ggerganov commited on
Commit
64d3007
·
1 Parent(s): d460266

cuda : non-cont concat support (llama/7610)

Browse files

* tests : add non-cont concat tests

* cuda : non-cont concat support

ggml-ci

Files changed (1) hide show
  1. ggml-cuda/concat.cu +88 -22
ggml-cuda/concat.cu CHANGED
@@ -1,5 +1,6 @@
1
  #include "concat.cuh"
2
 
 
3
  static __global__ void concat_f32_dim0(const float * x, const float * y, float * dst, const int ne0, const int ne00) {
4
  int nidx = threadIdx.x + blockIdx.x * blockDim.x;
5
  if (nidx >= ne0) {
@@ -92,39 +93,104 @@ static void concat_f32_cuda(const float * x, const float * y, float * dst, int n
92
  concat_f32_dim2<<<gridDim, CUDA_CONCAT_BLOCK_SIZE, 0, stream>>>(x, y, dst, ne0, ne02);
93
  }
94
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95
  void ggml_cuda_op_concat(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
96
  const ggml_tensor * src0 = dst->src[0];
97
  const ggml_tensor * src1 = dst->src[1];
98
 
99
- const float * src0_d = (const float *)src0->data;
100
- const float * src1_d = (const float *)src1->data;
101
-
102
- float * dst_d = (float *)dst->data;
103
  cudaStream_t stream = ctx.stream();
104
 
105
  const int32_t dim = ((int32_t *) dst->op_params)[0];
106
 
107
- GGML_ASSERT(ggml_is_contiguous(src0));
108
- GGML_ASSERT(ggml_is_contiguous(src1));
109
-
110
  GGML_ASSERT(src0->type == GGML_TYPE_F32);
111
  GGML_ASSERT(src1->type == GGML_TYPE_F32);
112
- GGML_ASSERT(dst->type == GGML_TYPE_F32);
113
-
114
- if (dim != 3) {
115
- for (int i3 = 0; i3 < dst->ne[3]; i3++) {
116
- concat_f32_cuda(
117
- src0_d + i3 * (src0->nb[3] / 4),
118
- src1_d + i3 * (src1->nb[3] / 4),
119
- dst_d + i3 * ( dst->nb[3] / 4),
120
- src0->ne[0], src0->ne[1], src0->ne[2],
121
- dst->ne[0], dst->ne[1], dst->ne[2], dim, stream);
 
 
 
 
 
 
 
 
 
 
 
 
 
122
  }
123
  } else {
124
- const size_t size0 = ggml_nbytes(src0);
125
- const size_t size1 = ggml_nbytes(src1);
126
-
127
- CUDA_CHECK(cudaMemcpyAsync(dst_d, src0_d, size0, cudaMemcpyDeviceToDevice, stream));
128
- CUDA_CHECK(cudaMemcpyAsync(dst_d + size0/4, src1_d, size1, cudaMemcpyDeviceToDevice, stream));
 
 
 
 
 
 
129
  }
130
  }
 
1
  #include "concat.cuh"
2
 
3
+ // contiguous kernels
4
  static __global__ void concat_f32_dim0(const float * x, const float * y, float * dst, const int ne0, const int ne00) {
5
  int nidx = threadIdx.x + blockIdx.x * blockDim.x;
6
  if (nidx >= ne0) {
 
93
  concat_f32_dim2<<<gridDim, CUDA_CONCAT_BLOCK_SIZE, 0, stream>>>(x, y, dst, ne0, ne02);
94
  }
95
 
96
+ // non-contiguous kernel (slow)
97
+ static __global__ void concat_f32_non_cont(
98
+ const char * src0,
99
+ const char * src1,
100
+ char * dst,
101
+ int64_t ne00,
102
+ int64_t ne01,
103
+ int64_t ne02,
104
+ int64_t ne03,
105
+ uint64_t nb00,
106
+ uint64_t nb01,
107
+ uint64_t nb02,
108
+ uint64_t nb03,
109
+ int64_t /*ne10*/,
110
+ int64_t /*ne11*/,
111
+ int64_t /*ne12*/,
112
+ int64_t /*ne13*/,
113
+ uint64_t nb10,
114
+ uint64_t nb11,
115
+ uint64_t nb12,
116
+ uint64_t nb13,
117
+ int64_t ne0,
118
+ int64_t /*ne1*/,
119
+ int64_t /*ne2*/,
120
+ int64_t /*ne3*/,
121
+ uint64_t nb0,
122
+ uint64_t nb1,
123
+ uint64_t nb2,
124
+ uint64_t nb3,
125
+ int32_t dim) {
126
+ const int64_t i3 = blockIdx.z;
127
+ const int64_t i2 = blockIdx.y;
128
+ const int64_t i1 = blockIdx.x;
129
+
130
+ int64_t o[4] = {0, 0, 0, 0};
131
+ o[dim] = dim == 0 ? ne00 : (dim == 1 ? ne01 : (dim == 2 ? ne02 : ne03));
132
+
133
+ const float * x;
134
+
135
+ for (int i0 = threadIdx.x; i0 < ne0; i0 += blockDim.x) {
136
+ if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
137
+ x = (const float *)(src0 + (i3 )*nb03 + (i2 )*nb02 + (i1 )*nb01 + (i0 )*nb00);
138
+ } else {
139
+ x = (const float *)(src1 + (i3 - o[3])*nb13 + (i2 - o[2])*nb12 + (i1 - o[1])*nb11 + (i0 - o[0])*nb10);
140
+ }
141
+
142
+ float * y = (float *)(dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
143
+
144
+ *y = *x;
145
+ }
146
+ }
147
+
148
+
149
  void ggml_cuda_op_concat(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
150
  const ggml_tensor * src0 = dst->src[0];
151
  const ggml_tensor * src1 = dst->src[1];
152
 
 
 
 
 
153
  cudaStream_t stream = ctx.stream();
154
 
155
  const int32_t dim = ((int32_t *) dst->op_params)[0];
156
 
 
 
 
157
  GGML_ASSERT(src0->type == GGML_TYPE_F32);
158
  GGML_ASSERT(src1->type == GGML_TYPE_F32);
159
+ GGML_ASSERT(dst->type == GGML_TYPE_F32);
160
+
161
+ if (ggml_is_contiguous(src0) && ggml_is_contiguous(src1)) {
162
+ const float * src0_d = (const float *)src0->data;
163
+ const float * src1_d = (const float *)src1->data;
164
+
165
+ float * dst_d = (float *)dst->data;
166
+
167
+ if (dim != 3) {
168
+ for (int i3 = 0; i3 < dst->ne[3]; i3++) {
169
+ concat_f32_cuda(
170
+ src0_d + i3 * (src0->nb[3] / 4),
171
+ src1_d + i3 * (src1->nb[3] / 4),
172
+ dst_d + i3 * ( dst->nb[3] / 4),
173
+ src0->ne[0], src0->ne[1], src0->ne[2],
174
+ dst->ne[0], dst->ne[1], dst->ne[2], dim, stream);
175
+ }
176
+ } else {
177
+ const size_t size0 = ggml_nbytes(src0);
178
+ const size_t size1 = ggml_nbytes(src1);
179
+
180
+ CUDA_CHECK(cudaMemcpyAsync(dst_d, src0_d, size0, cudaMemcpyDeviceToDevice, stream));
181
+ CUDA_CHECK(cudaMemcpyAsync(dst_d + size0/4, src1_d, size1, cudaMemcpyDeviceToDevice, stream));
182
  }
183
  } else {
184
+ dim3 grid_dim(dst->ne[1], dst->ne[2], dst->ne[3]);
185
+ concat_f32_non_cont<<<grid_dim, CUDA_CONCAT_BLOCK_SIZE, 0, stream>>>(
186
+ (const char *)src0->data,
187
+ (const char *)src1->data,
188
+ ( char *)dst->data,
189
+ src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3],
190
+ src0->nb[0], src0->nb[1], src0->nb[2], src0->nb[3],
191
+ src1->ne[0], src1->ne[1], src1->ne[2], src1->ne[3],
192
+ src1->nb[0], src1->nb[1], src1->nb[2], src1->nb[3],
193
+ dst->ne[0], dst->ne[1], dst->ne[2], dst->ne[3],
194
+ dst->nb[0], dst->nb[1], dst->nb[2], dst->nb[3], dim);
195
  }
196
  }