
 
909
  struct ggml_context * ggml_init(struct ggml_init_params params) {
910
+ static bool is_first_call = true;
911
+ if (is_first_call) {
912
+ const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
913
+
914
+ for (int i = 0; i < (1 << 16); ++i) {
915
+ uint16_t ii = (uint16_t) i;
916
+ const float f = ggml_fp16_to_fp32(*(ggml_fp16_t *)(&ii));
917
+ table_gelu_f16[i] = ggml_fp32_to_fp16(ggml_gelu_f32(f));
918
+ table_exp_f16[i] = ggml_fp32_to_fp16(exp(f));
919
+ }
920
+
921
+ const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
922
+
923
+ GGML_PRINT_DEBUG("%s: GELU table initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
924
+
925
+ is_first_call = false;
926
+ }
927
+
928
  // find non-used context in g_state
929
  struct ggml_context * ctx = NULL;
930
 
 
947
  }
948
 
949
  if (ctx == NULL) {
950
+ GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
951
  return NULL;
952
  }
953
 
 
970
  if (&g_state.contexts[i].context == ctx) {
971
  g_state.contexts[i].used = false;
972
 
973
+ GGML_PRINT_DEBUG("%s: context %d with %d objects has been freed. memory used = %zu\n",
974
+ __func__, i, ctx->n_objects, ctx->objects_end->offset + ctx->objects_end->size);
975
 
976
  if (ctx->mem_buffer_owned) {
977
  free(ctx->mem_buffer);
 
1057
  /*.grad =*/ NULL,
1058
  /*.src0 =*/ NULL,
1059
  /*.src1 =*/ NULL,
1060
+ /*.opt =*/ { NULL },
1061
  /*.n_tasks =*/ 0,
1062
  /*.perf_runs =*/ 0,
1063
  /*.perf_cycles =*/ 0,
 
1127
  return ggml_new_tensor(ctx, type, 4, ne);
1128
  }
1129
 
1130
+ struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
1131
+ struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
1132
+
1133
+ ggml_set_i32(result, value);
1134
+
1135
+ return result;
1136
+ }
1137
+
1138
  struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
1139
  struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
1140
 
 
1152
  return tensor;
1153
  }
1154
 
1155
+ struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
1156
+ const int n = ggml_nrows(tensor);
1157
+ const int nc = tensor->ne[0];
1158
+ const size_t n1 = tensor->nb[1];
1159
+
1160
+ char * const data = tensor->data;
1161
+
1162
+ switch (tensor->type) {
1163
+ case GGML_TYPE_I8:
1164
+ {
1165
+ assert(tensor->nb[0] == sizeof(int8_t));
1166
+ for (int i = 0; i < n; i++) {
1167
+ ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
1168
+ }
1169
+ } break;
1170
+ case GGML_TYPE_I16:
1171
+ {
1172
+ assert(tensor->nb[0] == sizeof(int16_t));
1173
+ for (int i = 0; i < n; i++) {
1174
+ ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
1175
+ }
1176
+ } break;
1177
+ case GGML_TYPE_I32:
1178
+ {
1179
+ assert(tensor->nb[0] == sizeof(int32_t));
1180
+ for (int i = 0; i < n; i++) {
1181
+ ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
1182
+ }
1183
+ } break;
1184
+ case GGML_TYPE_F16:
1185
+ {
1186
+ assert(tensor->nb[0] == sizeof(ggml_fp16_t));
1187
+ for (int i = 0; i < n; i++) {
1188
+ ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
1189
+ }
1190
+ } break;
1191
+ case GGML_TYPE_F32:
1192
+ {
1193
+ assert(tensor->nb[0] == sizeof(float));
1194
+ for (int i = 0; i < n; i++) {
1195
+ ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
1196
+ }
1197
+ } break;
1198
+ case GGML_TYPE_COUNT:
1199
+ {
1200
+ assert(false);
1201
+ } break;
1202
+ }
1203
+
1204
+ return tensor;
1205
+ }
1206
+
1207
  struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
1208
  const int n = ggml_nrows(tensor);
1209
  const int nc = tensor->ne[0];
 
1256
  return tensor;
1257
  }
1258
 
1259
+ int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
1260
+ switch (tensor->type) {
1261
+ case GGML_TYPE_I8:
1262
+ {
1263
+ GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
1264
+ return ((int8_t *)(tensor->data))[i];
1265
+ } break;
1266
+ case GGML_TYPE_I16:
1267
+ {
1268
+ GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
1269
+ return ((int16_t *)(tensor->data))[i];
1270
+ } break;
1271
+ case GGML_TYPE_I32:
1272
+ {
1273
+ GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
1274
+ return ((int32_t *)(tensor->data))[i];
1275
+ } break;
1276
+ case GGML_TYPE_F16:
1277
+ {
1278
+ GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
1279
+ return ggml_fp16_to_fp32(((ggml_fp16_t *)(tensor->data))[i]);
1280
+ } break;
1281
+ case GGML_TYPE_F32:
1282
+ {
1283
+ GGML_ASSERT(tensor->nb[0] == sizeof(float));
1284
+ return ((float *)(tensor->data))[i];
1285
+ } break;
1286
+ case GGML_TYPE_COUNT:
1287
+ {
1288
+ GGML_ASSERT(false);
1289
+ } break;
1290
+ }
1291
+
1292
+ return 0.0f;
1293
+ }
1294
+
1295
+ void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
1296
+ switch (tensor->type) {
1297
+ case GGML_TYPE_I8:
1298
+ {
1299
+ GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
1300
+ ((int8_t *)(tensor->data))[i] = value;
1301
+ } break;
1302
+ case GGML_TYPE_I16:
1303
+ {
1304
+ GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
1305
+ ((int16_t *)(tensor->data))[i] = value;
1306
+ } break;
1307
+ case GGML_TYPE_I32:
1308
+ {
1309
+ GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
1310
+ ((int32_t *)(tensor->data))[i] = value;
1311
+ } break;
1312
+ case GGML_TYPE_F16:
1313
+ {
1314
+ GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
1315
+ ((ggml_fp16_t *)(tensor->data))[i] = ggml_fp32_to_fp16(value);
1316
+ } break;
1317
+ case GGML_TYPE_F32:
1318
+ {
1319
+ GGML_ASSERT(tensor->nb[0] == sizeof(float));
1320
+ ((float *)(tensor->data))[i] = value;
1321
+ } break;
1322
+ case GGML_TYPE_COUNT:
1323
+ {
1324
+ GGML_ASSERT(false);
1325
+ } break;
1326
+ }
1327
+ }
1328
+
1329
  float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
1330
  switch (tensor->type) {
1331
  case GGML_TYPE_I8:
1332
  {
1333
+ GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
1334
  return ((int8_t *)(tensor->data))[i];
1335
  } break;
1336
  case GGML_TYPE_I16:
1337
  {
1338
+ GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
1339
  return ((int16_t *)(tensor->data))[i];
1340
  } break;
1341
  case GGML_TYPE_I32:
1342
  {
1343
+ GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
1344
  return ((int32_t *)(tensor->data))[i];
1345
  } break;
1346
  case GGML_TYPE_F16:
1347
  {
1348
+ GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
1349
  return ggml_fp16_to_fp32(((ggml_fp16_t *)(tensor->data))[i]);
1350
  } break;
1351
  case GGML_TYPE_F32:
1352
  {
1353
+ GGML_ASSERT(tensor->nb[0] == sizeof(float));
1354
  return ((float *)(tensor->data))[i];
1355
  } break;
1356
  case GGML_TYPE_COUNT:
1357
  {
1358
+ GGML_ASSERT(false);
1359
  } break;
1360
  }
1361
 
 
1362
  return 0.0f;
1363
  }
1364
 
 
1366
  switch (tensor->type) {
1367
  case GGML_TYPE_I8:
1368
  {
1369
+ GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
1370
  ((int8_t *)(tensor->data))[i] = value;
1371
  } break;
1372
  case GGML_TYPE_I16:
1373
  {
1374
+ GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
1375
  ((int16_t *)(tensor->data))[i] = value;
1376
  } break;
1377
  case GGML_TYPE_I32:
1378
  {
1379
+ GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
1380
  ((int32_t *)(tensor->data))[i] = value;
1381
  } break;
1382
  case GGML_TYPE_F16:
1383
  {
1384
+ GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
1385
  ((ggml_fp16_t *)(tensor->data))[i] = ggml_fp32_to_fp16(value);
1386
  } break;
1387
  case GGML_TYPE_F32:
1388
  {
1389
+ GGML_ASSERT(tensor->nb[0] == sizeof(float));
1390
  ((float *)(tensor->data))[i] = value;
1391
  } break;
1392
  case GGML_TYPE_COUNT:
1393
  {
1394
+ GGML_ASSERT(false);
1395
  } break;
1396
  }
1397
  }
 
2485
  return result;
2486
  }
2487
 
2488
+ // ggml_flash_attn
2489
+
2490
+ struct ggml_tensor * ggml_flash_attn(
2491
+ struct ggml_context * ctx,
2492
+ struct ggml_tensor * q,
2493
+ struct ggml_tensor * k,
2494
+ struct ggml_tensor * v,
2495
+ bool masked) {
2496
+ assert(ggml_can_mul_mat(k, q));
2497
+ // TODO: check if vT can be multiplied by (k*qT)
2498
+
2499
+ bool is_node = false;
2500
+
2501
+ if (q->grad || k->grad || v->grad) {
2502
+ GGML_ASSERT(false); // TODO: implement backward
2503
+ is_node = true;
2504
+ }
2505
+
2506
+ //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
2507
+ struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, q->ne);
2508
+
2509
+ result->op = GGML_OP_FLASH_ATTN;
2510
+ result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
2511
+ result->src0 = q;
2512
+ result->src1 = k;
2513
+ result->opt[0] = v;
2514
+ result->opt[1] = ggml_new_i32(ctx, masked ? 1 : 0);
2515
+
2516
+ return result;
2517
+ }
2518
+
2519
+ // ggml_flash_ff
2520
+
2521
+ struct ggml_tensor * ggml_flash_ff(
2522
+ struct ggml_context * ctx,
2523
+ struct ggml_tensor * a,
2524
+ struct ggml_tensor * b0,
2525
+ struct ggml_tensor * b1,
2526
+ struct ggml_tensor * c0,
2527
+ struct ggml_tensor * c1) {
2528
+ assert(ggml_can_mul_mat(b0, a));
2529
+ // TODO: more checks
2530
+
2531
+ bool is_node = false;
2532
+
2533
+ if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
2534
+ GGML_ASSERT(false); // TODO: implement backward
2535
+ is_node = true;
2536
+ }
2537
+
2538
+ //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
2539
+ struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, a->ne);
2540
+
2541
+ result->op = GGML_OP_FLASH_FF;
2542
+ result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
2543
+ result->src0 = a;
2544
+ result->src1 = b0;
2545
+ result->opt[0] = b1;
2546
+ result->opt[1] = c0;
2547
+ result->opt[2] = c1;
2548
+
2549
+ return result;
2550
+ }
2551
+
2552
  ////////////////////////////////////////////////////////////////////////////////
2553
 
2554
  void ggml_set_param(
 
2656
  GGML_ASSERT(false); // TODO: implement
2657
  }
2658
  } else {
2659
+ //printf("%s: this is not optimal - fix me\n", __func__);
2660
 
2661
  if (dst->type == GGML_TYPE_F32) {
2662
  int id = 0;
 
4426
  }
4427
 
4428
  ggml_float sum = 0.0;
4429
+
4430
  for (int i = 0; i < nc; i++) {
4431
+ if (p[i] == -INFINITY) {
4432
+ p[i] = 0.0;
4433
+ } else {
4434
+ //const float val = (p[i] == -INFINITY) ? 0.0 : exp(p[i] - max);
4435
+ ggml_fp16_t s = ggml_fp32_to_fp16(p[i] - max);
4436
+ const float val = ggml_fp16_to_fp32(table_exp_f16[*(uint16_t *) &s]);
4437
+ sum += val;
4438
+ p[i] = val;
4439
+ }
4440
  }
4441
 
4442
  assert(sum > 0.0f);
 
4610
  GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
4611
  GGML_ASSERT(nb10 == sizeof(float));
4612
 
 
4613
  if (params->type == GGML_TASK_INIT) {
4614
  // TODO: fix this memset (wsize is overestimated)
4615
  memset(params->wdata, 0, params->wsize);
 
4730
  GGML_ASSERT(nb00 == sizeof(float));
4731
  GGML_ASSERT(nb10 == sizeof(float));
4732
 
 
4733
  if (params->type == GGML_TASK_INIT) {
4734
  // TODO: fix this memset (wsize is overestimated)
4735
  memset(params->wdata, 0, params->wsize);
 
4876
  GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
4877
  GGML_ASSERT(nb10 == sizeof(float));
4878
 
 
4879
  if (params->type == GGML_TASK_INIT) {
4880
  // TODO: fix this memset (wsize is overestimated)
4881
  memset(params->wdata, 0, params->wsize);
 
4996
  GGML_ASSERT(nb00 == sizeof(float));
4997
  GGML_ASSERT(nb10 == sizeof(float));
4998
 
 
4999
  if (params->type == GGML_TASK_INIT) {
5000
  // TODO: fix this memset (wsize is overestimated)
5001
  memset(params->wdata, 0, params->wsize);
 
5085
  }
5086
  }
5087
 
5088
+ // ggml_compute_forward_flash_attn
5089
+
5090
+ void ggml_compute_forward_flash_attn_f32(
5091
+ const struct ggml_compute_params * params,
5092
+ const struct ggml_tensor * q,
5093
+ const struct ggml_tensor * k,
5094
+ const struct ggml_tensor * v,
5095
+ const bool masked,
5096
+ struct ggml_tensor * dst) {
5097
+ int64_t t0 = ggml_perf_time_us();
5098
+ UNUSED(t0);
5099
+
5100
+ const int neq0 = q->ne[0];
5101
+ const int neq1 = q->ne[1];
5102
+ const int neq2 = q->ne[2];
5103
+ const int neq3 = q->ne[3];
5104
+
5105
+ const int nek0 = k->ne[0];
5106
+ const int nek1 = k->ne[1];
5107
+ //const int nek2 = k->ne[2];
5108
+ //const int nek3 = k->ne[3];
5109
+
5110
+ //const int nev0 = v->ne[0];
5111
+ const int nev1 = v->ne[1];
5112
+ //const int nev2 = v->ne[2];
5113
+ //const int nev3 = v->ne[3];
5114
+
5115
+ const int ne0 = dst->ne[0];
5116
+ const int ne1 = dst->ne[1];
5117
+ //const int ne2 = dst->ne[2];
5118
+ //const int ne3 = dst->ne[3];
5119
+
5120
+ const int nbk0 = k->nb[0];
5121
+ const int nbk1 = k->nb[1];
5122
+ const int nbk2 = k->nb[2];
5123
+ const int nbk3 = k->nb[3];
5124
+
5125
+ const int nbq0 = q->nb[0];
5126
+ const int nbq1 = q->nb[1];
5127
+ const int nbq2 = q->nb[2];
5128
+ const int nbq3 = q->nb[3];
5129
+
5130
+ const int nbv0 = v->nb[0];
5131
+ const int nbv1 = v->nb[1];
5132
+ const int nbv2 = v->nb[2];
5133
+ const int nbv3 = v->nb[3];
5134
+
5135
+ const int nb0 = dst->nb[0];
5136
+ const int nb1 = dst->nb[1];
5137
+ const int nb2 = dst->nb[2];
5138
+ const int nb3 = dst->nb[3];
5139
+
5140
+ const int ith = params->ith;
5141
+ const int nth = params->nth;
5142
+
5143
+ const int D = neq0;
5144
+ const int N = neq1;
5145
+ const int P = nek1 - N;
5146
+ const int M = P + N;
5147
+
5148
+ GGML_ASSERT(ne0 == D);
5149
+ GGML_ASSERT(ne1 == N);
5150
+ GGML_ASSERT(P >= 0);
5151
+
5152
+ GGML_ASSERT(nbq0 == sizeof(float));
5153
+ GGML_ASSERT(nbk0 == sizeof(float));
5154
+ GGML_ASSERT(nbv0 == sizeof(float));
5155
+
5156
+ GGML_ASSERT(neq0 == D);
5157
+ GGML_ASSERT(nek0 == D);
5158
+ GGML_ASSERT(nev1 == D);
5159
+
5160
+ GGML_ASSERT(neq1 == N);
5161
+ GGML_ASSERT(nek1 == N + P);
5162
+ GGML_ASSERT(nev1 == D);
5163
+
5164
+ // dst cannot be transposed or permuted
5165
+ GGML_ASSERT(nb0 == sizeof(float));
5166
+ GGML_ASSERT(nb0 <= nb1);
5167
+ GGML_ASSERT(nb1 <= nb2);
5168
+ GGML_ASSERT(nb2 <= nb3);
5169
+
5170
+ if (params->type == GGML_TASK_INIT) {
5171
+ return;
5172
+ }
5173
+
5174
+ if (params->type == GGML_TASK_FINALIZE) {
5175
+ return;
5176
+ }
5177
+
5178
+ // parallelize by q rows using ggml_vec_dot_f32
5179
+
5180
+ // total rows in q
5181
+ const int nr = neq1*neq2*neq3;
5182
+
5183
+ // rows per thread
5184
+ const int dr = (nr + nth - 1)/nth;
5185
+
5186
+ // row range for this thread
5187
+ const int ir0 = dr*ith;
5188
+ const int ir1 = MIN(ir0 + dr, nr);
5189
+
5190
+ const float scale = 1.0/sqrt((double) D);
5191
+
5192
+ //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
5193
+
5194
+ for (int ir = ir0; ir < ir1; ++ir) {
5195
+ // q indices
5196
+ const int iq3 = ir/(neq2*neq1);
5197
+ const int iq2 = (ir - iq3*neq2*neq1)/neq1;
5198
+ const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
5199
+
5200
+ float * S = (float *) params->wdata + ith*(M + CACHE_LINE_SIZE_F32);
5201
+
5202
+ for (int ic = 0; ic < nek1; ++ic) {
5203
+ // k indices
5204
+ const int ik3 = iq3;
5205
+ const int ik2 = iq2;
5206
+ const int ik1 = ic;
5207
+
5208
+ // S indices
5209
+ const int i1 = ik1;
5210
+
5211
+ ggml_vec_dot_f32(neq0,
5212
+ S + i1,
5213
+ (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
5214
+ (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
5215
+ }
5216
+
5217
+ // scale
5218
+ ggml_vec_scale_f32(nek1, S, scale);
5219
+
5220
+ if (masked) {
5221
+ for (int i = P; i < M; i++) {
5222
+ if (i > P + iq1) {
5223
+ S[i] = -INFINITY;
5224
+ }
5225
+ }
5226
+ }
5227
+
5228
+ // softmax
5229
+ {
5230
+ float max = -INFINITY;
5231
+ for (int i = 0; i < M; i++) {
5232
+ max = MAX(max, S[i]);
5233
+ }
5234
+
5235
+ ggml_float sum = 0.0;
5236
+
5237
+ for (int i = 0; i < M; i++) {
5238
+ if (S[i] == -INFINITY) {
5239
+ S[i] = 0.0;
5240
+ } else {
5241
+ //const float val = (S[i] == -INFINITY) ? 0.0 : exp(S[i] - max);
5242
+ ggml_fp16_t s = ggml_fp32_to_fp16(S[i] - max);
5243
+ const float val = ggml_fp16_to_fp32(table_exp_f16[*(uint16_t *) &s]);
5244
+ sum += val;
5245
+ S[i] = val;
5246
+ }
5247
+ }
5248
+
5249
+ assert(sum > 0.0f);
5250
+
5251
+ sum = 1.0/sum;
5252
+ ggml_vec_scale_f32(M, S, sum);
5253
+ }
5254
+
5255
+ for (int ic = 0; ic < nev1; ++ic) {
5256
+ // dst indices
5257
+ const int i1 = iq1;
5258
+ const int i2 = iq2;
5259
+ const int i3 = iq3;
5260
+
5261
+ ggml_vec_dot_f32(nek1,
5262
+ (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
5263
+ (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
5264
+ S);
5265
+ }
5266
+ }
5267
+ }
5268
+
5269
+ void ggml_compute_forward_flash_attn_f16(
5270
+ const struct ggml_compute_params * params,
5271
+ const struct ggml_tensor * q,
5272
+ const struct ggml_tensor * k,
5273
+ const struct ggml_tensor * v,
5274
+ const bool masked,
5275
+ struct ggml_tensor * dst) {
5276
+ int64_t t0 = ggml_perf_time_us();
5277
+ UNUSED(t0);
5278
+
5279
+ const int neq0 = q->ne[0];
5280
+ const int neq1 = q->ne[1];
5281
+ const int neq2 = q->ne[2];
5282
+ const int neq3 = q->ne[3];
5283
+
5284
+ const int nek0 = k->ne[0];
5285
+ const int nek1 = k->ne[1];
5286
+ //const int nek2 = k->ne[2];
5287
+ //const int nek3 = k->ne[3];
5288
+
5289
+ //const int nev0 = v->ne[0];
5290
+ const int nev1 = v->ne[1];
5291
+ //const int nev2 = v->ne[2];
5292
+ //const int nev3 = v->ne[3];
5293
+
5294
+ const int ne0 = dst->ne[0];
5295
+ const int ne1 = dst->ne[1];
5296
+ //const int ne2 = dst->ne[2];
5297
+ //const int ne3 = dst->ne[3];
5298
+
5299
+ const int nbk0 = k->nb[0];
5300
+ const int nbk1 = k->nb[1];
5301
+ const int nbk2 = k->nb[2];
5302
+ const int nbk3 = k->nb[3];
5303
+
5304
+ const int nbq0 = q->nb[0];
5305
+ const int nbq1 = q->nb[1];
5306
+ const int nbq2 = q->nb[2];
5307
+ const int nbq3 = q->nb[3];
5308
+
5309
+ const int nbv0 = v->nb[0];
5310
+ const int nbv1 = v->nb[1];
5311
+ const int nbv2 = v->nb[2];
5312
+ const int nbv3 = v->nb[3];
5313
+
5314
+ const int nb0 = dst->nb[0];
5315
+ const int nb1 = dst->nb[1];
5316
+ const int nb2 = dst->nb[2];
5317
+ const int nb3 = dst->nb[3];
5318
+
5319
+ const int ith = params->ith;
5320
+ const int nth = params->nth;
5321
+
5322
+ const int D = neq0;
5323
+ const int N = neq1;
5324
+ const int P = nek1 - N;
5325
+ const int M = P + N;
5326
+
5327
+ GGML_ASSERT(ne0 == D);
5328
+ GGML_ASSERT(ne1 == N);
5329
+ GGML_ASSERT(P >= 0);
5330
+
5331
+ GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
5332
+ GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
5333
+ GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
5334
+
5335
+ GGML_ASSERT(neq0 == D);
5336
+ GGML_ASSERT(nek0 == D);
5337
+ GGML_ASSERT(nev1 == D);
5338
+
5339
+ GGML_ASSERT(neq1 == N);
5340
+ GGML_ASSERT(nek1 == N + P);
5341
+ GGML_ASSERT(nev1 == D);
5342
+
5343
+ // dst cannot be transposed or permuted
5344
+ GGML_ASSERT(nb0 == sizeof(float));
5345
+ GGML_ASSERT(nb0 <= nb1);
5346
+ GGML_ASSERT(nb1 <= nb2);
5347
+ GGML_ASSERT(nb2 <= nb3);
5348
+
5349
+ if (params->type == GGML_TASK_INIT) {
5350
+ return;
5351
+ }
5352
+
5353
+ if (params->type == GGML_TASK_FINALIZE) {
5354
+ return;
5355
+ }
5356
+
5357
+ // parallelize by q rows using ggml_vec_dot_f32
5358
+
5359
+ // total rows in q
5360
+ const int nr = neq1*neq2*neq3;
5361
+
5362
+ // rows per thread
5363
+ const int dr = (nr + nth - 1)/nth;
5364
+
5365
+ // row range for this thread
5366
+ const int ir0 = dr*ith;
5367
+ const int ir1 = MIN(ir0 + dr, nr);
5368
+
5369
+ const float scale = 1.0/sqrt((double) D);
5370
+
5371
+ //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
5372
+
5373
+ for (int ir = ir0; ir < ir1; ++ir) {
5374
+ // q indices
5375
+ const int iq3 = ir/(neq2*neq1);
5376
+ const int iq2 = (ir - iq3*neq2*neq1)/neq1;
5377
+ const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
5378
+
5379
+ float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
5380
+
5381
+ for (int ic = 0; ic < nek1; ++ic) {
5382
+ // k indices
5383
+ const int ik3 = iq3;
5384
+ const int ik2 = iq2;
5385
+ const int ik1 = ic;
5386
+
5387
+ // S indices
5388
+ const int i1 = ik1;
5389
+
5390
+ ggml_vec_dot_f16(neq0,
5391
+ S + i1,
5392
+ (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
5393
+ (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
5394
+ }
5395
+
5396
+ // scale
5397
+ ggml_vec_scale_f32(nek1, S, scale);
5398
+
5399
+ if (masked) {
5400
+ for (int i = P; i < M; i++) {
5401
+ if (i > P + iq1) {
5402
+ S[i] = -INFINITY;
5403
+ }
5404
+ }
5405
+ }
5406
+
5407
+ // softmax
5408
+ {
5409
+ float max = -INFINITY;
5410
+ for (int i = 0; i < M; i++) {
5411
+ max = MAX(max, S[i]);
5412
+ }
5413
+
5414
+ ggml_float sum = 0.0;
5415
+
5416
+ for (int i = 0; i < M; i++) {
5417
+ if (S[i] == -INFINITY) {
5418
+ S[i] = 0.0;
5419
+ } else {
5420
+ //const float val = (S[i] == -INFINITY) ? 0.0 : exp(S[i] - max);
5421
+ ggml_fp16_t s = ggml_fp32_to_fp16(S[i] - max);
5422
+ const float val = ggml_fp16_to_fp32(table_exp_f16[*(uint16_t *) &s]);
5423
+ sum += val;
5424
+ S[i] = val;
5425
+ }
5426
+ }
5427
+
5428
+ assert(sum > 0.0f);
5429
+
5430
+ sum = 1.0/sum;
5431
+ ggml_vec_scale_f32(M, S, sum);
5432
+ }
5433
+
5434
+ ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
5435
+
5436
+ for (int i = 0; i < M; i++) {
5437
+ S16[i] = ggml_fp32_to_fp16(S[i]);
5438
+ }
5439
+
5440
+ for (int ic = 0; ic < nev1; ++ic) {
5441
+ // dst indices
5442
+ const int i1 = iq1;
5443
+ const int i2 = iq2;
5444
+ const int i3 = iq3;
5445
+
5446
+ ggml_vec_dot_f16(nek1,
5447
+ (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
5448
+ (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
5449
+ S16);
5450
+ }
5451
+ }
5452
+ }
5453
+
5454
+ void ggml_compute_forward_flash_attn(
5455
+ const struct ggml_compute_params * params,
5456
+ const struct ggml_tensor * q,
5457
+ const struct ggml_tensor * k,
5458
+ const struct ggml_tensor * v,
5459
+ const bool masked,
5460
+ struct ggml_tensor * dst) {
5461
+ switch (q->type) {
5462
+ case GGML_TYPE_F16:
5463
+ {
5464
+ ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
5465
+ } break;
5466
+ case GGML_TYPE_F32:
5467
+ {
5468
+ ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
5469
+ } break;
5470
+ case GGML_TYPE_I8:
5471
+ case GGML_TYPE_I16:
5472
+ case GGML_TYPE_I32:
5473
+ case GGML_TYPE_COUNT:
5474
+ {
5475
+ assert(false);
5476
+ } break;
5477
+ }
5478
+ }
5479
+
5480
+ // ggml_compute_forward_flash_ff
5481
+
5482
+ void ggml_compute_forward_flash_ff_f16(
5483
+ const struct ggml_compute_params * params,
5484
+ const struct ggml_tensor * a, // F16
5485
+ const struct ggml_tensor * b0, // F16 fc_w
5486
+ const struct ggml_tensor * b1, // F32 fc_b
5487
+ const struct ggml_tensor * c0, // F16 proj_w
5488
+ const struct ggml_tensor * c1, // F32 proj_b
5489
+ struct ggml_tensor * dst) {
5490
+ int64_t t0 = ggml_perf_time_us();
5491
+ UNUSED(t0);
5492
+
5493
+ const int nea0 = a->ne[0];
5494
+ const int nea1 = a->ne[1];
5495
+ const int nea2 = a->ne[2];
5496
+ const int nea3 = a->ne[3];
5497
+
5498
+ const int neb00 = b0->ne[0];
5499
+ const int neb01 = b0->ne[1];
5500
+ //const int neb02 = b0->ne[2];
5501
+ //const int neb03 = b0->ne[3];
5502
+
5503
+ const int neb10 = b1->ne[0];
5504
+ const int neb11 = b1->ne[1];
5505
+ //const int neb12 = b1->ne[2];
5506
+ //const int neb13 = b1->ne[3];
5507
+
5508
+ const int nec00 = c0->ne[0];
5509
+ const int nec01 = c0->ne[1];
5510
+ //const int nec02 = c0->ne[2];
5511
+ //const int nec03 = c0->ne[3];
5512
+
5513
+ const int nec10 = c1->ne[0];
5514
+ const int nec11 = c1->ne[1];
5515
+ //const int nec12 = c1->ne[2];
5516
+ //const int nec13 = c1->ne[3];
5517
+
5518
+ const int ne0 = dst->ne[0];
5519
+ const int ne1 = dst->ne[1];
5520
+ const int ne2 = dst->ne[2];
5521
+ //const int ne3 = dst->ne[3];
5522
+
5523
+ const int nba0 = a->nb[0];
5524
+ const int nba1 = a->nb[1];
5525
+ const int nba2 = a->nb[2];
5526
+ const int nba3 = a->nb[3];
5527
+
5528
+ const int nbb00 = b0->nb[0];
5529
+ const int nbb01 = b0->nb[1];
5530
+ const int nbb02 = b0->nb[2];
5531
+ const int nbb03 = b0->nb[3];
5532
+
5533
+ const int nbb10 = b1->nb[0];
5534
+ //const int nbb11 = b1->nb[1];
5535
+ //const int nbb12 = b1->nb[2];
5536
+ //const int nbb13 = b1->nb[3];
5537
+
5538
+ const int nbc00 = c0->nb[0];
5539
+ const int nbc01 = c0->nb[1];
5540
+ const int nbc02 = c0->nb[2];
5541
+ const int nbc03 = c0->nb[3];
5542
+
5543
+ const int nbc10 = c1->nb[0];
5544
+ //const int nbc11 = c1->nb[1];
5545
+ //const int nbc12 = c1->nb[2];
5546
+ //const int nbc13 = c1->nb[3];
5547
+
5548
+ const int nb0 = dst->nb[0];
5549
+ const int nb1 = dst->nb[1];
5550
+ const int nb2 = dst->nb[2];
5551
+ const int nb3 = dst->nb[3];
5552
+
5553
+ const int ith = params->ith;
5554
+ const int nth = params->nth;
5555
+
5556
+ const int D = nea0;
5557
+ //const int N = nea1;
5558
+ const int M = neb01;
5559
+
5560
+ GGML_ASSERT(ne0 == nea0);
5561
+ GGML_ASSERT(ne1 == nea1);
5562
+ GGML_ASSERT(ne2 == nea2);
5563
+
5564
+ GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
5565
+ GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
5566
+ GGML_ASSERT(nbb10 == sizeof(float));
5567
+ GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
5568
+ GGML_ASSERT(nbc10 == sizeof(float));
5569
+
5570
+ GGML_ASSERT(neb00 == D);
5571
+ GGML_ASSERT(neb01 == M);
5572
+ GGML_ASSERT(neb10 == M);
5573
+ GGML_ASSERT(neb11 == 1);
5574
+
5575
+ GGML_ASSERT(nec00 == M);
5576
+ GGML_ASSERT(nec01 == D);
5577
+ GGML_ASSERT(nec10 == D);
5578
+ GGML_ASSERT(nec11 == 1);
5579
+
5580
+ // dst cannot be transposed or permuted
5581
+ GGML_ASSERT(nb0 == sizeof(float));
5582
+ GGML_ASSERT(nb0 <= nb1);
5583
+ GGML_ASSERT(nb1 <= nb2);
5584
+ GGML_ASSERT(nb2 <= nb3);
5585
+
5586
+ if (params->type == GGML_TASK_INIT) {
5587
+ return;
5588
+ }
5589
+
5590
+ if (params->type == GGML_TASK_FINALIZE) {
5591
+ return;
5592
+ }
5593
+
5594
+ // parallelize by a rows using ggml_vec_dot_f32
5595
+
5596
+ // total rows in a
5597
+ const int nr = nea1*nea2*nea3;
5598
+
5599
+ // rows per thread
5600
+ const int dr = (nr + nth - 1)/nth;
5601
+
5602
+ // row range for this thread
5603
+ const int ir0 = dr*ith;
5604
+ const int ir1 = MIN(ir0 + dr, nr);
5605
+
5606
+ for (int ir = ir0; ir < ir1; ++ir) {
5607
+ // a indices
5608
+ const int ia3 = ir/(nea2*nea1);
5609
+ const int ia2 = (ir - ia3*nea2*nea1)/nea1;
5610
+ const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
5611
+
5612
+ float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
5613
+
5614
+ for (int ic = 0; ic < neb01; ++ic) {
5615
+ // b0 indices
5616
+ const int ib03 = ia3;
5617
+ const int ib02 = ia2;
5618
+ const int ib01 = ic;
5619
+
5620
+ // S indices
5621
+ const int i1 = ib01;
5622
+
5623
+ ggml_vec_dot_f16(nea0,
5624
+ S + i1,
5625
+ (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
5626
+ (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
5627
+ }
5628
+
5629
+ ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
5630
+ //ggml_vec_gelu_f32(neb01, S, S);
5631
+
5632
+ ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
5633
+
5634
+ for (int i = 0; i < M; i++) {
5635
+ S16[i] = ggml_fp32_to_fp16(S[i]);
5636
+ }
5637
+
5638
+ ggml_vec_gelu_f16(neb01, S16, S16);
5639
+
5640
+ {
5641
+ // dst indices
5642
+ const int i1 = ia1;
5643
+ const int i2 = ia2;
5644
+ const int i3 = ia3;
5645
+
5646
+ for (int ic = 0; ic < nec01; ++ic) {
5647
+
5648
+ ggml_vec_dot_f16(neb01,
5649
+ (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
5650
+ (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
5651
+ S16);
5652
+ }
5653
+
5654
+ ggml_vec_add_f32(nec01,
5655
+ (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
5656
+ (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
5657
+ (float *) c1->data);
5658
+ }
5659
+ }
5660
+ }
5661
+
5662
+ void ggml_compute_forward_flash_ff(
5663
+ const struct ggml_compute_params * params,
5664
+ const struct ggml_tensor * a,
5665
+ const struct ggml_tensor * b0,
5666
+ const struct ggml_tensor * b1,
5667
+ const struct ggml_tensor * c0,
5668
+ const struct ggml_tensor * c1,
5669
+ struct ggml_tensor * dst) {
5670
+ switch (b0->type) {
5671
+ case GGML_TYPE_F16:
5672
+ {
5673
+ ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
5674
+ } break;
5675
+ case GGML_TYPE_F32:
5676
+ {
5677
+ GGML_ASSERT(false); // TODO
5678
+ } break;
5679
+ case GGML_TYPE_I8:
5680
+ case GGML_TYPE_I16:
5681
+ case GGML_TYPE_I32:
5682
+ case GGML_TYPE_COUNT:
5683
+ {
5684
+ assert(false);
5685
+ } break;
5686
+ }
5687
+ }
5688
+
5689
  /////////////////////////////////
5690
 
5691
  void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
 
5812
  {
5813
  ggml_compute_forward_conv_1d_2s(params, tensor->src0, tensor->src1, tensor);
5814
  } break;
5815
+ case GGML_OP_FLASH_ATTN:
5816
+ {
5817
+ int32_t t = ggml_get_i32_1d(tensor->opt[1], 0);
5818
+ GGML_ASSERT(t == 0 || t == 1);
5819
+ bool masked = t != 0;
5820
+ ggml_compute_forward_flash_attn(params, tensor->src0, tensor->src1, tensor->opt[0], masked, tensor);
5821
+ } break;
5822
+ case GGML_OP_FLASH_FF:
5823
+ {
5824
+ ggml_compute_forward_flash_ff(params, tensor->src0, tensor->src1, tensor->opt[0], tensor->opt[1], tensor->opt[2], tensor);
5825
+ } break;
5826
  case GGML_OP_NONE:
5827
  {
5828
  // nop
5829
  } break;
5830
  case GGML_OP_COUNT:
5831
  {
5832
+ GGML_ASSERT(false);
5833
  } break;
5834
  };
5835
  }
 
6061
  {
6062
  GGML_ASSERT(false); // TODO: not implemented
6063
  } break;
6064
+ case GGML_OP_FLASH_ATTN:
6065
+ {
6066
+ GGML_ASSERT(false); // not supported
6067
+ } break;
6068
+ case GGML_OP_FLASH_FF:
6069
+ {
6070
+ GGML_ASSERT(false); // not supported
6071
+ } break;
6072
  case GGML_OP_NONE:
6073
  {
6074
  // nop
 
6110
  ggml_visit_parents(cgraph, node->src1);
6111
  }
6112
 
6113
+ for (int i = 0; i < GGML_MAX_OPT; ++i) {
6114
+ if (node->opt[i]) {
6115
+ ggml_visit_parents(cgraph, node->opt[i]);
6116
+ }
6117
+ }
6118
+
6119
  if (node->op == GGML_OP_NONE && node->grad == NULL) {
6120
  // reached a leaf node, not part of the gradient graph (e.g. a constant)
6121
  assert(cgraph->n_leafs < GGML_MAX_NODES);
 
6461
  case GGML_OP_CONV_1D_1S:
6462
  case GGML_OP_CONV_1D_2S:
6463
  {
 
6464
  node->n_tasks = n_threads;
6465
 
6466
  GGML_ASSERT(node->src0->ne[3] == 1);
 
6486
  GGML_ASSERT(false);
6487
  }
6488
 
6489
+ work_size = MAX(work_size, cur);
6490
+ } break;
6491
+ case GGML_OP_FLASH_ATTN:
6492
+ {
6493
+ node->n_tasks = n_threads;
6494
+
6495
+ size_t cur = 0;
6496
+
6497
+ if (node->src1->type == GGML_TYPE_F32) {
6498
+ cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
6499
+ cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
6500
+ }
6501
+
6502
+ if (node->src1->type == GGML_TYPE_F16) {
6503
+ cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
6504
+ cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
6505
+ }
6506
+
6507
+ work_size = MAX(work_size, cur);
6508
+ } break;
6509
+ case GGML_OP_FLASH_FF:
6510
+ {
6511
+ node->n_tasks = n_threads;
6512
+
6513
+ size_t cur = 0;
6514
+
6515
+ if (node->src1->type == GGML_TYPE_F32) {
6516
+ cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
6517
+ cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
6518
+ }
6519
+
6520
+ if (node->src1->type == GGML_TYPE_F16) {
6521
+ cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
6522
+ cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
6523
+ }
6524
+
6525
  work_size = MAX(work_size, cur);
6526
  } break;
6527
  case GGML_OP_NONE:
ggml.h CHANGED
@@ -12,6 +12,7 @@ extern "C" {
12
  #define GGML_MAX_NODES 4096
13
  #define GGML_MAX_PARAMS 16
14
  #define GGML_MAX_CONTEXTS 16
 
15
 
16
  #ifdef __ARM_NEON
17
  // we use the built-in 16-bit float type
@@ -71,6 +72,9 @@ enum ggml_op {
71
  GGML_OP_CONV_1D_1S,
72
  GGML_OP_CONV_1D_2S,
73
 
 
 
 
74
  GGML_OP_COUNT,
75
  };
76
 
@@ -93,6 +97,7 @@ struct ggml_tensor {
93
  struct ggml_tensor * grad;
94
  struct ggml_tensor * src0;
95
  struct ggml_tensor * src1;
 
96
 
97
  // thread scheduling
98
  int n_tasks;
@@ -182,14 +187,19 @@ struct ggml_tensor * ggml_new_tensor_4d(
182
  int ne2,
183
  int ne3);
184
 
 
185
  struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value);
186
 
187
  struct ggml_tensor * ggml_dup_tensor (struct ggml_context * ctx, const struct ggml_tensor * src);
188
  struct ggml_tensor * ggml_view_tensor(struct ggml_context * ctx, const struct ggml_tensor * src);
189
 
190
  struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor);
 
191
  struct ggml_tensor * ggml_set_f32 (struct ggml_tensor * tensor, float value);
192
 
 
 
 
193
  float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i);
194
  void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value);
195
 
@@ -399,6 +409,21 @@ struct ggml_tensor * ggml_conv_1d_2s(
399
  struct ggml_tensor * a,
400
  struct ggml_tensor * b);
401
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
402
  //
403
  // automatic differentiation
404
  //
 
12
  #define GGML_MAX_NODES 4096
13
  #define GGML_MAX_PARAMS 16
14
  #define GGML_MAX_CONTEXTS 16
15
+ #define GGML_MAX_OPT 4
16
 
17
  #ifdef __ARM_NEON
18
  // we use the built-in 16-bit float type
 
72
  GGML_OP_CONV_1D_1S,
73
  GGML_OP_CONV_1D_2S,
74
 
75
+ GGML_OP_FLASH_ATTN,
76
+ GGML_OP_FLASH_FF,
77
+
78
  GGML_OP_COUNT,
79
  };
80
 
 
97
  struct ggml_tensor * grad;
98
  struct ggml_tensor * src0;
99
  struct ggml_tensor * src1;
100
+ struct ggml_tensor * opt[GGML_MAX_OPT];
101
 
102
  // thread scheduling
103
  int n_tasks;
 
187
  int ne2,
188
  int ne3);
189
 
190
+ struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value);
191
  struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value);
192
 
193
  struct ggml_tensor * ggml_dup_tensor (struct ggml_context * ctx, const struct ggml_tensor * src);
194
  struct ggml_tensor * ggml_view_tensor(struct ggml_context * ctx, const struct ggml_tensor * src);
195
 
196
  struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor);
197
+ struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value);
198
  struct ggml_tensor * ggml_set_f32 (struct ggml_tensor * tensor, float value);
199
 
200
+ int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i);
201
+ void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value);
202
+
203
  float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i);
204
  void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value);
205
 
 
409
  struct ggml_tensor * a,
410
  struct ggml_tensor * b);
411
 
412
+ struct ggml_tensor * ggml_flash_attn(
413
+ struct ggml_context * ctx,
414
+ struct ggml_tensor * q,
415
+ struct ggml_tensor * k,
416
+ struct ggml_tensor * v,
417
+ bool masked);
418
+
419
+ struct ggml_tensor * ggml_flash_ff(
420
+ struct ggml_context * ctx,
421
+ struct ggml_tensor * a,
422
+ struct ggml_tensor * b0,
423
+ struct ggml_tensor * b1,
424
+ struct ggml_tensor * c0,
425
+ struct ggml_tensor * c1);
426
+
427
  //
428
  // automatic differentiation
429
  //
main.cpp CHANGED
@@ -1,5 +1,8 @@
1
  #include "ggml.h"
2
 
 
 
 
3
  // third-party utilities
4
  // use your favorite implementations
5
  #define DR_WAV_IMPLEMENTATION
@@ -16,6 +19,7 @@
16
  #include <thread>
17
  #include <vector>
18
 
 
19
  enum e_model {
20
  MODEL_UNKNOWN,
21
  MODEL_TINY,
@@ -25,14 +29,116 @@ enum e_model {
25
  MODEL_LARGE,
26
  };
27
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28
  const size_t MB = 1024*1024;
29
 
30
  const std::map<e_model, size_t> MEM_REQ_MODEL = {
31
- { MODEL_TINY, 100ull*MB },
32
- { MODEL_BASE, 190ull*MB },
33
- { MODEL_SMALL, 610ull*MB },
34
- { MODEL_MEDIUM, 1900ull*MB },
35
- { MODEL_LARGE, 3600ull*MB },
36
  };
37
 
38
  const std::map<e_model, size_t> MEM_REQ_ENCODE = {
@@ -44,11 +150,11 @@ const std::map<e_model, size_t> MEM_REQ_ENCODE = {
44
  };
45
 
46
  const std::map<e_model, size_t> MEM_REQ_ENCODE_LAYER = {
47
- { MODEL_TINY, 170ull*MB },
48
- { MODEL_BASE, 230ull*MB },
49
- { MODEL_SMALL, 350ull*MB },
50
- { MODEL_MEDIUM, 450ull*MB },
51
- { MODEL_LARGE, 570ull*MB },
52
  };
53
 
54
  const std::map<e_model, size_t> MEM_REQ_DECODE = {
@@ -102,6 +208,10 @@ struct whisper_vocab {
102
  id token_solm = 50361; // ??
103
  id token_beg = 50363;
104
 
 
 
 
 
105
  bool is_multilingual() const {
106
  return n_vocab == 51865;
107
  }
@@ -109,16 +219,18 @@ struct whisper_vocab {
109
 
110
  // command-line parameters
111
  struct whisper_params {
112
- int32_t seed = -1; // RNG seed
113
  int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency());
114
 
 
115
  int32_t max_tokens_per_iter = 64;
116
 
117
- bool verbose = false;
 
118
  bool print_special_tokens = false;
119
 
120
- std::string model = "models/ggml-base.en.bin"; // model path
121
-
122
  std::string fname_inp = "samples/jfk.wav";
123
  };
124
 
@@ -136,6 +248,15 @@ bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
136
  params.max_tokens_per_iter = std::stoi(argv[++i]);
137
  } else if (arg == "-v" || arg == "--verbose") {
138
  params.verbose = true;
 
 
 
 
 
 
 
 
 
139
  } else if (arg == "-ps" || arg == "--print_special") {
140
  params.print_special_tokens = true;
141
  } else if (arg == "-m" || arg == "--model") {
@@ -160,16 +281,16 @@ void whisper_print_usage(int argc, char ** argv, const whisper_params & params)
160
  fprintf(stderr, "usage: %s [options]\n", argv[0]);
161
  fprintf(stderr, "\n");
162
  fprintf(stderr, "options:\n");
163
- fprintf(stderr, " -h, --help show this help message and exit\n");
164
- fprintf(stderr, " -s SEED, --seed SEED RNG seed (default: -1)\n");
165
- fprintf(stderr, " -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads);
166
- fprintf(stderr, " -T N, --tokens N maximum number of tokens to generate per iteration (default: %d)\n", params.max_tokens_per_iter);
167
- fprintf(stderr, " -v, --verbose verbose output\n");
168
- fprintf(stderr, " -ps, --print_special print special tokens\n");
169
- fprintf(stderr, " -m FNAME, --model FNAME\n");
170
- fprintf(stderr, " model path (default: %s)\n", params.model.c_str());
171
- fprintf(stderr, " -f FNAME, --file FNAME\n");
172
- fprintf(stderr, " input WAV file path (default: %s)\n", params.fname_inp.c_str());
173
  fprintf(stderr, "\n");
174
  }
175
 
@@ -417,6 +538,7 @@ bool whisper_model_load(const std::string & fname, whisper_model & model, whispe
417
  printf("%s: f16 = %d\n", __func__, hparams.f16);
418
  printf("%s: type = %d\n", __func__, model.type);
419
 
 
420
  const size_t mem_required =
421
  MEM_REQ_MODEL.at(model.type) +
422
  MEM_REQ_ENCODE.at(model.type) +
@@ -609,11 +731,11 @@ bool whisper_model_load(const std::string & fname, whisper_model & model, whispe
609
  ctx_size += n_text_layer*( n_text_state*ggml_type_size(GGML_TYPE_F32)); // cross_attn_ln_1_b
610
  }
611
 
612
- ctx_size += n_text_layer*n_text_ctx*n_text_state*ggml_type_size(GGML_TYPE_F32); // memory_k
613
- ctx_size += n_text_layer*n_text_ctx*n_text_state*ggml_type_size(GGML_TYPE_F32); // memory_v
614
 
615
- ctx_size += n_text_layer*n_audio_ctx*n_text_state*ggml_type_size(GGML_TYPE_F32); // memory_cross_k
616
- ctx_size += n_text_layer*n_audio_ctx*n_text_state*ggml_type_size(GGML_TYPE_F32); // memory_cross_v
617
 
618
  ctx_size += (15 + 15*n_audio_layer + 24*n_text_layer)*256; // object overhead
619
 
@@ -836,22 +958,24 @@ bool whisper_model_load(const std::string & fname, whisper_model & model, whispe
836
  const int n_text_layer = hparams.n_text_layer;
837
  const int n_text_ctx = hparams.n_text_ctx;
838
 
 
839
  {
840
  const int n_mem = n_text_layer*n_text_ctx;
841
  const int n_elements = n_text_state*n_mem;
842
 
843
- model.memory_k = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_elements);
844
- model.memory_v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_elements);
845
  }
846
 
 
847
  {
848
  const int n_audio_ctx = hparams.n_audio_ctx;
849
 
850
  const int n_mem = n_text_layer*n_audio_ctx;
851
  const int n_elements = n_text_state*n_mem;
852
 
853
- model.memory_cross_k = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_elements);
854
- model.memory_cross_v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_elements);
855
  }
856
 
857
  const size_t memory_size =
@@ -1057,14 +1181,14 @@ bool whisper_encode(
1057
  Qcur),
1058
  Qcur);
1059
 
1060
- Qcur = ggml_scale(ctxL, Qcur, ggml_new_f32(ctxL, pow(float(n_state)/n_head, -0.25)));
1061
 
1062
- // no bias for Key
1063
  struct ggml_tensor * Kcur = ggml_mul_mat(ctxL,
1064
  layer.attn_k_w,
1065
  cur);
1066
 
1067
- Kcur = ggml_scale(ctxL, Kcur, ggml_new_f32(ctxL, pow(float(n_state)/n_head, -0.25)));
1068
 
1069
  struct ggml_tensor * Vcur = ggml_mul_mat(ctxL,
1070
  layer.attn_v_w,
@@ -1078,49 +1202,57 @@ bool whisper_encode(
1078
 
1079
  // ------
1080
 
 
1081
  struct ggml_tensor * Q =
1082
  ggml_permute(ctxL,
1083
  ggml_cpy(ctxL,
1084
  Qcur,
1085
- ggml_new_tensor_3d(ctxL, GGML_TYPE_F32, n_state/n_head, n_head, N)),
1086
  0, 2, 1, 3);
1087
 
1088
  struct ggml_tensor * K =
1089
  ggml_permute(ctxL,
1090
  ggml_cpy(ctxL,
1091
  Kcur,
1092
- ggml_new_tensor_3d(ctxL, GGML_TYPE_F16, n_state/n_head, n_head, N)), // F16 !
1093
  0, 2, 1, 3);
1094
 
1095
- //// BLAS attempt
1096
- //struct ggml_tensor * KQ =
1097
- // ggml_mul_mat(ctxL,
1098
- // ggml_cpy(ctxL, K, ggml_new_tensor_3d(ctxL, GGML_TYPE_F32, n_state/n_head, N, n_head)),
1099
- // ggml_cpy(ctxL, Q, ggml_new_tensor_3d(ctxL, GGML_TYPE_F32, n_state/n_head, N, n_head)));
 
 
 
 
1100
 
1101
- // K * Q
1102
- struct ggml_tensor * KQ = ggml_mul_mat(ctxL, K, Q);
 
 
 
 
 
 
1103
 
1104
- //struct ggml_tensor * K =
1105
- // ggml_cpy(ctxL,
1106
- // ggml_permute(ctxL,
1107
- // ggml_reshape_3d(ctxL,
1108
- // Kcur,
1109
- // n_state/n_head, n_head, N),
1110
- // 1, 2, 0, 3),
1111
- // ggml_new_tensor_3d(ctxL, GGML_TYPE_F16, N, n_state/n_head, n_head)
1112
- // );
1113
 
1114
- //// K * Q
1115
- //struct ggml_tensor * KQ = ggml_mul_mat(ctxL, ggml_transpose(ctxL, K), Q);
1116
 
1117
- //struct ggml_tensor * KQ_scaled =
1118
- // ggml_scale(ctxL,
1119
- // KQ,
1120
- // ggml_new_f32(ctxL, 1.0f/sqrt(float(n_state)/n_head))
1121
- // );
1122
 
1123
- struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctxL, KQ);
1124
 
1125
  //struct ggml_tensor * V_trans =
1126
  // ggml_permute(ctxL,
@@ -1138,10 +1270,11 @@ bool whisper_encode(
1138
  Vcur,
1139
  n_state/n_head, n_head, N),
1140
  0, 2, 1, 3),
1141
- ggml_new_tensor_3d(ctxL, GGML_TYPE_F16, n_state/n_head, N, n_head) // F16 !
1142
  );
1143
 
1144
  struct ggml_tensor * KQV = ggml_mul_mat(ctxL, ggml_transpose(ctxL, V), KQ_soft_max);
 
1145
 
1146
  struct ggml_tensor * KQV_merged = ggml_permute(ctxL, KQV, 0, 2, 1, 3);
1147
 
@@ -1180,6 +1313,11 @@ bool whisper_encode(
1180
  ggml_repeat(ctxL, layer.mlp_ln_b, cur));
1181
  }
1182
 
 
 
 
 
 
1183
  // fully connected
1184
  cur = ggml_mul_mat(ctxL,
1185
  layer.mlp_0_w,
@@ -1200,6 +1338,7 @@ bool whisper_encode(
1200
  cur = ggml_add(ctxL,
1201
  ggml_repeat(ctxL, layer.mlp_1_b, cur),
1202
  cur);
 
1203
  }
1204
 
1205
  // output from this layer
@@ -1368,7 +1507,7 @@ bool whisper_decode(
1368
  ((int32_t *) position->data)[i] = n_past + i;
1369
  }
1370
 
1371
- // wte + wpe
1372
  struct ggml_tensor * cur =
1373
  ggml_add(ctx0,
1374
  ggml_get_rows(ctx0, model.d_te, embd),
@@ -1420,7 +1559,7 @@ bool whisper_decode(
1420
 
1421
  Qcur = ggml_scale(ctxL, Qcur, ggml_new_f32(ctxL, pow(float(n_state)/n_head, -0.25)));
1422
 
1423
- // no bias for Key
1424
  struct ggml_tensor * Kcur = ggml_mul_mat(ctxL,
1425
  layer.attn_k_w,
1426
  cur);
@@ -1506,7 +1645,7 @@ bool whisper_decode(
1506
 
1507
  // norm
1508
  {
1509
- cur = ggml_norm(ctxL, inpCA); // Note we use inpCA here
1510
 
1511
  // cur = ln_0_w*cur + ln_0_b
1512
  cur = ggml_add(ctxL,
@@ -1589,7 +1728,6 @@ bool whisper_decode(
1589
  cur);
1590
  }
1591
 
1592
-
1593
  // add the input
1594
  cur = ggml_add(ctxL, cur, inpCA);
1595
 
@@ -1601,8 +1739,7 @@ bool whisper_decode(
1601
  {
1602
  cur = ggml_norm(ctxL, inpFF);
1603
 
1604
- // cur = ln_2_g*cur + ln_2_b
1605
- // [ 768, N]
1606
  cur = ggml_add(ctxL,
1607
  ggml_mul(ctxL,
1608
  ggml_repeat(ctxL, layer.mlp_ln_w, cur),
@@ -1689,11 +1826,11 @@ bool whisper_decode(
1689
  probs_out.resize(N*n_vocab);
1690
  memcpy(probs_out.data(), ggml_get_data(cur), sizeof(float)*N*n_vocab);
1691
 
1692
- //if (N > 1) {
1693
- // const float mem_per_token = ggml_used_mem(ctx0)/1024.0/1024.0/N;
1694
- // printf("%s: used_mem = %f MB / %f per token\n", __func__, ggml_used_mem(ctx0)/1024.0/1024.0, mem_per_token);
1695
- // printf("%s: max mem = %f MB\n", __func__, mem_per_token*model.hparams.n_text_ctx);
1696
- //}
1697
 
1698
  ggml_free(ctx0);
1699
 
@@ -1981,8 +2118,36 @@ int main(int argc, char ** argv) {
1981
  t_mel_us = ggml_time_us() - t_start_us;
1982
  }
1983
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1984
  std::vector<whisper_vocab::id> prompt_past = { };
1985
 
 
 
 
 
 
 
 
 
 
 
 
1986
  // main loop
1987
  int seek = 0;
1988
  while (true) {
@@ -2006,24 +2171,23 @@ int main(int argc, char ** argv) {
2006
  std::vector<float> probs;
2007
  std::vector<float> logits;
2008
 
2009
- // SOT
2010
- // ref: https://github.com/openai/whisper/blob/15ab54826343c27cfaf44ce31e9c8fb63d0aa775/whisper/decoding.py#L506-L526
2011
- // TODO: use different initial tokens for different tasks
2012
- std::vector<whisper_vocab::id> prompt = { vocab.token_sot };
2013
 
2014
  int n_past = 0;
2015
 
 
2016
  if (prompt_past.size() > 0) {
2017
  int n_take = std::min(model.hparams.n_text_ctx/2, int(prompt_past.size()));
2018
 
2019
  prompt = { vocab.token_prev };
2020
- prompt.insert(prompt.end(), prompt_past.end() - n_take, prompt_past.end());
2021
- prompt.push_back(vocab.token_sot);
2022
 
2023
  prompt_past.clear();
2024
- prompt_past.insert(prompt_past.end(), prompt.begin() + 1, prompt.end() - 1);
2025
  }
2026
 
 
 
2027
  bool done = false;
2028
  int seek_delta = 100*CHUNK_SIZE;
2029
  whisper_vocab::id last_id = 0;
@@ -2049,6 +2213,16 @@ int main(int argc, char ** argv) {
2049
  n_past += prompt.size();
2050
  prompt.clear();
2051
 
 
 
 
 
 
 
 
 
 
 
2052
  {
2053
  // sample next token
2054
  const float temp = 1.0; // TODO
 
1
  #include "ggml.h"
2
 
3
+ #define USE_FLASH_ATTN
4
+ #define USE_FLASH_FF
5
+
6
  // third-party utilities
7
  // use your favorite implementations
8
  #define DR_WAV_IMPLEMENTATION
 
19
  #include <thread>
20
  #include <vector>
21
 
22
+ // available whisper models
23
  enum e_model {
24
  MODEL_UNKNOWN,
25
  MODEL_TINY,
 
29
  MODEL_LARGE,
30
  };
31
 
32
+ const std::map<std::string, std::pair<int, std::string>> g_lang = {
33
+ { "en", { 0, "english", } },
34
+ { "zh", { 1, "chinese", } },
35
+ { "de", { 2, "german", } },
36
+ { "es", { 3, "spanish", } },
37
+ { "ru", { 4, "russian", } },
38
+ { "ko", { 5, "korean", } },
39
+ { "fr", { 6, "french", } },
40
+ { "ja", { 7, "japanese", } },
41
+ { "pt", { 8, "portuguese", } },
42
+ { "tr", { 9, "turkish", } },
43
+ { "pl", { 10, "polish", } },
44
+ { "ca", { 11, "catalan", } },
45
+ { "nl", { 12, "dutch", } },
46
+ { "ar", { 13, "arabic", } },
47
+ { "sv", { 14, "swedish", } },
48
+ { "it", { 15, "italian", } },
49
+ { "id", { 16, "indonesian", } },
50
+ { "hi", { 17, "hindi", } },
51
+ { "fi", { 18, "finnish", } },
52
+ { "vi", { 19, "vietnamese", } },
53
+ { "iw", { 20, "hebrew", } },
54
+ { "uk", { 21, "ukrainian", } },
55
+ { "el", { 22, "greek", } },
56
+ { "ms", { 23, "malay", } },
57
+ { "cs", { 24, "czech", } },
58
+ { "ro", { 25, "romanian", } },
59
+ { "da", { 26, "danish", } },
60
+ { "hu", { 27, "hungarian", } },
61
+ { "ta", { 28, "tamil", } },
62
+ { "no", { 29, "norwegian", } },
63
+ { "th", { 30, "thai", } },
64
+ { "ur", { 31, "urdu", } },
65
+ { "hr", { 32, "croatian", } },
66
+ { "bg", { 33, "bulgarian", } },
67
+ { "lt", { 34, "lithuanian", } },
68
+ { "la", { 35, "latin", } },
69
+ { "mi", { 36, "maori", } },
70
+ { "ml", { 37, "malayalam", } },
71
+ { "cy", { 38, "welsh", } },
72
+ { "sk", { 39, "slovak", } },
73
+ { "te", { 40, "telugu", } },
74
+ { "fa", { 41, "persian", } },
75
+ { "lv", { 42, "latvian", } },
76
+ { "bn", { 43, "bengali", } },
77
+ { "sr", { 44, "serbian", } },
78
+ { "az", { 45, "azerbaijani", } },
79
+ { "sl", { 46, "slovenian", } },
80
+ { "kn", { 47, "kannada", } },
81
+ { "et", { 48, "estonian", } },
82
+ { "mk", { 49, "macedonian", } },
83
+ { "br", { 50, "breton", } },
84
+ { "eu", { 51, "basque", } },
85
+ { "is", { 52, "icelandic", } },
86
+ { "hy", { 53, "armenian", } },
87
+ { "ne", { 54, "nepali", } },
88
+ { "mn", { 55, "mongolian", } },
89
+ { "bs", { 56, "bosnian", } },
90
+ { "kk", { 57, "kazakh", } },
91
+ { "sq", { 58, "albanian", } },
92
+ { "sw", { 59, "swahili", } },
93
+ { "gl", { 60, "galician", } },
94
+ { "mr", { 61, "marathi", } },
95
+ { "pa", { 62, "punjabi", } },
96
+ { "si", { 63, "sinhala", } },
97
+ { "km", { 64, "khmer", } },
98
+ { "sn", { 65, "shona", } },
99
+ { "yo", { 66, "yoruba", } },
100
+ { "so", { 67, "somali", } },
101
+ { "af", { 68, "afrikaans", } },
102
+ { "oc", { 69, "occitan", } },
103
+ { "ka", { 70, "georgian", } },
104
+ { "be", { 71, "belarusian", } },
105
+ { "tg", { 72, "tajik", } },
106
+ { "sd", { 73, "sindhi", } },
107
+ { "gu", { 74, "gujarati", } },
108
+ { "am", { 75, "amharic", } },
109
+ { "yi", { 76, "yiddish", } },
110
+ { "lo", { 77, "lao", } },
111
+ { "uz", { 78, "uzbek", } },
112
+ { "fo", { 79, "faroese", } },
113
+ { "ht", { 80, "haitian creole", } },
114
+ { "ps", { 81, "pashto", } },
115
+ { "tk", { 82, "turkmen", } },
116
+ { "nn", { 83, "nynorsk", } },
117
+ { "mt", { 84, "maltese", } },
118
+ { "sa", { 85, "sanskrit", } },
119
+ { "lb", { 86, "luxembourgish", } },
120
+ { "my", { 87, "myanmar", } },
121
+ { "bo", { 88, "tibetan", } },
122
+ { "tl", { 89, "tagalog", } },
123
+ { "mg", { 90, "malagasy", } },
124
+ { "as", { 91, "assamese", } },
125
+ { "tt", { 92, "tatar", } },
126
+ { "haw", { 93, "hawaiian", } },
127
+ { "ln", { 94, "lingala", } },
128
+ { "ha", { 95, "hausa", } },
129
+ { "ba", { 96, "bashkir", } },
130
+ { "jw", { 97, "javanese", } },
131
+ { "su", { 98, "sundanese", } },
132
+ };
133
+
134
  const size_t MB = 1024*1024;
135
 
136
  const std::map<e_model, size_t> MEM_REQ_MODEL = {
137
+ { MODEL_TINY, 86ull*MB },
138
+ { MODEL_BASE, 165ull*MB },
139
+ { MODEL_SMALL, 540ull*MB },
140
+ { MODEL_MEDIUM, 1650ull*MB },
141
+ { MODEL_LARGE, 3260ull*MB },
142
  };
143
 
144
  const std::map<e_model, size_t> MEM_REQ_ENCODE = {
 
150
  };
151
 
152
  const std::map<e_model, size_t> MEM_REQ_ENCODE_LAYER = {
153
+ { MODEL_TINY, 64ull*MB },
154
+ { MODEL_BASE, 84ull*MB },
155
+ { MODEL_SMALL, 128ull*MB },
156
+ { MODEL_MEDIUM, 172ull*MB },
157
+ { MODEL_LARGE, 216ull*MB },
158
  };
159
 
160
  const std::map<e_model, size_t> MEM_REQ_DECODE = {
 
208
  id token_solm = 50361; // ??
209
  id token_beg = 50363;
210
 
211
+ // available tasks
212
+ const id token_translate = 50358;
213
+ const id token_transcribe = 50359;
214
+
215
  bool is_multilingual() const {
216
  return n_vocab == 51865;
217
  }
 
219
 
220
  // command-line parameters
221
  struct whisper_params {
222
+ int32_t seed = -1; // RNG seed, not used currently
223
  int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency());
224
 
225
+ // sampling parameter - used for the greedy strategy
226
  int32_t max_tokens_per_iter = 64;
227
 
228
+ bool verbose = false;
229
+ bool translate = false;
230
  bool print_special_tokens = false;
231
 
232
+ std::string language = "en";
233
+ std::string model = "models/ggml-base.en.bin";
234
  std::string fname_inp = "samples/jfk.wav";
235
  };
236
 
 
248
  params.max_tokens_per_iter = std::stoi(argv[++i]);
249
  } else if (arg == "-v" || arg == "--verbose") {
250
  params.verbose = true;
251
+ } else if (arg == "--translate") {
252
+ params.translate = true;
253
+ } else if (arg == "-l" || arg == "--language") {
254
+ params.language = argv[++i];
255
+ if (g_lang.find(params.language) == g_lang.end()) {
256
+ fprintf(stderr, "error: unknown language '%s'\n", params.language.c_str());
257
+ whisper_print_usage(argc, argv, params);
258
+ exit(0);
259
+ }
260
  } else if (arg == "-ps" || arg == "--print_special") {
261
  params.print_special_tokens = true;
262
  } else if (arg == "-m" || arg == "--model") {
 
281
  fprintf(stderr, "usage: %s [options]\n", argv[0]);
282
  fprintf(stderr, "\n");
283
  fprintf(stderr, "options:\n");
284
+ fprintf(stderr, " -h, --help show this help message and exit\n");
285
+ fprintf(stderr, " -s SEED, --seed SEED RNG seed (default: -1)\n");
286
+ fprintf(stderr, " -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads);
287
+ fprintf(stderr, " -T N, --tokens N maximum number of tokens to generate per iteration (default: %d)\n", params.max_tokens_per_iter);
288
+ fprintf(stderr, " -v, --verbose verbose output\n");
289
+ fprintf(stderr, " --translate translate from source language to english\n");
290
+ fprintf(stderr, " -ps, --print_special print special tokens\n");
291
+ fprintf(stderr, " -l LANG, --language LANG spoken language (default: %s)\n", params.language.c_str());
292
+ fprintf(stderr, " -m FNAME, --model FNAME model path (default: %s)\n", params.model.c_str());
293
+ fprintf(stderr, " -f FNAME, --file FNAME input WAV file path (default: %s)\n", params.fname_inp.c_str());
294
  fprintf(stderr, "\n");
295
  }
296
 
 
538
  printf("%s: f16 = %d\n", __func__, hparams.f16);
539
  printf("%s: type = %d\n", __func__, model.type);
540
 
541
+ // this is the total memory required to run the inference
542
  const size_t mem_required =
543
  MEM_REQ_MODEL.at(model.type) +
544
  MEM_REQ_ENCODE.at(model.type) +
 
731
  ctx_size += n_text_layer*( n_text_state*ggml_type_size(GGML_TYPE_F32)); // cross_attn_ln_1_b
732
  }
733
 
734
+ ctx_size += n_text_layer*n_text_ctx*n_text_state*ggml_type_size(GGML_TYPE_F16); // memory_k
735
+ ctx_size += n_text_layer*n_text_ctx*n_text_state*ggml_type_size(GGML_TYPE_F16); // memory_v
736
 
737
+ ctx_size += n_text_layer*n_audio_ctx*n_text_state*ggml_type_size(GGML_TYPE_F16); // memory_cross_k
738
+ ctx_size += n_text_layer*n_audio_ctx*n_text_state*ggml_type_size(GGML_TYPE_F16); // memory_cross_v
739
 
740
  ctx_size += (15 + 15*n_audio_layer + 24*n_text_layer)*256; // object overhead
741
 
 
958
  const int n_text_layer = hparams.n_text_layer;
959
  const int n_text_ctx = hparams.n_text_ctx;
960
 
961
+ // key/value memory for the self-attention layer
962
  {
963
  const int n_mem = n_text_layer*n_text_ctx;
964
  const int n_elements = n_text_state*n_mem;
965
 
966
+ model.memory_k = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements);
967
+ model.memory_v = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements);
968
  }
969
 
970
+ // key/value memory for the cross-attention layer
971
  {
972
  const int n_audio_ctx = hparams.n_audio_ctx;
973
 
974
  const int n_mem = n_text_layer*n_audio_ctx;
975
  const int n_elements = n_text_state*n_mem;
976
 
977
+ model.memory_cross_k = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements);
978
+ model.memory_cross_v = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements);
979
  }
980
 
981
  const size_t memory_size =
 
1181
  Qcur),
1182
  Qcur);
1183
 
1184
+ //Qcur = ggml_scale(ctxL, Qcur, ggml_new_f32(ctxL, pow(float(n_state)/n_head, -0.25)));
1185
 
1186
+ // note: no bias for Key
1187
  struct ggml_tensor * Kcur = ggml_mul_mat(ctxL,
1188
  layer.attn_k_w,
1189
  cur);
1190
 
1191
+ //Kcur = ggml_scale(ctxL, Kcur, ggml_new_f32(ctxL, pow(float(n_state)/n_head, -0.25)));
1192
 
1193
  struct ggml_tensor * Vcur = ggml_mul_mat(ctxL,
1194
  layer.attn_v_w,
 
1202
 
1203
  // ------
1204
 
1205
+ #ifdef USE_FLASH_ATTN
1206
  struct ggml_tensor * Q =
1207
  ggml_permute(ctxL,
1208
  ggml_cpy(ctxL,
1209
  Qcur,
1210
+ ggml_new_tensor_3d(ctxL, GGML_TYPE_F16, n_state/n_head, n_head, N)),
1211
  0, 2, 1, 3);
1212
 
1213
  struct ggml_tensor * K =
1214
  ggml_permute(ctxL,
1215
  ggml_cpy(ctxL,
1216
  Kcur,
1217
+ ggml_new_tensor_3d(ctxL, GGML_TYPE_F16, n_state/n_head, n_head, N)),
1218
  0, 2, 1, 3);
1219
 
1220
+ struct ggml_tensor * V =
1221
+ ggml_cpy(ctxL,
1222
+ ggml_permute(ctxL,
1223
+ ggml_reshape_3d(ctxL,
1224
+ Vcur,
1225
+ n_state/n_head, n_head, N),
1226
+ 1, 2, 0, 3),
1227
+ ggml_new_tensor_3d(ctxL, GGML_TYPE_F16, N, n_state/n_head, n_head)
1228
+ );
1229
 
1230
+ struct ggml_tensor * KQV = ggml_flash_attn(ctxL, Q, K, V, false);
1231
+ #else
1232
+ struct ggml_tensor * Q =
1233
+ ggml_permute(ctxL,
1234
+ ggml_cpy(ctxL,
1235
+ Qcur,
1236
+ ggml_new_tensor_3d(ctxL, GGML_TYPE_F32, n_state/n_head, n_head, N)),
1237
+ 0, 2, 1, 3);
1238
 
1239
+ struct ggml_tensor * K =
1240
+ ggml_permute(ctxL,
1241
+ ggml_cpy(ctxL,
1242
+ Kcur,
1243
+ ggml_new_tensor_3d(ctxL, GGML_TYPE_F16, n_state/n_head, n_head, N)),
1244
+ 0, 2, 1, 3);
 
 
 
1245
 
1246
+ // K * Q
1247
+ struct ggml_tensor * KQ = ggml_mul_mat(ctxL, K, Q);
1248
 
1249
+ struct ggml_tensor * KQ_scaled =
1250
+ ggml_scale(ctxL,
1251
+ KQ,
1252
+ ggml_new_f32(ctxL, 1.0f/sqrt(float(n_state)/n_head))
1253
+ );
1254
 
1255
+ struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctxL, KQ_scaled);
1256
 
1257
  //struct ggml_tensor * V_trans =
1258
  // ggml_permute(ctxL,
 
1270
  Vcur,
1271
  n_state/n_head, n_head, N),
1272
  0, 2, 1, 3),
1273
+ ggml_new_tensor_3d(ctxL, GGML_TYPE_F16, n_state/n_head, N, n_head)
1274
  );
1275
 
1276
  struct ggml_tensor * KQV = ggml_mul_mat(ctxL, ggml_transpose(ctxL, V), KQ_soft_max);
1277
+ #endif
1278
 
1279
  struct ggml_tensor * KQV_merged = ggml_permute(ctxL, KQV, 0, 2, 1, 3);
1280
 
 
1313
  ggml_repeat(ctxL, layer.mlp_ln_b, cur));
1314
  }
1315
 
1316
+ #ifdef USE_FLASH_FF
1317
+ cur = ggml_flash_ff(ctxL,
1318
+ ggml_cpy(ctxL, cur, ggml_new_tensor_2d(ctxL, GGML_TYPE_F16, n_state, N)),
1319
+ layer.mlp_0_w, layer.mlp_0_b, layer.mlp_1_w, layer.mlp_1_b);
1320
+ #else
1321
  // fully connected
1322
  cur = ggml_mul_mat(ctxL,
1323
  layer.mlp_0_w,
 
1338
  cur = ggml_add(ctxL,
1339
  ggml_repeat(ctxL, layer.mlp_1_b, cur),
1340
  cur);
1341
+ #endif
1342
  }
1343
 
1344
  // output from this layer
 
1507
  ((int32_t *) position->data)[i] = n_past + i;
1508
  }
1509
 
1510
+ // token encoding + position encoding
1511
  struct ggml_tensor * cur =
1512
  ggml_add(ctx0,
1513
  ggml_get_rows(ctx0, model.d_te, embd),
 
1559
 
1560
  Qcur = ggml_scale(ctxL, Qcur, ggml_new_f32(ctxL, pow(float(n_state)/n_head, -0.25)));
1561
 
1562
+ // note: no bias for Key
1563
  struct ggml_tensor * Kcur = ggml_mul_mat(ctxL,
1564
  layer.attn_k_w,
1565
  cur);
 
1645
 
1646
  // norm
1647
  {
1648
+ cur = ggml_norm(ctxL, inpCA); // note: we use inpCA here
1649
 
1650
  // cur = ln_0_w*cur + ln_0_b
1651
  cur = ggml_add(ctxL,
 
1728
  cur);
1729
  }
1730
 
 
1731
  // add the input
1732
  cur = ggml_add(ctxL, cur, inpCA);
1733
 
 
1739
  {
1740
  cur = ggml_norm(ctxL, inpFF);
1741
 
1742
+ // cur = mlp_ln_w*cur + mlp_ln_b
 
1743
  cur = ggml_add(ctxL,
1744
  ggml_mul(ctxL,
1745
  ggml_repeat(ctxL, layer.mlp_ln_w, cur),
 
1826
  probs_out.resize(N*n_vocab);
1827
  memcpy(probs_out.data(), ggml_get_data(cur), sizeof(float)*N*n_vocab);
1828
 
1829
+ if (N > 1) {
1830
+ //const float mem_per_token = ggml_used_mem(ctx0)/1024.0/1024.0/N;
1831
+ //printf("%s: used_mem = %f MB / %f per token\n", __func__, ggml_used_mem(ctx0)/1024.0/1024.0, mem_per_token);
1832
+ //printf("%s: max mem = %f MB\n", __func__, mem_per_token*model.hparams.n_text_ctx);
1833
+ }
1834
 
1835
  ggml_free(ctx0);
1836
 
 
2118
  t_mel_us = ggml_time_us() - t_start_us;
2119
  }
2120
 
2121
+ // print some info about the processing
2122
+ {
2123
+ printf("\n");
2124
+ if (!vocab.is_multilingual()) {
2125
+ if (params.language != "en" || params.translate) {
2126
+ params.language = "en";
2127
+ params.translate = false;
2128
+ printf("%s: WARNING: model is not multilingual, ignoring language and translation options\n", __func__);
2129
+ }
2130
+ }
2131
+ printf("%s: processing %d samples (%.1f sec), %d threads, lang = %s, task = %s ...\n",
2132
+ __func__, int(pcmf32.size()), float(pcmf32.size())/SAMPLE_RATE, params.n_threads,
2133
+ g_lang.at(params.language).second.c_str(),
2134
+ params.translate ? "translate" : "transcribe");
2135
+ }
2136
+
2137
+ // the accumulated text context so far
2138
  std::vector<whisper_vocab::id> prompt_past = { };
2139
 
2140
+ // these tokens determine the task that will be performed
2141
+ std::vector<whisper_vocab::id> prompt_init = { vocab.token_sot };
2142
+ if (vocab.is_multilingual()) {
2143
+ prompt_init.push_back(vocab.token_sot + 1 + g_lang.at(params.language).first);
2144
+ if (params.translate) {
2145
+ prompt_init.push_back(vocab.token_translate);
2146
+ } else {
2147
+ prompt_init.push_back(vocab.token_transcribe);
2148
+ }
2149
+ }
2150
+
2151
  // main loop
2152
  int seek = 0;
2153
  while (true) {
 
2171
  std::vector<float> probs;
2172
  std::vector<float> logits;
2173
 
2174
+ std::vector<whisper_vocab::id> prompt;
 
 
 
2175
 
2176
  int n_past = 0;
2177
 
2178
+ // if we have already generated some text, use it as a prompt to condition the next generation
2179
  if (prompt_past.size() > 0) {
2180
  int n_take = std::min(model.hparams.n_text_ctx/2, int(prompt_past.size()));
2181
 
2182
  prompt = { vocab.token_prev };
2183
+ prompt.insert(prompt.begin() + 1, prompt_past.end() - n_take, prompt_past.end());
 
2184
 
2185
  prompt_past.clear();
2186
+ prompt_past.insert(prompt_past.end(), prompt.begin() + 1, prompt.end());
2187
  }
2188
 
2189
+ prompt.insert(prompt.end(), prompt_init.begin(), prompt_init.end());
2190
+
2191
  bool done = false;
2192
  int seek_delta = 100*CHUNK_SIZE;
2193
  whisper_vocab::id last_id = 0;
 
2213
  n_past += prompt.size();
2214
  prompt.clear();
2215
 
2216
+ // very basic greedy sampling strategy:
2217
+ //
2218
+ // - always take the most probable token
2219
+ // - if we have accumulated more than 'params.max_tokens_per_iter' -> pick most probable timestamp token
2220
+ // and advance the sliding window by that amount
2221
+ // - in the meantime, if we encounter 2 consecutive timestamp tokens, we advance the sliding window too
2222
+ //
2223
+ // more sophisticated sampling strategies could be implemented here, but we keep it simple
2224
+ // feel free to experiment!
2225
+ //
2226
  {
2227
  // sample next token
2228
  const float temp = 1.0; // TODO