ggerganov commited on
Commit
432c18f
·
unverified ·
1 Parent(s): d948318

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +15 -15
README.md CHANGED
@@ -52,21 +52,6 @@ The tensor operators are optimized heavily for Apple silicon CPUs. Depending on
52
  instrisics or CBLAS Accelerate framework routines are used. The latter are especially effective for bigger sizes since
53
  the Accelerate framework utilizes the special-purpose AMX coprocessor available in modern Apple products.
54
 
55
- ## Limitations
56
-
57
- - Inference only
58
- - No GPU support
59
- - Very basic greedy sampling scheme - always pick up the token with highest probability.
60
- This should be similar to the [GreedyDecoder](https://github.com/openai/whisper/blob/main/whisper/decoding.py#L249-L274)
61
- from the original python implementation, so in order to make a fair comparison between the 2 implementations, make sure
62
- to run the python code with the following parameters:
63
-
64
- ```
65
- whisper --best_of None --beam_size None ...
66
- ```
67
-
68
- In the future, `whisper.cpp` will support more sampling strategies.
69
-
70
  ## Quick start
71
 
72
  First, download one of the Whisper models converted in [ggml format](models). For example:
@@ -220,6 +205,21 @@ make large
220
  | medium | 1.5 GB | ~2.6 GB | `fd9727b6e1217c2f614f9b698455c4ffd82463b4` |
221
  | large | 2.9 GB | ~4.7 GB | `0f4c8e34f21cf1a914c59d8b3ce882345ad349d6` |
222
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
223
  ## Another example
224
 
225
  Here is another example of transcribing a [3:24 min speech](https://upload.wikimedia.org/wikipedia/commons/1/1f/George_W_Bush_Columbia_FINAL.ogg)
 
52
  instrisics or CBLAS Accelerate framework routines are used. The latter are especially effective for bigger sizes since
53
  the Accelerate framework utilizes the special-purpose AMX coprocessor available in modern Apple products.
54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55
  ## Quick start
56
 
57
  First, download one of the Whisper models converted in [ggml format](models). For example:
 
205
  | medium | 1.5 GB | ~2.6 GB | `fd9727b6e1217c2f614f9b698455c4ffd82463b4` |
206
  | large | 2.9 GB | ~4.7 GB | `0f4c8e34f21cf1a914c59d8b3ce882345ad349d6` |
207
 
208
+ ## Limitations
209
+
210
+ - Inference only
211
+ - No GPU support
212
+ - Very basic greedy sampling scheme - always pick up the token with highest probability.
213
+ This should be similar to the [GreedyDecoder](https://github.com/openai/whisper/blob/main/whisper/decoding.py#L249-L274)
214
+ from the original python implementation, so in order to make a fair comparison between the 2 implementations, make sure
215
+ to run the python code with the following parameters:
216
+
217
+ ```
218
+ whisper --best_of None --beam_size None ...
219
+ ```
220
+
221
+ In the future, `whisper.cpp` will support more sampling strategies.
222
+
223
  ## Another example
224
 
225
  Here is another example of transcribing a [3:24 min speech](https://upload.wikimedia.org/wikipedia/commons/1/1f/George_W_Bush_Columbia_FINAL.ogg)