Spaces:
Running
Running
talk-llama : sync llama.cpp
Browse files- examples/talk-llama/CMakeLists.txt +1 -0
- examples/talk-llama/llama-adapter.cpp +6 -0
- examples/talk-llama/llama-batch.cpp +5 -1
- examples/talk-llama/llama-batch.h +2 -1
- examples/talk-llama/llama-chat.cpp +17 -7
- examples/talk-llama/llama-chat.h +1 -0
- examples/talk-llama/llama-context.cpp +385 -499
- examples/talk-llama/llama-context.h +44 -32
- examples/talk-llama/llama-cparams.h +1 -0
- examples/talk-llama/llama-graph.cpp +20 -38
- examples/talk-llama/llama-graph.h +12 -8
- examples/talk-llama/llama-kv-cache.cpp +1497 -391
- examples/talk-llama/llama-kv-cache.h +272 -80
- examples/talk-llama/llama-memory.h +11 -1
- examples/talk-llama/llama-model-loader.cpp +14 -10
- examples/talk-llama/llama-model-saver.cpp +281 -0
- examples/talk-llama/llama-model-saver.h +37 -0
- examples/talk-llama/llama-model.cpp +105 -37
- examples/talk-llama/llama-model.h +7 -1
- examples/talk-llama/llama-quant.cpp +2 -2
- examples/talk-llama/llama-sampling.cpp +18 -6
- examples/talk-llama/llama-vocab.cpp +42 -4
- examples/talk-llama/llama-vocab.h +6 -0
- examples/talk-llama/llama.cpp +13 -0
- examples/talk-llama/llama.h +52 -11
examples/talk-llama/CMakeLists.txt
CHANGED
|
@@ -20,6 +20,7 @@ if (WHISPER_SDL2)
|
|
| 20 |
llama-memory.cpp
|
| 21 |
llama-mmap.cpp
|
| 22 |
llama-model-loader.cpp
|
|
|
|
| 23 |
llama-model.cpp
|
| 24 |
llama-quant.cpp
|
| 25 |
llama-sampling.cpp
|
|
|
|
| 20 |
llama-memory.cpp
|
| 21 |
llama-mmap.cpp
|
| 22 |
llama-model-loader.cpp
|
| 23 |
+
llama-model-saver.cpp
|
| 24 |
llama-model.cpp
|
| 25 |
llama-quant.cpp
|
| 26 |
llama-sampling.cpp
|
examples/talk-llama/llama-adapter.cpp
CHANGED
|
@@ -253,6 +253,9 @@ static void llama_adapter_lora_init_impl(llama_model & model, const char * path_
|
|
| 253 |
std::vector<ggml_backend_buffer_type_t> buft_extra;
|
| 254 |
{
|
| 255 |
auto * cpu_dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
|
|
|
|
|
|
|
|
|
|
| 256 |
auto * cpu_reg = ggml_backend_dev_backend_reg(cpu_dev);
|
| 257 |
|
| 258 |
auto ggml_backend_dev_get_extra_bufts_fn = (ggml_backend_dev_get_extra_bufts_t)
|
|
@@ -291,6 +294,9 @@ static void llama_adapter_lora_init_impl(llama_model & model, const char * path_
|
|
| 291 |
LLAMA_LOG_WARN("%s: lora for '%s' cannot use buft '%s', fallback to CPU\n", __func__, model_tensor->name, ggml_backend_buft_name(buft));
|
| 292 |
|
| 293 |
auto * cpu_dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
|
|
|
|
|
|
|
|
|
|
| 294 |
buft = ggml_backend_dev_buffer_type(cpu_dev);
|
| 295 |
|
| 296 |
break;
|
|
|
|
| 253 |
std::vector<ggml_backend_buffer_type_t> buft_extra;
|
| 254 |
{
|
| 255 |
auto * cpu_dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
|
| 256 |
+
if (!cpu_dev) {
|
| 257 |
+
throw std::runtime_error(format("%s: no CPU backend found", __func__));
|
| 258 |
+
}
|
| 259 |
auto * cpu_reg = ggml_backend_dev_backend_reg(cpu_dev);
|
| 260 |
|
| 261 |
auto ggml_backend_dev_get_extra_bufts_fn = (ggml_backend_dev_get_extra_bufts_t)
|
|
|
|
| 294 |
LLAMA_LOG_WARN("%s: lora for '%s' cannot use buft '%s', fallback to CPU\n", __func__, model_tensor->name, ggml_backend_buft_name(buft));
|
| 295 |
|
| 296 |
auto * cpu_dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
|
| 297 |
+
if (!cpu_dev) {
|
| 298 |
+
throw std::runtime_error(format("%s: no CPU backend found", __func__));
|
| 299 |
+
}
|
| 300 |
buft = ggml_backend_dev_buffer_type(cpu_dev);
|
| 301 |
|
| 302 |
break;
|
examples/talk-llama/llama-batch.cpp
CHANGED
|
@@ -189,7 +189,7 @@ llama_ubatch llama_sbatch::split_seq(size_t n_ubatch) {
|
|
| 189 |
return ubatch;
|
| 190 |
}
|
| 191 |
|
| 192 |
-
|
| 193 |
GGML_ASSERT(batch.n_tokens >= 0);
|
| 194 |
this->batch = &batch;
|
| 195 |
this->n_embd = n_embd;
|
|
@@ -203,6 +203,7 @@ void llama_sbatch::from_batch(const llama_batch & batch, size_t n_embd, bool sim
|
|
| 203 |
for (size_t i = 0; i < n_tokens; ++i) {
|
| 204 |
ids[i] = i;
|
| 205 |
}
|
|
|
|
| 206 |
if (simple_split) {
|
| 207 |
seq.resize(1);
|
| 208 |
llama_sbatch_seq & s = seq[0];
|
|
@@ -212,6 +213,7 @@ void llama_sbatch::from_batch(const llama_batch & batch, size_t n_embd, bool sim
|
|
| 212 |
s.length = n_tokens;
|
| 213 |
return;
|
| 214 |
}
|
|
|
|
| 215 |
std::sort(ids.begin(), ids.end(),
|
| 216 |
[&batch](size_t a, size_t b) {
|
| 217 |
int32_t n_seq_a = batch.n_seq_id ? batch.n_seq_id[a] : 1;
|
|
@@ -239,6 +241,7 @@ void llama_sbatch::from_batch(const llama_batch & batch, size_t n_embd, bool sim
|
|
| 239 |
return n_seq_a > n_seq_b;
|
| 240 |
}
|
| 241 |
);
|
|
|
|
| 242 |
// init seq
|
| 243 |
llama_sbatch_seq * last_seq = nullptr;
|
| 244 |
|
|
@@ -262,6 +265,7 @@ void llama_sbatch::from_batch(const llama_batch & batch, size_t n_embd, bool sim
|
|
| 262 |
seq.push_back(new_seq);
|
| 263 |
last_seq = &seq.back();
|
| 264 |
}
|
|
|
|
| 265 |
// keep shared prompts first at the end, then sort by length descending.
|
| 266 |
std::sort(seq.begin(), seq.end(),
|
| 267 |
[](llama_sbatch_seq & a, llama_sbatch_seq & b) {
|
|
|
|
| 189 |
return ubatch;
|
| 190 |
}
|
| 191 |
|
| 192 |
+
llama_sbatch::llama_sbatch(const llama_batch & batch, size_t n_embd, bool simple_split, bool logits_all) {
|
| 193 |
GGML_ASSERT(batch.n_tokens >= 0);
|
| 194 |
this->batch = &batch;
|
| 195 |
this->n_embd = n_embd;
|
|
|
|
| 203 |
for (size_t i = 0; i < n_tokens; ++i) {
|
| 204 |
ids[i] = i;
|
| 205 |
}
|
| 206 |
+
|
| 207 |
if (simple_split) {
|
| 208 |
seq.resize(1);
|
| 209 |
llama_sbatch_seq & s = seq[0];
|
|
|
|
| 213 |
s.length = n_tokens;
|
| 214 |
return;
|
| 215 |
}
|
| 216 |
+
|
| 217 |
std::sort(ids.begin(), ids.end(),
|
| 218 |
[&batch](size_t a, size_t b) {
|
| 219 |
int32_t n_seq_a = batch.n_seq_id ? batch.n_seq_id[a] : 1;
|
|
|
|
| 241 |
return n_seq_a > n_seq_b;
|
| 242 |
}
|
| 243 |
);
|
| 244 |
+
|
| 245 |
// init seq
|
| 246 |
llama_sbatch_seq * last_seq = nullptr;
|
| 247 |
|
|
|
|
| 265 |
seq.push_back(new_seq);
|
| 266 |
last_seq = &seq.back();
|
| 267 |
}
|
| 268 |
+
|
| 269 |
// keep shared prompts first at the end, then sort by length descending.
|
| 270 |
std::sort(seq.begin(), seq.end(),
|
| 271 |
[](llama_sbatch_seq & a, llama_sbatch_seq & b) {
|
examples/talk-llama/llama-batch.h
CHANGED
|
@@ -70,7 +70,8 @@ struct llama_sbatch {
|
|
| 70 |
// sequence-wise split
|
| 71 |
llama_ubatch split_seq(size_t n_ubatch);
|
| 72 |
|
| 73 |
-
|
|
|
|
| 74 |
};
|
| 75 |
|
| 76 |
// temporary allocate memory for the input batch if needed
|
|
|
|
| 70 |
// sequence-wise split
|
| 71 |
llama_ubatch split_seq(size_t n_ubatch);
|
| 72 |
|
| 73 |
+
llama_sbatch() = default;
|
| 74 |
+
llama_sbatch(const llama_batch & batch, size_t n_embd, bool simple_split = false, bool logits_all = false);
|
| 75 |
};
|
| 76 |
|
| 77 |
// temporary allocate memory for the input batch if needed
|
examples/talk-llama/llama-chat.cpp
CHANGED
|
@@ -35,6 +35,7 @@ static const std::map<std::string, llm_chat_template> LLM_CHAT_TEMPLATES = {
|
|
| 35 |
{ "mistral-v3", LLM_CHAT_TEMPLATE_MISTRAL_V3 },
|
| 36 |
{ "mistral-v3-tekken", LLM_CHAT_TEMPLATE_MISTRAL_V3_TEKKEN },
|
| 37 |
{ "mistral-v7", LLM_CHAT_TEMPLATE_MISTRAL_V7 },
|
|
|
|
| 38 |
{ "phi3", LLM_CHAT_TEMPLATE_PHI_3 },
|
| 39 |
{ "phi4", LLM_CHAT_TEMPLATE_PHI_4 },
|
| 40 |
{ "falcon3", LLM_CHAT_TEMPLATE_FALCON_3 },
|
|
@@ -202,19 +203,20 @@ int32_t llm_chat_apply_template(
|
|
| 202 |
if (add_ass) {
|
| 203 |
ss << "<|im_start|>assistant\n";
|
| 204 |
}
|
| 205 |
-
} else if (tmpl == LLM_CHAT_TEMPLATE_MISTRAL_V7) {
|
| 206 |
// Official mistral 'v7' template
|
| 207 |
// See: https://huggingface.co/mistralai/Mistral-Large-Instruct-2411#basic-instruct-template-v7
|
|
|
|
|
|
|
| 208 |
for (auto message : chat) {
|
| 209 |
std::string role(message->role);
|
| 210 |
std::string content(message->content);
|
| 211 |
if (role == "system") {
|
| 212 |
-
ss << "[SYSTEM_PROMPT]
|
| 213 |
} else if (role == "user") {
|
| 214 |
-
ss << "[INST]
|
| 215 |
-
}
|
| 216 |
-
|
| 217 |
-
ss << " " << content << "</s>";
|
| 218 |
}
|
| 219 |
}
|
| 220 |
} else if (tmpl == LLM_CHAT_TEMPLATE_MISTRAL_V1
|
|
@@ -447,8 +449,16 @@ int32_t llm_chat_apply_template(
|
|
| 447 |
if (add_ass) {
|
| 448 |
ss << "<|assistant|>";
|
| 449 |
}
|
| 450 |
-
} else if (tmpl == LLM_CHAT_TEMPLATE_CHATGLM_4
|
| 451 |
ss << "[gMASK]" << "<sop>";
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 452 |
for (auto message : chat) {
|
| 453 |
std::string role(message->role);
|
| 454 |
ss << "<|" << role << "|>" << "\n" << message->content;
|
|
|
|
| 35 |
{ "mistral-v3", LLM_CHAT_TEMPLATE_MISTRAL_V3 },
|
| 36 |
{ "mistral-v3-tekken", LLM_CHAT_TEMPLATE_MISTRAL_V3_TEKKEN },
|
| 37 |
{ "mistral-v7", LLM_CHAT_TEMPLATE_MISTRAL_V7 },
|
| 38 |
+
{ "mistral-v7-tekken", LLM_CHAT_TEMPLATE_MISTRAL_V7_TEKKEN },
|
| 39 |
{ "phi3", LLM_CHAT_TEMPLATE_PHI_3 },
|
| 40 |
{ "phi4", LLM_CHAT_TEMPLATE_PHI_4 },
|
| 41 |
{ "falcon3", LLM_CHAT_TEMPLATE_FALCON_3 },
|
|
|
|
| 203 |
if (add_ass) {
|
| 204 |
ss << "<|im_start|>assistant\n";
|
| 205 |
}
|
| 206 |
+
} else if (tmpl == LLM_CHAT_TEMPLATE_MISTRAL_V7 || tmpl == LLM_CHAT_TEMPLATE_MISTRAL_V7_TEKKEN) {
|
| 207 |
// Official mistral 'v7' template
|
| 208 |
// See: https://huggingface.co/mistralai/Mistral-Large-Instruct-2411#basic-instruct-template-v7
|
| 209 |
+
// https://huggingface.co/mistralai/Mistral-Small-3.1-24B-Instruct-2503#basic-instruct-template-v7-tekken
|
| 210 |
+
const char * trailing_space = tmpl == LLM_CHAT_TEMPLATE_MISTRAL_V7 ? " " : "";
|
| 211 |
for (auto message : chat) {
|
| 212 |
std::string role(message->role);
|
| 213 |
std::string content(message->content);
|
| 214 |
if (role == "system") {
|
| 215 |
+
ss << "[SYSTEM_PROMPT]" << trailing_space << content << "[/SYSTEM_PROMPT]";
|
| 216 |
} else if (role == "user") {
|
| 217 |
+
ss << "[INST]" << trailing_space << content << "[/INST]";
|
| 218 |
+
} else {
|
| 219 |
+
ss << trailing_space << content << "</s>";
|
|
|
|
| 220 |
}
|
| 221 |
}
|
| 222 |
} else if (tmpl == LLM_CHAT_TEMPLATE_MISTRAL_V1
|
|
|
|
| 449 |
if (add_ass) {
|
| 450 |
ss << "<|assistant|>";
|
| 451 |
}
|
| 452 |
+
} else if (tmpl == LLM_CHAT_TEMPLATE_CHATGLM_4) {
|
| 453 |
ss << "[gMASK]" << "<sop>";
|
| 454 |
+
for (auto message : chat) {
|
| 455 |
+
std::string role(message->role);
|
| 456 |
+
ss << "<|" << role << "|>" << "\n" << message->content;
|
| 457 |
+
}
|
| 458 |
+
if (add_ass) {
|
| 459 |
+
ss << "<|assistant|>\n";
|
| 460 |
+
}
|
| 461 |
+
} else if (tmpl == LLM_CHAT_TEMPLATE_GLMEDGE) {
|
| 462 |
for (auto message : chat) {
|
| 463 |
std::string role(message->role);
|
| 464 |
ss << "<|" << role << "|>" << "\n" << message->content;
|
examples/talk-llama/llama-chat.h
CHANGED
|
@@ -14,6 +14,7 @@ enum llm_chat_template {
|
|
| 14 |
LLM_CHAT_TEMPLATE_MISTRAL_V3,
|
| 15 |
LLM_CHAT_TEMPLATE_MISTRAL_V3_TEKKEN,
|
| 16 |
LLM_CHAT_TEMPLATE_MISTRAL_V7,
|
|
|
|
| 17 |
LLM_CHAT_TEMPLATE_PHI_3,
|
| 18 |
LLM_CHAT_TEMPLATE_PHI_4,
|
| 19 |
LLM_CHAT_TEMPLATE_FALCON_3,
|
|
|
|
| 14 |
LLM_CHAT_TEMPLATE_MISTRAL_V3,
|
| 15 |
LLM_CHAT_TEMPLATE_MISTRAL_V3_TEKKEN,
|
| 16 |
LLM_CHAT_TEMPLATE_MISTRAL_V7,
|
| 17 |
+
LLM_CHAT_TEMPLATE_MISTRAL_V7_TEKKEN,
|
| 18 |
LLM_CHAT_TEMPLATE_PHI_3,
|
| 19 |
LLM_CHAT_TEMPLATE_PHI_4,
|
| 20 |
LLM_CHAT_TEMPLATE_FALCON_3,
|
examples/talk-llama/llama-context.cpp
CHANGED
|
@@ -6,11 +6,9 @@
|
|
| 6 |
#include "llama-model.h"
|
| 7 |
#include "llama-kv-cache.h"
|
| 8 |
|
| 9 |
-
#include <cassert>
|
| 10 |
#include <cstring>
|
| 11 |
#include <stdexcept>
|
| 12 |
#include <cinttypes>
|
| 13 |
-
#include <cmath>
|
| 14 |
|
| 15 |
//
|
| 16 |
// llama_context
|
|
@@ -95,6 +93,7 @@ llama_context::llama_context(
|
|
| 95 |
}
|
| 96 |
|
| 97 |
cparams.n_ubatch = std::min(cparams.n_batch, params.n_ubatch == 0 ? params.n_batch : params.n_ubatch);
|
|
|
|
| 98 |
|
| 99 |
const uint32_t n_ctx_per_seq = cparams.n_ctx / cparams.n_seq_max;
|
| 100 |
|
|
@@ -118,8 +117,6 @@ llama_context::llama_context(
|
|
| 118 |
__func__, n_ctx_per_seq, hparams.n_ctx_train);
|
| 119 |
}
|
| 120 |
|
| 121 |
-
logits_all = params.logits_all;
|
| 122 |
-
|
| 123 |
if (!hparams.vocab_only) {
|
| 124 |
// GPU backends
|
| 125 |
for (auto * dev : model.devices) {
|
|
@@ -177,44 +174,13 @@ llama_context::llama_context(
|
|
| 177 |
}
|
| 178 |
|
| 179 |
// init the memory module
|
| 180 |
-
// TODO: for now, always create a unified KV cache
|
| 181 |
if (!hparams.vocab_only) {
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
cparams.n_ctx = GGML_PAD(cparams.n_ctx, kv_self->get_padding(cparams));
|
| 187 |
-
|
| 188 |
-
LLAMA_LOG_DEBUG("%s: n_ctx = %u (padded)\n", __func__, cparams.n_ctx);
|
| 189 |
-
|
| 190 |
-
uint32_t kv_size = cparams.n_ctx;
|
| 191 |
-
ggml_type type_k = params.type_k;
|
| 192 |
-
ggml_type type_v = params.type_v;
|
| 193 |
-
|
| 194 |
-
if (llama_model_is_recurrent(&model)) {
|
| 195 |
-
// Mamba needs at least as many KV cells as there are sequences kept at any time
|
| 196 |
-
kv_size = std::max((uint32_t) 1, params.n_seq_max);
|
| 197 |
-
// it's probably best to keep as much precision as possible for the states
|
| 198 |
-
type_k = GGML_TYPE_F32; // required by ggml_ssm_conv for Mamba's conv_states
|
| 199 |
-
type_v = GGML_TYPE_F32; // required by ggml_ssm_scan for Mamba's ssm_states
|
| 200 |
-
}
|
| 201 |
-
|
| 202 |
-
GGML_ASSERT(hparams.n_embd_head_k % ggml_blck_size(type_k) == 0);
|
| 203 |
-
GGML_ASSERT(hparams.n_embd_head_v % ggml_blck_size(type_v) == 0);
|
| 204 |
-
|
| 205 |
-
if (!kv_self->init(model, cparams, type_k, type_v, kv_size, cparams.offload_kqv)) {
|
| 206 |
-
throw std::runtime_error("failed to initialize self-attention cache");
|
| 207 |
-
}
|
| 208 |
|
| 209 |
-
|
| 210 |
-
const size_t memory_size_k = kv_self->size_k_bytes();
|
| 211 |
-
const size_t memory_size_v = kv_self->size_v_bytes();
|
| 212 |
-
|
| 213 |
-
LLAMA_LOG_INFO("%s: KV self size = %7.2f MiB, K (%s): %7.2f MiB, V (%s): %7.2f MiB\n", __func__,
|
| 214 |
-
(float)(memory_size_k + memory_size_v) / (1024.0f * 1024.0f),
|
| 215 |
-
ggml_type_name(type_k), (float)memory_size_k / (1024.0f * 1024.0f),
|
| 216 |
-
ggml_type_name(type_v), (float)memory_size_v / (1024.0f * 1024.0f));
|
| 217 |
-
}
|
| 218 |
}
|
| 219 |
|
| 220 |
// init backends
|
|
@@ -278,7 +244,7 @@ llama_context::llama_context(
|
|
| 278 |
}
|
| 279 |
}
|
| 280 |
|
| 281 |
-
sched.reset(ggml_backend_sched_new(backend_ptrs.data(), backend_buft.data(), backend_ptrs.size(), max_nodes, pipeline_parallel));
|
| 282 |
|
| 283 |
if (pipeline_parallel) {
|
| 284 |
LLAMA_LOG_INFO("%s: pipeline parallelism enabled (n_copies=%d)\n", __func__, ggml_backend_sched_get_n_copies(sched.get()));
|
|
@@ -286,7 +252,7 @@ llama_context::llama_context(
|
|
| 286 |
}
|
| 287 |
|
| 288 |
// reserve worst-case graph
|
| 289 |
-
if (!hparams.vocab_only) {
|
| 290 |
const uint32_t n_seqs = 1; // TODO: worst-case number of sequences
|
| 291 |
const uint32_t n_tokens = std::min(cparams.n_ctx, cparams.n_ubatch);
|
| 292 |
|
|
@@ -305,7 +271,9 @@ llama_context::llama_context(
|
|
| 305 |
int n_nodes_tg = -1;
|
| 306 |
|
| 307 |
// simulate full KV cache
|
| 308 |
-
kv_self
|
|
|
|
|
|
|
| 309 |
|
| 310 |
cross.v_embd.clear();
|
| 311 |
|
|
@@ -391,7 +359,9 @@ llama_context::llama_context(
|
|
| 391 |
}
|
| 392 |
}
|
| 393 |
|
| 394 |
-
llama_context::~llama_context()
|
|
|
|
|
|
|
| 395 |
|
| 396 |
void llama_context::synchronize() {
|
| 397 |
ggml_backend_sched_synchronize(sched.get());
|
|
@@ -427,6 +397,18 @@ const llama_model & llama_context::get_model() const {
|
|
| 427 |
return model;
|
| 428 |
}
|
| 429 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 430 |
uint32_t llama_context::n_ctx() const {
|
| 431 |
return cparams.n_ctx;
|
| 432 |
}
|
|
@@ -456,337 +438,21 @@ uint32_t llama_context::n_threads_batch() const {
|
|
| 456 |
}
|
| 457 |
|
| 458 |
llama_kv_cache * llama_context::get_kv_self() {
|
| 459 |
-
|
|
|
|
| 460 |
}
|
| 461 |
|
| 462 |
const llama_kv_cache * llama_context::get_kv_self() const {
|
| 463 |
-
|
| 464 |
-
|
| 465 |
-
|
| 466 |
-
ggml_tensor * llama_context::build_rope_shift(
|
| 467 |
-
ggml_context * ctx0,
|
| 468 |
-
ggml_tensor * cur,
|
| 469 |
-
ggml_tensor * shift,
|
| 470 |
-
ggml_tensor * factors,
|
| 471 |
-
float freq_base,
|
| 472 |
-
float freq_scale) const {
|
| 473 |
-
const auto & n_ctx_orig = cparams.n_ctx_orig_yarn;
|
| 474 |
-
|
| 475 |
-
const auto & yarn_ext_factor = cparams.yarn_ext_factor;
|
| 476 |
-
const auto & yarn_beta_fast = cparams.yarn_beta_fast;
|
| 477 |
-
const auto & yarn_beta_slow = cparams.yarn_beta_slow;
|
| 478 |
-
|
| 479 |
-
const auto & hparams = model.hparams;
|
| 480 |
-
|
| 481 |
-
const auto & n_rot = hparams.n_rot;
|
| 482 |
-
const auto & rope_type = hparams.rope_type;
|
| 483 |
-
|
| 484 |
-
// See llm_build_deepseek2() for why attn_factor has to be scaled for YaRN RoPE to work correctly.
|
| 485 |
-
// See https://github.com/ggerganov/llama.cpp/discussions/7416 for detailed explanation.
|
| 486 |
-
const float yarn_attn_factor = model.arch == LLM_ARCH_DEEPSEEK2 ? 1.0f / (1.0f + 0.1f * logf(1.0f / freq_scale)) : cparams.yarn_attn_factor;
|
| 487 |
-
|
| 488 |
-
ggml_tensor * tmp;
|
| 489 |
-
|
| 490 |
-
if (ggml_is_quantized(cur->type)) {
|
| 491 |
-
// dequantize to f32 -> RoPE -> quantize back
|
| 492 |
-
tmp = ggml_cast(ctx0, cur, GGML_TYPE_F32);
|
| 493 |
-
|
| 494 |
-
tmp = ggml_rope_ext(ctx0, tmp,
|
| 495 |
-
shift, factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
| 496 |
-
yarn_ext_factor, yarn_attn_factor, yarn_beta_fast, yarn_beta_slow);
|
| 497 |
-
|
| 498 |
-
tmp = ggml_cpy(ctx0, tmp, cur);
|
| 499 |
-
} else {
|
| 500 |
-
// we rotate only the first n_rot dimensions
|
| 501 |
-
tmp = ggml_rope_ext_inplace(ctx0, cur,
|
| 502 |
-
shift, factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
| 503 |
-
yarn_ext_factor, yarn_attn_factor, yarn_beta_fast, yarn_beta_slow);
|
| 504 |
-
}
|
| 505 |
-
|
| 506 |
-
return tmp;
|
| 507 |
-
}
|
| 508 |
-
|
| 509 |
-
class llm_graph_input_k_shift : public llm_graph_input_i {
|
| 510 |
-
public:
|
| 511 |
-
llm_graph_input_k_shift(const llama_kv_cache_unified * kv_self) : kv_self(kv_self) {}
|
| 512 |
-
virtual ~llm_graph_input_k_shift() = default;
|
| 513 |
-
|
| 514 |
-
void set_input(const llama_ubatch * ubatch) override;
|
| 515 |
-
|
| 516 |
-
ggml_tensor * k_shift; // I32 [kv_size]
|
| 517 |
-
|
| 518 |
-
const llama_kv_cache_unified * kv_self;
|
| 519 |
-
};
|
| 520 |
-
|
| 521 |
-
void llm_graph_input_k_shift::set_input(const llama_ubatch * ubatch) {
|
| 522 |
-
GGML_UNUSED(ubatch);
|
| 523 |
-
|
| 524 |
-
if (k_shift) {
|
| 525 |
-
assert(ggml_backend_buffer_is_host(k_shift->buffer));
|
| 526 |
-
|
| 527 |
-
int32_t * data = (int32_t *) k_shift->data;
|
| 528 |
-
|
| 529 |
-
for (uint32_t i = 0; i < kv_self->size; ++i) {
|
| 530 |
-
data[i] = kv_self->cells[i].delta;
|
| 531 |
-
}
|
| 532 |
-
}
|
| 533 |
-
}
|
| 534 |
-
|
| 535 |
-
llm_graph_result_ptr llama_context::build_kv_self_shift(
|
| 536 |
-
ggml_context * ctx0,
|
| 537 |
-
ggml_cgraph * gf) const {
|
| 538 |
-
auto res = std::make_unique<llm_graph_result>();
|
| 539 |
-
|
| 540 |
-
const auto & hparams = model.hparams;
|
| 541 |
-
|
| 542 |
-
const auto & n_layer = hparams.n_layer;
|
| 543 |
-
|
| 544 |
-
const auto & n_embd_head_k = hparams.n_embd_head_k;
|
| 545 |
-
//const auto & n_embd_head_v = hparams.n_embd_head_v;
|
| 546 |
-
|
| 547 |
-
//GGML_ASSERT(kv_self->size == n_ctx);
|
| 548 |
-
|
| 549 |
-
auto inp = std::make_unique<llm_graph_input_k_shift>(kv_self.get());
|
| 550 |
-
|
| 551 |
-
inp->k_shift = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, cparams.n_ctx);
|
| 552 |
-
ggml_set_input(inp->k_shift);
|
| 553 |
-
|
| 554 |
-
for (uint32_t il = 0; il < n_layer; ++il) {
|
| 555 |
-
const int64_t n_head_kv = hparams.n_head_kv(il);
|
| 556 |
-
const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(il);
|
| 557 |
-
|
| 558 |
-
const bool is_swa = hparams.is_swa(il);
|
| 559 |
-
|
| 560 |
-
// note: the swa rope params could become part of the cparams in the future
|
| 561 |
-
// if we decide to make them configurable, like the non-sliding ones
|
| 562 |
-
const float freq_base_l = is_swa ? hparams.rope_freq_base_train_swa : cparams.rope_freq_base;
|
| 563 |
-
const float freq_scale_l = is_swa ? hparams.rope_freq_scale_train_swa : cparams.rope_freq_scale;
|
| 564 |
-
|
| 565 |
-
ggml_tensor * rope_factors = kv_self->cbs.get_rope_factors(n_ctx_per_seq(), il);
|
| 566 |
-
|
| 567 |
-
ggml_tensor * k =
|
| 568 |
-
ggml_view_3d(ctx0, kv_self->k_l[il],
|
| 569 |
-
n_embd_head_k, n_head_kv, kv_self->size,
|
| 570 |
-
ggml_row_size(kv_self->k_l[il]->type, n_embd_head_k),
|
| 571 |
-
ggml_row_size(kv_self->k_l[il]->type, n_embd_k_gqa),
|
| 572 |
-
0);
|
| 573 |
-
|
| 574 |
-
ggml_tensor * cur = build_rope_shift(ctx0, k, inp->k_shift, rope_factors, freq_base_l, freq_scale_l);
|
| 575 |
-
|
| 576 |
-
ggml_build_forward_expand(gf, cur);
|
| 577 |
-
}
|
| 578 |
-
|
| 579 |
-
res->add_input(std::move(inp));
|
| 580 |
-
|
| 581 |
-
return res;
|
| 582 |
-
}
|
| 583 |
-
|
| 584 |
-
llm_graph_result_ptr llama_context::build_kv_self_defrag(
|
| 585 |
-
ggml_context * ctx0,
|
| 586 |
-
ggml_cgraph * gf) const {
|
| 587 |
-
auto res = std::make_unique<llm_graph_result>();
|
| 588 |
-
|
| 589 |
-
const auto & hparams = model.hparams;
|
| 590 |
-
|
| 591 |
-
const auto & ids = kv_self->defrag_info.ids;
|
| 592 |
-
|
| 593 |
-
#if 0
|
| 594 |
-
// CPU defrag
|
| 595 |
-
//
|
| 596 |
-
// TODO: optimizations are possible:
|
| 597 |
-
// - multiple threads
|
| 598 |
-
// - avoid copying to the host memory when already there
|
| 599 |
-
//
|
| 600 |
-
// likely not worth the effort, as we have ggml_graph based defrag
|
| 601 |
-
//
|
| 602 |
-
|
| 603 |
-
const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa();
|
| 604 |
-
const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa();
|
| 605 |
-
|
| 606 |
-
const uint32_t kv_size = size;
|
| 607 |
-
|
| 608 |
-
std::vector<uint8_t> buf_k;
|
| 609 |
-
std::vector<uint8_t> buf_v;
|
| 610 |
-
|
| 611 |
-
for (uint32_t il = 0; il < n_layer; ++il) {
|
| 612 |
-
const size_t k_size_row = ggml_row_size(k_l[il]->type, n_embd_k_gqa);
|
| 613 |
-
const size_t k_size = ggml_row_size(k_l[il]->type, n_embd_k_gqa*kv_size);
|
| 614 |
-
|
| 615 |
-
const size_t v_size_el = ggml_type_size(v_l[il]->type);
|
| 616 |
-
const size_t v_size = ggml_row_size (v_l[il]->type, n_embd_v_gqa*kv_size);
|
| 617 |
-
|
| 618 |
-
buf_k.resize(k_size);
|
| 619 |
-
buf_v.resize(v_size);
|
| 620 |
-
|
| 621 |
-
ggml_backend_tensor_get(k_l[il], buf_k.data(), 0, buf_k.size());
|
| 622 |
-
ggml_backend_tensor_get(v_l[il], buf_v.data(), 0, buf_v.size());
|
| 623 |
-
|
| 624 |
-
// batch move [i, i+nm) to [id, id+nm)
|
| 625 |
-
// note: cells can move only to a lower index
|
| 626 |
-
for (uint32_t i = 0; i < n_kv; ++i) {
|
| 627 |
-
const uint32_t id = ids[i];
|
| 628 |
-
|
| 629 |
-
if (i == id || id == n_kv) {
|
| 630 |
-
continue;
|
| 631 |
-
}
|
| 632 |
-
|
| 633 |
-
uint32_t nm = 1;
|
| 634 |
-
|
| 635 |
-
while (i + nm < n_kv && ids[i + nm] == id + nm) {
|
| 636 |
-
nm++;
|
| 637 |
-
}
|
| 638 |
-
|
| 639 |
-
// move keys
|
| 640 |
-
{
|
| 641 |
-
const int64_t os = i*k_size_row;
|
| 642 |
-
const int64_t od = id*k_size_row;
|
| 643 |
-
|
| 644 |
-
memcpy(buf_k.data() + od, buf_k.data() + os, nm*k_size_row);
|
| 645 |
-
}
|
| 646 |
-
|
| 647 |
-
// move values (note: they are transposed)
|
| 648 |
-
{
|
| 649 |
-
const int64_t os = i;
|
| 650 |
-
const int64_t od = id;
|
| 651 |
-
|
| 652 |
-
for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
|
| 653 |
-
memcpy(buf_v.data() + (od + j*kv_size)*v_size_el, buf_v.data() + (os + j*kv_size)*v_size_el, nm*v_size_el);
|
| 654 |
-
}
|
| 655 |
-
}
|
| 656 |
-
|
| 657 |
-
i += nm - 1;
|
| 658 |
-
}
|
| 659 |
-
|
| 660 |
-
ggml_backend_tensor_set(k_l[il], buf_k.data(), 0, buf_k.size());
|
| 661 |
-
ggml_backend_tensor_set(v_l[il], buf_v.data(), 0, buf_v.size());
|
| 662 |
-
}
|
| 663 |
-
#else
|
| 664 |
-
for (uint32_t i = 0; i < ids.size(); ++i) {
|
| 665 |
-
const uint32_t id = ids[i];
|
| 666 |
-
|
| 667 |
-
if (i == id || id == ids.size()) {
|
| 668 |
-
continue;
|
| 669 |
-
}
|
| 670 |
-
|
| 671 |
-
uint32_t nm = 1;
|
| 672 |
-
|
| 673 |
-
while (i + nm < ids.size() && ids[i + nm] == id + nm) {
|
| 674 |
-
nm++;
|
| 675 |
-
}
|
| 676 |
-
|
| 677 |
-
for (uint32_t il = 0; il < hparams.n_layer; ++il) { // NOLINT
|
| 678 |
-
const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(il);
|
| 679 |
-
const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa(il);
|
| 680 |
-
|
| 681 |
-
ggml_tensor * view_k_src = ggml_view_2d(ctx0, kv_self->k_l[il],
|
| 682 |
-
n_embd_k_gqa, nm,
|
| 683 |
-
ggml_row_size(kv_self->k_l[il]->type, n_embd_k_gqa),
|
| 684 |
-
ggml_row_size(kv_self->k_l[il]->type, n_embd_k_gqa*i));
|
| 685 |
-
|
| 686 |
-
ggml_tensor * view_k_dst = ggml_view_2d(ctx0, kv_self->k_l[il],
|
| 687 |
-
n_embd_k_gqa, nm,
|
| 688 |
-
ggml_row_size(kv_self->k_l[il]->type, n_embd_k_gqa),
|
| 689 |
-
ggml_row_size(kv_self->k_l[il]->type, n_embd_k_gqa*id));
|
| 690 |
-
|
| 691 |
-
ggml_tensor * view_v_src;
|
| 692 |
-
ggml_tensor * view_v_dst;
|
| 693 |
-
|
| 694 |
-
if (cparams.flash_attn) {
|
| 695 |
-
// NOTE: the V cache is not transposed when using flash attention
|
| 696 |
-
view_v_src = ggml_view_2d(ctx0, kv_self->v_l[il],
|
| 697 |
-
n_embd_v_gqa, nm,
|
| 698 |
-
ggml_row_size(kv_self->v_l[il]->type, n_embd_v_gqa),
|
| 699 |
-
ggml_row_size(kv_self->v_l[il]->type, n_embd_v_gqa*i));
|
| 700 |
-
|
| 701 |
-
view_v_dst = ggml_view_2d(ctx0, kv_self->v_l[il],
|
| 702 |
-
n_embd_v_gqa, nm,
|
| 703 |
-
ggml_row_size(kv_self->v_l[il]->type, n_embd_v_gqa),
|
| 704 |
-
ggml_row_size(kv_self->v_l[il]->type, n_embd_v_gqa*id));
|
| 705 |
-
} else {
|
| 706 |
-
view_v_src = ggml_view_2d(ctx0, kv_self->v_l[il],
|
| 707 |
-
nm, n_embd_v_gqa,
|
| 708 |
-
ggml_row_size(kv_self->v_l[il]->type, kv_self->size),
|
| 709 |
-
ggml_row_size(kv_self->v_l[il]->type, i));
|
| 710 |
-
|
| 711 |
-
view_v_dst = ggml_view_2d(ctx0, kv_self->v_l[il],
|
| 712 |
-
nm, n_embd_v_gqa,
|
| 713 |
-
ggml_row_size(kv_self->v_l[il]->type, kv_self->size),
|
| 714 |
-
ggml_row_size(kv_self->v_l[il]->type, id));
|
| 715 |
-
}
|
| 716 |
-
|
| 717 |
-
ggml_build_forward_expand(gf, ggml_cpy(ctx0, view_k_src, view_k_dst));
|
| 718 |
-
ggml_build_forward_expand(gf, ggml_cpy(ctx0, view_v_src, view_v_dst));
|
| 719 |
-
}
|
| 720 |
-
|
| 721 |
-
i += nm - 1;
|
| 722 |
-
}
|
| 723 |
-
|
| 724 |
-
//LLAMA_LOG_INFO("gf->n_nodes = %d\n", gf->n_nodes);
|
| 725 |
-
#endif
|
| 726 |
-
|
| 727 |
-
return res;
|
| 728 |
}
|
| 729 |
|
| 730 |
void llama_context::kv_self_update() {
|
| 731 |
-
auto & kv = kv_self;
|
| 732 |
-
|
| 733 |
bool need_reserve = false;
|
| 734 |
|
| 735 |
-
|
| 736 |
-
if (!kv->get_can_shift()) {
|
| 737 |
-
GGML_ABORT("The current context does not support K-shift");
|
| 738 |
-
}
|
| 739 |
-
|
| 740 |
-
LLAMA_LOG_DEBUG("%s: applying K-shift\n", __func__);
|
| 741 |
-
|
| 742 |
-
// apply K-shift if needed
|
| 743 |
-
if (model.hparams.rope_type != LLAMA_ROPE_TYPE_NONE) {
|
| 744 |
-
ggml_backend_sched_reset(sched.get());
|
| 745 |
-
|
| 746 |
-
auto * gf = graph_init();
|
| 747 |
-
|
| 748 |
-
auto res = build_kv_self_shift(ctx_compute.get(), gf);
|
| 749 |
-
|
| 750 |
-
ggml_backend_sched_alloc_graph(sched.get(), gf);
|
| 751 |
-
|
| 752 |
-
res->set_inputs(nullptr);
|
| 753 |
-
|
| 754 |
-
graph_compute(gf, false);
|
| 755 |
|
| 756 |
-
|
| 757 |
-
}
|
| 758 |
-
|
| 759 |
-
{
|
| 760 |
-
kv->has_shift = false;
|
| 761 |
-
|
| 762 |
-
for (uint32_t i = 0; i < kv->size; ++i) {
|
| 763 |
-
kv->cells[i].delta = 0;
|
| 764 |
-
}
|
| 765 |
-
}
|
| 766 |
-
}
|
| 767 |
-
|
| 768 |
-
// defragment the KV cache if needed
|
| 769 |
-
if (kv->do_defrag) {
|
| 770 |
-
LLAMA_LOG_DEBUG("%s: defragmenting KV cache\n", __func__);
|
| 771 |
-
|
| 772 |
-
if (kv->defrag_prepare(graph_max_nodes())) {
|
| 773 |
-
ggml_backend_sched_reset(sched.get());
|
| 774 |
-
|
| 775 |
-
auto * gf = graph_init();
|
| 776 |
-
|
| 777 |
-
auto res = build_kv_self_defrag(ctx_compute.get(), gf);
|
| 778 |
-
|
| 779 |
-
ggml_backend_sched_alloc_graph(sched.get(), gf);
|
| 780 |
-
|
| 781 |
-
res->set_inputs(nullptr);
|
| 782 |
-
|
| 783 |
-
graph_compute(gf, false);
|
| 784 |
-
|
| 785 |
-
need_reserve = true;
|
| 786 |
-
}
|
| 787 |
-
|
| 788 |
-
kv->do_defrag = false;
|
| 789 |
-
}
|
| 790 |
|
| 791 |
// reserve a worst case graph if needed
|
| 792 |
if (need_reserve) {
|
|
@@ -797,7 +463,7 @@ void llama_context::kv_self_update() {
|
|
| 797 |
uint32_t n_tokens = std::min(cparams.n_ctx, cparams.n_ubatch);
|
| 798 |
|
| 799 |
// simulate full KV cache
|
| 800 |
-
kv_self->
|
| 801 |
|
| 802 |
llama_token token = model.vocab.token_bos(); // not actually used by llama_build_graph, but required to choose between token and embedding inputs graph
|
| 803 |
llama_ubatch ubatch = { true, n_tokens, n_tokens / n_seqs, n_seqs, &token, nullptr, nullptr, nullptr, nullptr, nullptr};
|
|
@@ -818,9 +484,6 @@ enum llama_pooling_type llama_context::pooling_type() const {
|
|
| 818 |
}
|
| 819 |
|
| 820 |
float * llama_context::get_logits() {
|
| 821 |
-
// reorder logits for backward compatibility
|
| 822 |
-
output_reorder();
|
| 823 |
-
|
| 824 |
return logits;
|
| 825 |
}
|
| 826 |
|
|
@@ -863,9 +526,6 @@ float * llama_context::get_logits_ith(int32_t i) {
|
|
| 863 |
}
|
| 864 |
|
| 865 |
float * llama_context::get_embeddings() {
|
| 866 |
-
// reorder embeddings for backward compatibility
|
| 867 |
-
output_reorder();
|
| 868 |
-
|
| 869 |
return embd;
|
| 870 |
}
|
| 871 |
|
|
@@ -1017,8 +677,8 @@ int llama_context::encode(llama_batch & inp_batch) {
|
|
| 1017 |
}
|
| 1018 |
|
| 1019 |
// temporary allocate memory for the input batch if needed
|
| 1020 |
-
//
|
| 1021 |
-
llama_batch_allocr batch_allocr(inp_batch, inp_batch.pos ? -1 :
|
| 1022 |
|
| 1023 |
const llama_batch & batch = batch_allocr.batch;
|
| 1024 |
const int32_t n_tokens = batch.n_tokens;
|
|
@@ -1043,11 +703,13 @@ int llama_context::encode(llama_batch & inp_batch) {
|
|
| 1043 |
t_compute_start_us = ggml_time_us();
|
| 1044 |
}
|
| 1045 |
|
|
|
|
|
|
|
| 1046 |
n_queued_tokens += n_tokens;
|
| 1047 |
|
| 1048 |
const int64_t n_embd = hparams.n_embd;
|
| 1049 |
|
| 1050 |
-
sbatch
|
| 1051 |
|
| 1052 |
const llama_ubatch ubatch = sbatch.split_simple(n_tokens);
|
| 1053 |
|
|
@@ -1104,12 +766,12 @@ int llama_context::encode(llama_batch & inp_batch) {
|
|
| 1104 |
ggml_backend_t backend_embd = ggml_backend_sched_get_tensor_backend(sched.get(), t_embd);
|
| 1105 |
GGML_ASSERT(backend_embd != nullptr);
|
| 1106 |
|
| 1107 |
-
GGML_ASSERT(embd != nullptr);
|
| 1108 |
-
|
| 1109 |
switch (cparams.pooling_type) {
|
| 1110 |
case LLAMA_POOLING_TYPE_NONE:
|
| 1111 |
{
|
| 1112 |
// extract token embeddings
|
|
|
|
|
|
|
| 1113 |
GGML_ASSERT(n_tokens*n_embd <= (int64_t) embd_size);
|
| 1114 |
ggml_backend_tensor_get_async(backend_embd, t_embd, embd, 0, n_tokens*n_embd*sizeof(float));
|
| 1115 |
} break;
|
|
@@ -1134,11 +796,18 @@ int llama_context::encode(llama_batch & inp_batch) {
|
|
| 1134 |
} break;
|
| 1135 |
case LLAMA_POOLING_TYPE_RANK:
|
| 1136 |
{
|
| 1137 |
-
//
|
| 1138 |
-
|
| 1139 |
-
|
| 1140 |
-
|
| 1141 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1142 |
case LLAMA_POOLING_TYPE_UNSPECIFIED:
|
| 1143 |
{
|
| 1144 |
GGML_ABORT("unknown pooling type");
|
|
@@ -1176,14 +845,21 @@ int llama_context::encode(llama_batch & inp_batch) {
|
|
| 1176 |
}
|
| 1177 |
|
| 1178 |
int llama_context::decode(llama_batch & inp_batch) {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1179 |
if (inp_batch.n_tokens == 0) {
|
| 1180 |
LLAMA_LOG_ERROR("%s: n_tokens == 0\n", __func__);
|
| 1181 |
return -1;
|
| 1182 |
}
|
| 1183 |
|
|
|
|
|
|
|
| 1184 |
// temporary allocate memory for the input batch if needed
|
| 1185 |
-
// TODO: this is incorrect for multiple sequences because
|
| 1186 |
-
llama_batch_allocr batch_allocr(inp_batch, inp_batch.pos ? -1 : kv_self->
|
| 1187 |
|
| 1188 |
const llama_batch & batch = batch_allocr.batch;
|
| 1189 |
|
|
@@ -1195,7 +871,7 @@ int llama_context::decode(llama_batch & inp_batch) {
|
|
| 1195 |
const int64_t n_tokens_all = batch.n_tokens;
|
| 1196 |
const int64_t n_embd = hparams.n_embd;
|
| 1197 |
|
| 1198 |
-
llama_kv_cache_guard kv_guard(kv_self
|
| 1199 |
|
| 1200 |
GGML_ASSERT((!batch.token && batch.embd) || (batch.token && !batch.embd)); // NOLINT
|
| 1201 |
|
|
@@ -1229,18 +905,14 @@ int llama_context::decode(llama_batch & inp_batch) {
|
|
| 1229 |
for (uint32_t i = 0; i < n_tokens_all; ++i) {
|
| 1230 |
n_outputs_all += batch.logits[i] != 0;
|
| 1231 |
}
|
| 1232 |
-
} else if (
|
| 1233 |
n_outputs_all = n_tokens_all;
|
| 1234 |
} else {
|
| 1235 |
// keep last output only
|
| 1236 |
n_outputs_all = 1;
|
| 1237 |
}
|
| 1238 |
|
| 1239 |
-
|
| 1240 |
-
|
| 1241 |
-
sbatch.from_batch(batch, n_embd,
|
| 1242 |
-
/* simple_split */ !kv_self->recurrent,
|
| 1243 |
-
/* logits_all */ logits_all);
|
| 1244 |
|
| 1245 |
// reserve output buffer
|
| 1246 |
if (output_reserve(n_outputs_all) < n_outputs_all) {
|
|
@@ -1254,22 +926,7 @@ int llama_context::decode(llama_batch & inp_batch) {
|
|
| 1254 |
int64_t n_outputs_prev = 0;
|
| 1255 |
|
| 1256 |
while (sbatch.n_tokens > 0) {
|
| 1257 |
-
llama_ubatch ubatch =
|
| 1258 |
-
|
| 1259 |
-
const auto & n_ubatch = cparams.n_ubatch;
|
| 1260 |
-
|
| 1261 |
-
if (kv_self->recurrent) {
|
| 1262 |
-
if (embd_pooled) {
|
| 1263 |
-
// Pooled embeddings cannot be split across ubatches (yet)
|
| 1264 |
-
ubatch = sbatch.split_seq(cparams.n_ubatch);
|
| 1265 |
-
} else {
|
| 1266 |
-
// recurrent model architectures are easier to implement
|
| 1267 |
-
// with equal-length sequences
|
| 1268 |
-
ubatch = sbatch.split_equal(cparams.n_ubatch);
|
| 1269 |
-
}
|
| 1270 |
-
} else {
|
| 1271 |
-
ubatch = sbatch.split_simple(n_ubatch);
|
| 1272 |
-
}
|
| 1273 |
|
| 1274 |
// count the outputs in this u_batch
|
| 1275 |
{
|
|
@@ -1289,24 +946,12 @@ int llama_context::decode(llama_batch & inp_batch) {
|
|
| 1289 |
}
|
| 1290 |
|
| 1291 |
// find KV slot
|
| 1292 |
-
{
|
| 1293 |
-
|
| 1294 |
-
LLAMA_LOG_WARN("%s: failed to find KV cache slot for ubatch of size %d\n", __func__, ubatch.n_tokens);
|
| 1295 |
-
|
| 1296 |
-
return 1;
|
| 1297 |
-
}
|
| 1298 |
|
| 1299 |
-
|
| 1300 |
-
// a heuristic, to avoid attending the full cache if it is not yet utilized
|
| 1301 |
-
// after enough generations, the benefit from this heuristic disappears
|
| 1302 |
-
// if we start defragmenting the cache, the benefit from this will be more important
|
| 1303 |
-
const uint32_t pad = kv_self->get_padding(cparams);
|
| 1304 |
-
kv_self->n = std::min(kv_self->size, std::max(pad, GGML_PAD(kv_self->cell_max(), pad)));
|
| 1305 |
-
}
|
| 1306 |
}
|
| 1307 |
|
| 1308 |
-
//printf("kv_self.n = %5d, kv_self.used = %5d, kv_self.head = %5d\n", kv_self->n, kv_self->used, kv_self->head);
|
| 1309 |
-
|
| 1310 |
ggml_backend_sched_reset(sched.get());
|
| 1311 |
ggml_backend_sched_set_eval_callback(sched.get(), cparams.cb_eval, cparams.cb_eval_user_data);
|
| 1312 |
|
|
@@ -1420,43 +1065,68 @@ int llama_context::decode(llama_batch & inp_batch) {
|
|
| 1420 |
// finalize the batch processing
|
| 1421 |
kv_guard.commit();
|
| 1422 |
|
|
|
|
|
|
|
|
|
|
| 1423 |
// set output mappings
|
| 1424 |
{
|
| 1425 |
bool sorted_output = true;
|
| 1426 |
|
| 1427 |
-
|
|
|
|
|
|
|
| 1428 |
|
| 1429 |
for (int64_t i = 0; i < n_outputs_all; ++i) {
|
| 1430 |
-
int64_t out_id =
|
| 1431 |
output_ids[out_id] = i;
|
| 1432 |
if (out_id != i) {
|
| 1433 |
sorted_output = false;
|
| 1434 |
}
|
| 1435 |
}
|
| 1436 |
|
| 1437 |
-
|
| 1438 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1439 |
}
|
| 1440 |
}
|
| 1441 |
|
| 1442 |
-
// set to total number of outputs in the batch, for use in llama_get_logits_ith
|
| 1443 |
-
n_outputs = n_outputs_all;
|
| 1444 |
-
|
| 1445 |
// wait for the computation to finish (automatically done when obtaining the model output)
|
| 1446 |
//synchronize();
|
| 1447 |
|
| 1448 |
// decide if we need to defrag the kv cache
|
| 1449 |
-
if (cparams.
|
| 1450 |
-
|
| 1451 |
-
// - count the padding towards the number of used tokens
|
| 1452 |
-
const float fragmentation = kv_self->n >= 2048 ? std::max(0.0f, 1.0f - float(kv_self->used + kv_self->get_padding(cparams))/float(kv_self->n)) : 0.0f;
|
| 1453 |
-
|
| 1454 |
-
// queue defragmentation for next llama_kv_cache_update
|
| 1455 |
-
if (fragmentation > cparams.defrag_thold) {
|
| 1456 |
-
LLAMA_LOG_DEBUG("%s: fragmentation: %.2f - requesting defrag\n", __func__, fragmentation);
|
| 1457 |
-
|
| 1458 |
-
kv_self->defrag();
|
| 1459 |
-
}
|
| 1460 |
}
|
| 1461 |
|
| 1462 |
// Reset state for the next token before backend sync, to allow the CPU activities in the reset to
|
|
@@ -1542,44 +1212,6 @@ int32_t llama_context::output_reserve(int32_t n_outputs) {
|
|
| 1542 |
return n_outputs_max;
|
| 1543 |
}
|
| 1544 |
|
| 1545 |
-
void llama_context::output_reorder() {
|
| 1546 |
-
auto & out_ids = sbatch.out_ids;
|
| 1547 |
-
if (!out_ids.empty()) {
|
| 1548 |
-
const uint32_t n_vocab = model.vocab.n_tokens();
|
| 1549 |
-
const uint32_t n_embd = model.hparams.n_embd;
|
| 1550 |
-
|
| 1551 |
-
GGML_ASSERT((size_t) n_outputs == out_ids.size());
|
| 1552 |
-
|
| 1553 |
-
// TODO: is there something more efficient which also minimizes swaps?
|
| 1554 |
-
// selection sort, to minimize swaps (from https://en.wikipedia.org/wiki/Selection_sort)
|
| 1555 |
-
for (int32_t i = 0; i < n_outputs - 1; ++i) {
|
| 1556 |
-
int32_t j_min = i;
|
| 1557 |
-
for (int32_t j = i + 1; j < n_outputs; ++j) {
|
| 1558 |
-
if (out_ids[j] < out_ids[j_min]) {
|
| 1559 |
-
j_min = j;
|
| 1560 |
-
}
|
| 1561 |
-
}
|
| 1562 |
-
if (j_min == i) { continue; }
|
| 1563 |
-
std::swap(out_ids[i], out_ids[j_min]);
|
| 1564 |
-
if (logits_size > 0) {
|
| 1565 |
-
for (uint32_t k = 0; k < n_vocab; k++) {
|
| 1566 |
-
std::swap(logits[i*n_vocab + k], logits[j_min*n_vocab + k]);
|
| 1567 |
-
}
|
| 1568 |
-
}
|
| 1569 |
-
if (embd_size > 0) {
|
| 1570 |
-
for (uint32_t k = 0; k < n_embd; k++) {
|
| 1571 |
-
std::swap(embd[i*n_embd + k], embd[j_min*n_embd + k]);
|
| 1572 |
-
}
|
| 1573 |
-
}
|
| 1574 |
-
}
|
| 1575 |
-
std::fill(output_ids.begin(), output_ids.end(), -1);
|
| 1576 |
-
for (int32_t i = 0; i < n_outputs; ++i) {
|
| 1577 |
-
output_ids[out_ids[i]] = i;
|
| 1578 |
-
}
|
| 1579 |
-
out_ids.clear();
|
| 1580 |
-
}
|
| 1581 |
-
}
|
| 1582 |
-
|
| 1583 |
//
|
| 1584 |
// graph
|
| 1585 |
//
|
|
@@ -1616,7 +1248,7 @@ llm_graph_result_ptr llama_context::graph_build(
|
|
| 1616 |
/*.backend_cpu =*/ backend_cpu,
|
| 1617 |
/*.cvec =*/ &cvec,
|
| 1618 |
/*.loras =*/ &loras,
|
| 1619 |
-
/*.memory =*/
|
| 1620 |
/*.cross =*/ &cross,
|
| 1621 |
/*.n_outputs =*/ n_outputs,
|
| 1622 |
/*.cb =*/ graph_get_cb(),
|
|
@@ -2020,8 +1652,6 @@ size_t llama_context::state_write_data(llama_io_write_i & io) {
|
|
| 2020 |
{
|
| 2021 |
LLAMA_LOG_DEBUG("%s: - writing output ids\n", __func__);
|
| 2022 |
|
| 2023 |
-
output_reorder();
|
| 2024 |
-
|
| 2025 |
const auto n_outputs = this->n_outputs;
|
| 2026 |
const auto & output_ids = this->output_ids;
|
| 2027 |
|
|
@@ -2075,6 +1705,8 @@ size_t llama_context::state_write_data(llama_io_write_i & io) {
|
|
| 2075 |
}
|
| 2076 |
|
| 2077 |
LLAMA_LOG_DEBUG("%s: - writing KV self\n", __func__);
|
|
|
|
|
|
|
| 2078 |
kv_self->state_write(io);
|
| 2079 |
|
| 2080 |
return io.n_bytes();
|
|
@@ -2158,8 +1790,13 @@ size_t llama_context::state_read_data(llama_io_read_i & io) {
|
|
| 2158 |
}
|
| 2159 |
}
|
| 2160 |
|
| 2161 |
-
|
| 2162 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2163 |
|
| 2164 |
return io.n_bytes();
|
| 2165 |
}
|
|
@@ -2167,7 +1804,11 @@ size_t llama_context::state_read_data(llama_io_read_i & io) {
|
|
| 2167 |
size_t llama_context::state_seq_write_data(llama_io_write_i & io, llama_seq_id seq_id) {
|
| 2168 |
GGML_UNUSED(seq_id);
|
| 2169 |
|
| 2170 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2171 |
|
| 2172 |
return io.n_bytes();
|
| 2173 |
}
|
|
@@ -2175,7 +1816,11 @@ size_t llama_context::state_seq_write_data(llama_io_write_i & io, llama_seq_id s
|
|
| 2175 |
size_t llama_context::state_seq_read_data(llama_io_read_i & io, llama_seq_id seq_id) {
|
| 2176 |
GGML_UNUSED(seq_id);
|
| 2177 |
|
| 2178 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2179 |
|
| 2180 |
return io.n_bytes();
|
| 2181 |
}
|
|
@@ -2203,6 +1848,215 @@ void llama_context::perf_reset() {
|
|
| 2203 |
t_p_eval_us = n_p_eval = 0;
|
| 2204 |
}
|
| 2205 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2206 |
//
|
| 2207 |
// interface implementation
|
| 2208 |
//
|
|
@@ -2230,13 +2084,13 @@ llama_context_params llama_context_default_params() {
|
|
| 2230 |
/*.cb_eval_user_data =*/ nullptr,
|
| 2231 |
/*.type_k =*/ GGML_TYPE_F16,
|
| 2232 |
/*.type_v =*/ GGML_TYPE_F16,
|
| 2233 |
-
/*.
|
|
|
|
| 2234 |
/*.embeddings =*/ false,
|
| 2235 |
/*.offload_kqv =*/ true,
|
| 2236 |
/*.flash_attn =*/ false,
|
| 2237 |
/*.no_perf =*/ true,
|
| 2238 |
-
/*.
|
| 2239 |
-
/*.abort_callback_data =*/ nullptr,
|
| 2240 |
};
|
| 2241 |
|
| 2242 |
return result;
|
|
@@ -2530,7 +2384,7 @@ void llama_kv_cache_seq_cp(
|
|
| 2530 |
llama_seq_id seq_id_dst,
|
| 2531 |
llama_pos p0,
|
| 2532 |
llama_pos p1) {
|
| 2533 |
-
|
| 2534 |
}
|
| 2535 |
|
| 2536 |
void llama_kv_self_seq_cp(
|
|
@@ -2544,14 +2398,14 @@ void llama_kv_self_seq_cp(
|
|
| 2544 |
return;
|
| 2545 |
}
|
| 2546 |
|
| 2547 |
-
|
| 2548 |
}
|
| 2549 |
|
| 2550 |
// deprecated
|
| 2551 |
void llama_kv_cache_seq_keep(
|
| 2552 |
llama_context * ctx,
|
| 2553 |
llama_seq_id seq_id) {
|
| 2554 |
-
|
| 2555 |
}
|
| 2556 |
|
| 2557 |
void llama_kv_self_seq_keep(llama_context * ctx, llama_seq_id seq_id) {
|
|
@@ -2560,7 +2414,7 @@ void llama_kv_self_seq_keep(llama_context * ctx, llama_seq_id seq_id) {
|
|
| 2560 |
return;
|
| 2561 |
}
|
| 2562 |
|
| 2563 |
-
|
| 2564 |
}
|
| 2565 |
|
| 2566 |
// deprecated
|
|
@@ -2570,7 +2424,7 @@ void llama_kv_cache_seq_add(
|
|
| 2570 |
llama_pos p0,
|
| 2571 |
llama_pos p1,
|
| 2572 |
llama_pos delta) {
|
| 2573 |
-
|
| 2574 |
}
|
| 2575 |
|
| 2576 |
void llama_kv_self_seq_add(
|
|
@@ -2584,7 +2438,7 @@ void llama_kv_self_seq_add(
|
|
| 2584 |
return;
|
| 2585 |
}
|
| 2586 |
|
| 2587 |
-
|
| 2588 |
}
|
| 2589 |
|
| 2590 |
// deprecated
|
|
@@ -2594,7 +2448,7 @@ void llama_kv_cache_seq_div(
|
|
| 2594 |
llama_pos p0,
|
| 2595 |
llama_pos p1,
|
| 2596 |
int d) {
|
| 2597 |
-
|
| 2598 |
}
|
| 2599 |
|
| 2600 |
void llama_kv_self_seq_div(
|
|
@@ -2608,7 +2462,7 @@ void llama_kv_self_seq_div(
|
|
| 2608 |
return;
|
| 2609 |
}
|
| 2610 |
|
| 2611 |
-
|
| 2612 |
}
|
| 2613 |
|
| 2614 |
// deprecated
|
|
@@ -2627,7 +2481,7 @@ llama_pos llama_kv_self_seq_pos_max(llama_context * ctx, llama_seq_id seq_id) {
|
|
| 2627 |
|
| 2628 |
// deprecated
|
| 2629 |
void llama_kv_cache_defrag(llama_context * ctx) {
|
| 2630 |
-
|
| 2631 |
}
|
| 2632 |
|
| 2633 |
void llama_kv_self_defrag(llama_context * ctx) {
|
|
@@ -2636,7 +2490,8 @@ void llama_kv_self_defrag(llama_context * ctx) {
|
|
| 2636 |
return;
|
| 2637 |
}
|
| 2638 |
|
| 2639 |
-
|
|
|
|
| 2640 |
}
|
| 2641 |
|
| 2642 |
// deprecated
|
|
@@ -2820,3 +2675,34 @@ void llama_perf_context_print(const llama_context * ctx) {
|
|
| 2820 |
void llama_perf_context_reset(llama_context * ctx) {
|
| 2821 |
ctx->perf_reset();
|
| 2822 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
#include "llama-model.h"
|
| 7 |
#include "llama-kv-cache.h"
|
| 8 |
|
|
|
|
| 9 |
#include <cstring>
|
| 10 |
#include <stdexcept>
|
| 11 |
#include <cinttypes>
|
|
|
|
| 12 |
|
| 13 |
//
|
| 14 |
// llama_context
|
|
|
|
| 93 |
}
|
| 94 |
|
| 95 |
cparams.n_ubatch = std::min(cparams.n_batch, params.n_ubatch == 0 ? params.n_batch : params.n_ubatch);
|
| 96 |
+
cparams.op_offload = params.op_offload;
|
| 97 |
|
| 98 |
const uint32_t n_ctx_per_seq = cparams.n_ctx / cparams.n_seq_max;
|
| 99 |
|
|
|
|
| 117 |
__func__, n_ctx_per_seq, hparams.n_ctx_train);
|
| 118 |
}
|
| 119 |
|
|
|
|
|
|
|
| 120 |
if (!hparams.vocab_only) {
|
| 121 |
// GPU backends
|
| 122 |
for (auto * dev : model.devices) {
|
|
|
|
| 174 |
}
|
| 175 |
|
| 176 |
// init the memory module
|
|
|
|
| 177 |
if (!hparams.vocab_only) {
|
| 178 |
+
llama_memory_params params_mem = {
|
| 179 |
+
/*.type_k =*/ params.type_k,
|
| 180 |
+
/*.type_v =*/ params.type_v,
|
| 181 |
+
};
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 182 |
|
| 183 |
+
memory.reset(model.create_memory(params_mem, cparams));
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 184 |
}
|
| 185 |
|
| 186 |
// init backends
|
|
|
|
| 244 |
}
|
| 245 |
}
|
| 246 |
|
| 247 |
+
sched.reset(ggml_backend_sched_new(backend_ptrs.data(), backend_buft.data(), backend_ptrs.size(), max_nodes, pipeline_parallel, cparams.op_offload));
|
| 248 |
|
| 249 |
if (pipeline_parallel) {
|
| 250 |
LLAMA_LOG_INFO("%s: pipeline parallelism enabled (n_copies=%d)\n", __func__, ggml_backend_sched_get_n_copies(sched.get()));
|
|
|
|
| 252 |
}
|
| 253 |
|
| 254 |
// reserve worst-case graph
|
| 255 |
+
if (!hparams.vocab_only && memory) {
|
| 256 |
const uint32_t n_seqs = 1; // TODO: worst-case number of sequences
|
| 257 |
const uint32_t n_tokens = std::min(cparams.n_ctx, cparams.n_ubatch);
|
| 258 |
|
|
|
|
| 271 |
int n_nodes_tg = -1;
|
| 272 |
|
| 273 |
// simulate full KV cache
|
| 274 |
+
llama_kv_cache * kv_self = static_cast<llama_kv_cache *>(memory.get());
|
| 275 |
+
|
| 276 |
+
kv_self->set_full();
|
| 277 |
|
| 278 |
cross.v_embd.clear();
|
| 279 |
|
|
|
|
| 359 |
}
|
| 360 |
}
|
| 361 |
|
| 362 |
+
llama_context::~llama_context() {
|
| 363 |
+
ggml_opt_free(opt_ctx);
|
| 364 |
+
}
|
| 365 |
|
| 366 |
void llama_context::synchronize() {
|
| 367 |
ggml_backend_sched_synchronize(sched.get());
|
|
|
|
| 397 |
return model;
|
| 398 |
}
|
| 399 |
|
| 400 |
+
const llama_cparams & llama_context::get_cparams() const {
|
| 401 |
+
return cparams;
|
| 402 |
+
}
|
| 403 |
+
|
| 404 |
+
ggml_backend_sched_t llama_context::get_sched() const {
|
| 405 |
+
return sched.get();
|
| 406 |
+
}
|
| 407 |
+
|
| 408 |
+
ggml_context * llama_context::get_ctx_compute() const {
|
| 409 |
+
return ctx_compute.get();
|
| 410 |
+
}
|
| 411 |
+
|
| 412 |
uint32_t llama_context::n_ctx() const {
|
| 413 |
return cparams.n_ctx;
|
| 414 |
}
|
|
|
|
| 438 |
}
|
| 439 |
|
| 440 |
llama_kv_cache * llama_context::get_kv_self() {
|
| 441 |
+
llama_kv_cache * kv_self = static_cast<llama_kv_cache *>(memory.get());
|
| 442 |
+
return kv_self;
|
| 443 |
}
|
| 444 |
|
| 445 |
const llama_kv_cache * llama_context::get_kv_self() const {
|
| 446 |
+
llama_kv_cache * kv_self = static_cast<llama_kv_cache *>(memory.get());
|
| 447 |
+
return kv_self;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 448 |
}
|
| 449 |
|
| 450 |
void llama_context::kv_self_update() {
|
|
|
|
|
|
|
| 451 |
bool need_reserve = false;
|
| 452 |
|
| 453 |
+
llama_kv_cache * kv_self = static_cast<llama_kv_cache *>(memory.get());
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 454 |
|
| 455 |
+
need_reserve = kv_self->update(*this);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 456 |
|
| 457 |
// reserve a worst case graph if needed
|
| 458 |
if (need_reserve) {
|
|
|
|
| 463 |
uint32_t n_tokens = std::min(cparams.n_ctx, cparams.n_ubatch);
|
| 464 |
|
| 465 |
// simulate full KV cache
|
| 466 |
+
kv_self->set_full();
|
| 467 |
|
| 468 |
llama_token token = model.vocab.token_bos(); // not actually used by llama_build_graph, but required to choose between token and embedding inputs graph
|
| 469 |
llama_ubatch ubatch = { true, n_tokens, n_tokens / n_seqs, n_seqs, &token, nullptr, nullptr, nullptr, nullptr, nullptr};
|
|
|
|
| 484 |
}
|
| 485 |
|
| 486 |
float * llama_context::get_logits() {
|
|
|
|
|
|
|
|
|
|
| 487 |
return logits;
|
| 488 |
}
|
| 489 |
|
|
|
|
| 526 |
}
|
| 527 |
|
| 528 |
float * llama_context::get_embeddings() {
|
|
|
|
|
|
|
|
|
|
| 529 |
return embd;
|
| 530 |
}
|
| 531 |
|
|
|
|
| 677 |
}
|
| 678 |
|
| 679 |
// temporary allocate memory for the input batch if needed
|
| 680 |
+
// note: during encode, we always pass the full sequence starting from pos = 0
|
| 681 |
+
llama_batch_allocr batch_allocr(inp_batch, inp_batch.pos ? -1 : 0);
|
| 682 |
|
| 683 |
const llama_batch & batch = batch_allocr.batch;
|
| 684 |
const int32_t n_tokens = batch.n_tokens;
|
|
|
|
| 703 |
t_compute_start_us = ggml_time_us();
|
| 704 |
}
|
| 705 |
|
| 706 |
+
embd_seq.clear();
|
| 707 |
+
|
| 708 |
n_queued_tokens += n_tokens;
|
| 709 |
|
| 710 |
const int64_t n_embd = hparams.n_embd;
|
| 711 |
|
| 712 |
+
llama_sbatch sbatch = llama_sbatch(batch, n_embd, /* simple_split */ true, /* logits_all */ true);
|
| 713 |
|
| 714 |
const llama_ubatch ubatch = sbatch.split_simple(n_tokens);
|
| 715 |
|
|
|
|
| 766 |
ggml_backend_t backend_embd = ggml_backend_sched_get_tensor_backend(sched.get(), t_embd);
|
| 767 |
GGML_ASSERT(backend_embd != nullptr);
|
| 768 |
|
|
|
|
|
|
|
| 769 |
switch (cparams.pooling_type) {
|
| 770 |
case LLAMA_POOLING_TYPE_NONE:
|
| 771 |
{
|
| 772 |
// extract token embeddings
|
| 773 |
+
GGML_ASSERT(embd != nullptr);
|
| 774 |
+
|
| 775 |
GGML_ASSERT(n_tokens*n_embd <= (int64_t) embd_size);
|
| 776 |
ggml_backend_tensor_get_async(backend_embd, t_embd, embd, 0, n_tokens*n_embd*sizeof(float));
|
| 777 |
} break;
|
|
|
|
| 796 |
} break;
|
| 797 |
case LLAMA_POOLING_TYPE_RANK:
|
| 798 |
{
|
| 799 |
+
// extract the rerank score - a single float per sequence
|
| 800 |
+
auto & embd_seq_out = embd_seq;
|
| 801 |
+
|
| 802 |
+
for (uint32_t s = 0; s < ubatch.n_seqs; ++s) {
|
| 803 |
+
const llama_seq_id seq_id = ubatch.seq_id[s][0];
|
| 804 |
+
if (embd_seq_out.find(seq_id) != embd_seq_out.end()) {
|
| 805 |
+
continue;
|
| 806 |
+
}
|
| 807 |
+
embd_seq_out[seq_id].resize(1);
|
| 808 |
+
ggml_backend_tensor_get_async(backend_embd, t_embd, embd_seq_out[seq_id].data(), (seq_id)*sizeof(float), sizeof(float));
|
| 809 |
+
}
|
| 810 |
+
} break;
|
| 811 |
case LLAMA_POOLING_TYPE_UNSPECIFIED:
|
| 812 |
{
|
| 813 |
GGML_ABORT("unknown pooling type");
|
|
|
|
| 845 |
}
|
| 846 |
|
| 847 |
int llama_context::decode(llama_batch & inp_batch) {
|
| 848 |
+
if (!memory) {
|
| 849 |
+
LLAMA_LOG_WARN("%s: cannot decode batches with this context (use llama_encode() instead)\n", __func__);
|
| 850 |
+
return encode(inp_batch);
|
| 851 |
+
}
|
| 852 |
+
|
| 853 |
if (inp_batch.n_tokens == 0) {
|
| 854 |
LLAMA_LOG_ERROR("%s: n_tokens == 0\n", __func__);
|
| 855 |
return -1;
|
| 856 |
}
|
| 857 |
|
| 858 |
+
llama_kv_cache * kv_self = static_cast<llama_kv_cache *>(memory.get());
|
| 859 |
+
|
| 860 |
// temporary allocate memory for the input batch if needed
|
| 861 |
+
// TODO: this is incorrect for multiple sequences because get_pos_max() is the maximum across all sequences
|
| 862 |
+
llama_batch_allocr batch_allocr(inp_batch, inp_batch.pos ? -1 : kv_self->get_pos_max() + 1);
|
| 863 |
|
| 864 |
const llama_batch & batch = batch_allocr.batch;
|
| 865 |
|
|
|
|
| 871 |
const int64_t n_tokens_all = batch.n_tokens;
|
| 872 |
const int64_t n_embd = hparams.n_embd;
|
| 873 |
|
| 874 |
+
llama_kv_cache_guard kv_guard(kv_self);
|
| 875 |
|
| 876 |
GGML_ASSERT((!batch.token && batch.embd) || (batch.token && !batch.embd)); // NOLINT
|
| 877 |
|
|
|
|
| 905 |
for (uint32_t i = 0; i < n_tokens_all; ++i) {
|
| 906 |
n_outputs_all += batch.logits[i] != 0;
|
| 907 |
}
|
| 908 |
+
} else if (embd_pooled) {
|
| 909 |
n_outputs_all = n_tokens_all;
|
| 910 |
} else {
|
| 911 |
// keep last output only
|
| 912 |
n_outputs_all = 1;
|
| 913 |
}
|
| 914 |
|
| 915 |
+
llama_sbatch sbatch = kv_self->sbatch_init(batch, /* logits_all */ n_outputs_all == n_tokens_all);
|
|
|
|
|
|
|
|
|
|
|
|
|
| 916 |
|
| 917 |
// reserve output buffer
|
| 918 |
if (output_reserve(n_outputs_all) < n_outputs_all) {
|
|
|
|
| 926 |
int64_t n_outputs_prev = 0;
|
| 927 |
|
| 928 |
while (sbatch.n_tokens > 0) {
|
| 929 |
+
llama_ubatch ubatch = kv_self->ubatch_next(sbatch, cparams.n_ubatch, embd_pooled);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 930 |
|
| 931 |
// count the outputs in this u_batch
|
| 932 |
{
|
|
|
|
| 946 |
}
|
| 947 |
|
| 948 |
// find KV slot
|
| 949 |
+
if (!kv_self->find_slot(ubatch)) {
|
| 950 |
+
LLAMA_LOG_WARN("%s: failed to find KV cache slot for ubatch of size %d\n", __func__, ubatch.n_tokens);
|
|
|
|
|
|
|
|
|
|
|
|
|
| 951 |
|
| 952 |
+
return 1;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 953 |
}
|
| 954 |
|
|
|
|
|
|
|
| 955 |
ggml_backend_sched_reset(sched.get());
|
| 956 |
ggml_backend_sched_set_eval_callback(sched.get(), cparams.cb_eval, cparams.cb_eval_user_data);
|
| 957 |
|
|
|
|
| 1065 |
// finalize the batch processing
|
| 1066 |
kv_guard.commit();
|
| 1067 |
|
| 1068 |
+
// set to total number of outputs in the batch, for use in llama_get_logits_ith
|
| 1069 |
+
n_outputs = n_outputs_all;
|
| 1070 |
+
|
| 1071 |
// set output mappings
|
| 1072 |
{
|
| 1073 |
bool sorted_output = true;
|
| 1074 |
|
| 1075 |
+
auto & out_ids = sbatch.out_ids;
|
| 1076 |
+
|
| 1077 |
+
GGML_ASSERT(out_ids.size() == (size_t) n_outputs_all);
|
| 1078 |
|
| 1079 |
for (int64_t i = 0; i < n_outputs_all; ++i) {
|
| 1080 |
+
int64_t out_id = out_ids[i];
|
| 1081 |
output_ids[out_id] = i;
|
| 1082 |
if (out_id != i) {
|
| 1083 |
sorted_output = false;
|
| 1084 |
}
|
| 1085 |
}
|
| 1086 |
|
| 1087 |
+
// make the outputs have the same order they had in the user-provided batch
|
| 1088 |
+
// note: this is mostly relevant for recurrent models atm
|
| 1089 |
+
if (!sorted_output) {
|
| 1090 |
+
const uint32_t n_vocab = model.vocab.n_tokens();
|
| 1091 |
+
const uint32_t n_embd = model.hparams.n_embd;
|
| 1092 |
+
|
| 1093 |
+
GGML_ASSERT((size_t) n_outputs == out_ids.size());
|
| 1094 |
+
|
| 1095 |
+
// TODO: is there something more efficient which also minimizes swaps?
|
| 1096 |
+
// selection sort, to minimize swaps (from https://en.wikipedia.org/wiki/Selection_sort)
|
| 1097 |
+
for (int32_t i = 0; i < n_outputs - 1; ++i) {
|
| 1098 |
+
int32_t j_min = i;
|
| 1099 |
+
for (int32_t j = i + 1; j < n_outputs; ++j) {
|
| 1100 |
+
if (out_ids[j] < out_ids[j_min]) {
|
| 1101 |
+
j_min = j;
|
| 1102 |
+
}
|
| 1103 |
+
}
|
| 1104 |
+
if (j_min == i) { continue; }
|
| 1105 |
+
std::swap(out_ids[i], out_ids[j_min]);
|
| 1106 |
+
if (logits_size > 0) {
|
| 1107 |
+
for (uint32_t k = 0; k < n_vocab; k++) {
|
| 1108 |
+
std::swap(logits[i*n_vocab + k], logits[j_min*n_vocab + k]);
|
| 1109 |
+
}
|
| 1110 |
+
}
|
| 1111 |
+
if (embd_size > 0) {
|
| 1112 |
+
for (uint32_t k = 0; k < n_embd; k++) {
|
| 1113 |
+
std::swap(embd[i*n_embd + k], embd[j_min*n_embd + k]);
|
| 1114 |
+
}
|
| 1115 |
+
}
|
| 1116 |
+
}
|
| 1117 |
+
std::fill(output_ids.begin(), output_ids.end(), -1);
|
| 1118 |
+
for (int32_t i = 0; i < n_outputs; ++i) {
|
| 1119 |
+
output_ids[out_ids[i]] = i;
|
| 1120 |
+
}
|
| 1121 |
}
|
| 1122 |
}
|
| 1123 |
|
|
|
|
|
|
|
|
|
|
| 1124 |
// wait for the computation to finish (automatically done when obtaining the model output)
|
| 1125 |
//synchronize();
|
| 1126 |
|
| 1127 |
// decide if we need to defrag the kv cache
|
| 1128 |
+
if (cparams.defrag_thold > 0.0f) {
|
| 1129 |
+
kv_self->defrag_sched(cparams.defrag_thold);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1130 |
}
|
| 1131 |
|
| 1132 |
// Reset state for the next token before backend sync, to allow the CPU activities in the reset to
|
|
|
|
| 1212 |
return n_outputs_max;
|
| 1213 |
}
|
| 1214 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1215 |
//
|
| 1216 |
// graph
|
| 1217 |
//
|
|
|
|
| 1248 |
/*.backend_cpu =*/ backend_cpu,
|
| 1249 |
/*.cvec =*/ &cvec,
|
| 1250 |
/*.loras =*/ &loras,
|
| 1251 |
+
/*.memory =*/ memory.get(),
|
| 1252 |
/*.cross =*/ &cross,
|
| 1253 |
/*.n_outputs =*/ n_outputs,
|
| 1254 |
/*.cb =*/ graph_get_cb(),
|
|
|
|
| 1652 |
{
|
| 1653 |
LLAMA_LOG_DEBUG("%s: - writing output ids\n", __func__);
|
| 1654 |
|
|
|
|
|
|
|
| 1655 |
const auto n_outputs = this->n_outputs;
|
| 1656 |
const auto & output_ids = this->output_ids;
|
| 1657 |
|
|
|
|
| 1705 |
}
|
| 1706 |
|
| 1707 |
LLAMA_LOG_DEBUG("%s: - writing KV self\n", __func__);
|
| 1708 |
+
llama_kv_cache * kv_self = static_cast<llama_kv_cache *>(memory.get());
|
| 1709 |
+
|
| 1710 |
kv_self->state_write(io);
|
| 1711 |
|
| 1712 |
return io.n_bytes();
|
|
|
|
| 1790 |
}
|
| 1791 |
}
|
| 1792 |
|
| 1793 |
+
if (memory) {
|
| 1794 |
+
LLAMA_LOG_DEBUG("%s: - reading KV self\n", __func__);
|
| 1795 |
+
|
| 1796 |
+
llama_kv_cache * kv_self = static_cast<llama_kv_cache *>(memory.get());
|
| 1797 |
+
|
| 1798 |
+
kv_self->state_read(io);
|
| 1799 |
+
}
|
| 1800 |
|
| 1801 |
return io.n_bytes();
|
| 1802 |
}
|
|
|
|
| 1804 |
size_t llama_context::state_seq_write_data(llama_io_write_i & io, llama_seq_id seq_id) {
|
| 1805 |
GGML_UNUSED(seq_id);
|
| 1806 |
|
| 1807 |
+
if (memory) {
|
| 1808 |
+
llama_kv_cache * kv_self = static_cast<llama_kv_cache *>(memory.get());
|
| 1809 |
+
|
| 1810 |
+
kv_self->state_write(io, seq_id);
|
| 1811 |
+
}
|
| 1812 |
|
| 1813 |
return io.n_bytes();
|
| 1814 |
}
|
|
|
|
| 1816 |
size_t llama_context::state_seq_read_data(llama_io_read_i & io, llama_seq_id seq_id) {
|
| 1817 |
GGML_UNUSED(seq_id);
|
| 1818 |
|
| 1819 |
+
if (memory) {
|
| 1820 |
+
llama_kv_cache * kv_self = static_cast<llama_kv_cache *>(memory.get());
|
| 1821 |
+
|
| 1822 |
+
kv_self->state_read(io, seq_id);
|
| 1823 |
+
}
|
| 1824 |
|
| 1825 |
return io.n_bytes();
|
| 1826 |
}
|
|
|
|
| 1848 |
t_p_eval_us = n_p_eval = 0;
|
| 1849 |
}
|
| 1850 |
|
| 1851 |
+
//
|
| 1852 |
+
// training
|
| 1853 |
+
//
|
| 1854 |
+
|
| 1855 |
+
static void llama_set_param(struct ggml_tensor * tensor, llama_opt_param_filter param_filter, void * userdata) {
|
| 1856 |
+
if (!tensor || tensor->type != GGML_TYPE_F32) {
|
| 1857 |
+
return;
|
| 1858 |
+
}
|
| 1859 |
+
if (!param_filter(tensor, userdata)) {
|
| 1860 |
+
return;
|
| 1861 |
+
}
|
| 1862 |
+
if (strcmp(tensor->name, "token_embd.weight") == 0) {
|
| 1863 |
+
return; // FIXME
|
| 1864 |
+
}
|
| 1865 |
+
if (strcmp(tensor->name, "rope_freqs.weight") == 0) {
|
| 1866 |
+
return; // FIXME
|
| 1867 |
+
}
|
| 1868 |
+
ggml_set_param(tensor);
|
| 1869 |
+
}
|
| 1870 |
+
|
| 1871 |
+
void llama_context::opt_init(struct llama_model * model, struct llama_opt_params lopt_params) {
|
| 1872 |
+
GGML_ASSERT(!opt_ctx);
|
| 1873 |
+
model->hparams.n_ctx_train = lopt_params.n_ctx_train > 0 ? lopt_params.n_ctx_train : n_ctx();
|
| 1874 |
+
const uint32_t n_batch = std::min(this->n_batch(), model->hparams.n_ctx_train);
|
| 1875 |
+
const uint32_t n_ubatch = std::min(this->n_ubatch(), n_batch);
|
| 1876 |
+
GGML_ASSERT(model->hparams.n_ctx_train % n_batch == 0);
|
| 1877 |
+
GGML_ASSERT(n_batch % n_ubatch == 0);
|
| 1878 |
+
|
| 1879 |
+
ggml_opt_params opt_params = ggml_opt_default_params(sched.get(), GGML_OPT_LOSS_TYPE_CROSS_ENTROPY);
|
| 1880 |
+
opt_params.opt_period = n_batch / n_ubatch;
|
| 1881 |
+
opt_params.get_opt_pars = lopt_params.get_opt_pars;
|
| 1882 |
+
opt_params.get_opt_pars_ud = lopt_params.get_opt_pars_ud;
|
| 1883 |
+
|
| 1884 |
+
opt_ctx = ggml_opt_init(opt_params);
|
| 1885 |
+
|
| 1886 |
+
llama_opt_param_filter param_filter = lopt_params.param_filter;
|
| 1887 |
+
void * param_filter_ud = lopt_params.param_filter_ud;
|
| 1888 |
+
|
| 1889 |
+
//llama_set_param(model->tok_embd, param_filter, param_filter_ud); // FIXME
|
| 1890 |
+
llama_set_param(model->type_embd, param_filter, param_filter_ud);
|
| 1891 |
+
llama_set_param(model->pos_embd, param_filter, param_filter_ud);
|
| 1892 |
+
llama_set_param(model->tok_norm, param_filter, param_filter_ud);
|
| 1893 |
+
llama_set_param(model->tok_norm_b, param_filter, param_filter_ud);
|
| 1894 |
+
llama_set_param(model->output_norm, param_filter, param_filter_ud);
|
| 1895 |
+
llama_set_param(model->output_norm_b, param_filter, param_filter_ud);
|
| 1896 |
+
llama_set_param(model->output, param_filter, param_filter_ud);
|
| 1897 |
+
llama_set_param(model->output_b, param_filter, param_filter_ud);
|
| 1898 |
+
llama_set_param(model->output_norm_enc, param_filter, param_filter_ud);
|
| 1899 |
+
llama_set_param(model->cls, param_filter, param_filter_ud);
|
| 1900 |
+
llama_set_param(model->cls_b, param_filter, param_filter_ud);
|
| 1901 |
+
llama_set_param(model->cls_out, param_filter, param_filter_ud);
|
| 1902 |
+
llama_set_param(model->cls_out_b, param_filter, param_filter_ud);
|
| 1903 |
+
|
| 1904 |
+
for (struct llama_layer & layer : model->layers) {
|
| 1905 |
+
for (size_t i = 0; i < sizeof(layer)/sizeof(struct ggml_tensor *); ++i) {
|
| 1906 |
+
llama_set_param(reinterpret_cast<struct ggml_tensor **>(&layer)[i], param_filter, param_filter_ud);
|
| 1907 |
+
}
|
| 1908 |
+
}
|
| 1909 |
+
}
|
| 1910 |
+
|
| 1911 |
+
void llama_context::opt_epoch_iter(
|
| 1912 |
+
ggml_opt_dataset_t dataset,
|
| 1913 |
+
ggml_opt_result_t result,
|
| 1914 |
+
const std::vector<llama_token> & tokens,
|
| 1915 |
+
const std::vector<llama_token> & labels_sparse,
|
| 1916 |
+
llama_batch & batch,
|
| 1917 |
+
ggml_opt_epoch_callback callback,
|
| 1918 |
+
bool train,
|
| 1919 |
+
int64_t idata_in_loop,
|
| 1920 |
+
int64_t ndata_in_loop,
|
| 1921 |
+
int64_t t_loop_start) {
|
| 1922 |
+
GGML_ASSERT(opt_ctx);
|
| 1923 |
+
const uint32_t n_ctx = llama_model_n_ctx_train(&model);
|
| 1924 |
+
const uint32_t n_batch = std::min(this->n_batch(), n_ctx);
|
| 1925 |
+
const uint32_t n_ubatch = std::min(this->n_ubatch(), n_batch);
|
| 1926 |
+
|
| 1927 |
+
llama_kv_cache * kv_self = static_cast<llama_kv_cache *>(memory.get());
|
| 1928 |
+
|
| 1929 |
+
kv_self->clear();
|
| 1930 |
+
llama_kv_cache_guard kv_guard(kv_self);
|
| 1931 |
+
|
| 1932 |
+
for (uint32_t pos_ctx = 0; pos_ctx < n_ctx; pos_ctx += n_batch) {
|
| 1933 |
+
batch.n_tokens = n_batch;
|
| 1934 |
+
for (uint32_t pos_batch = 0; pos_batch < n_batch; ++pos_batch) {
|
| 1935 |
+
batch.token [pos_batch] = tokens[pos_ctx + pos_batch];
|
| 1936 |
+
batch.pos [pos_batch] = pos_ctx + pos_batch;
|
| 1937 |
+
batch.n_seq_id[pos_batch] = 1;
|
| 1938 |
+
batch.seq_id [pos_batch][0] = 0;
|
| 1939 |
+
batch.logits [pos_batch] = true;
|
| 1940 |
+
}
|
| 1941 |
+
|
| 1942 |
+
const auto n_tokens_all = batch.n_tokens;
|
| 1943 |
+
|
| 1944 |
+
n_queued_tokens += n_tokens_all;
|
| 1945 |
+
|
| 1946 |
+
// this indicates we are doing pooled embedding, so we ignore batch.logits and output all tokens
|
| 1947 |
+
const bool embd_pooled = cparams.embeddings && cparams.pooling_type != LLAMA_POOLING_TYPE_NONE;
|
| 1948 |
+
|
| 1949 |
+
embd_seq.clear();
|
| 1950 |
+
|
| 1951 |
+
int64_t n_outputs_all = n_tokens_all;
|
| 1952 |
+
|
| 1953 |
+
llama_sbatch sbatch = kv_self->sbatch_init(batch, /*logits_all =*/ true);
|
| 1954 |
+
|
| 1955 |
+
// reserve output buffer
|
| 1956 |
+
if (output_reserve(n_outputs_all) < n_outputs_all) {
|
| 1957 |
+
LLAMA_LOG_ERROR("%s: could not reserve space for batch with %" PRId64 " outputs\n", __func__, n_outputs_all);
|
| 1958 |
+
GGML_ABORT("TODO: handle this error");
|
| 1959 |
+
};
|
| 1960 |
+
|
| 1961 |
+
for (uint32_t pos_batch = 0; pos_batch < n_batch; pos_batch += n_ubatch) {
|
| 1962 |
+
llama_ubatch ubatch = kv_self->ubatch_next(sbatch, cparams.n_ubatch, embd_pooled);
|
| 1963 |
+
|
| 1964 |
+
n_outputs = ubatch.n_tokens;
|
| 1965 |
+
|
| 1966 |
+
// TODO: not sure if this is needed
|
| 1967 |
+
if (!kv_self->find_slot(ubatch)) {
|
| 1968 |
+
LLAMA_LOG_WARN("%s: failed to find KV cache slot for ubatch of size %d\n", __func__, ubatch.n_tokens);
|
| 1969 |
+
|
| 1970 |
+
GGML_ABORT("TODO: handle this error");
|
| 1971 |
+
}
|
| 1972 |
+
|
| 1973 |
+
auto * gf = graph_init();
|
| 1974 |
+
auto res = graph_build(ctx_compute.get(), gf, ubatch, LLM_GRAPH_TYPE_DEFAULT);
|
| 1975 |
+
|
| 1976 |
+
struct ggml_context * ctx_compute_opt;
|
| 1977 |
+
{
|
| 1978 |
+
const size_t size_gf = ggml_graph_size(gf);
|
| 1979 |
+
const size_t size_meta = 4*size_gf*ggml_tensor_overhead() + 2*ggml_graph_overhead_custom(size_gf, /*grads = */ true);
|
| 1980 |
+
struct ggml_init_params params = {
|
| 1981 |
+
/*.mem_size =*/ size_meta,
|
| 1982 |
+
/*.mem_buffer =*/ nullptr,
|
| 1983 |
+
/*.no_alloc =*/ true,
|
| 1984 |
+
};
|
| 1985 |
+
ctx_compute_opt = ggml_init(params);
|
| 1986 |
+
}
|
| 1987 |
+
ggml_opt_prepare_alloc(opt_ctx, ctx_compute_opt, gf, res->get_tokens(), res->get_logits());
|
| 1988 |
+
ggml_opt_alloc(opt_ctx, train);
|
| 1989 |
+
res->set_inputs(&ubatch);
|
| 1990 |
+
{
|
| 1991 |
+
struct ggml_tensor * labels = ggml_opt_labels(opt_ctx);
|
| 1992 |
+
GGML_ASSERT(labels->ne[1] == n_ubatch);
|
| 1993 |
+
ggml_set_zero(labels);
|
| 1994 |
+
const float onef = 1.0f;
|
| 1995 |
+
for (uint32_t pos_ubatch = 0; pos_ubatch < n_ubatch; ++pos_ubatch) {
|
| 1996 |
+
const uint32_t ilabel = pos_ctx + pos_batch + pos_ubatch;
|
| 1997 |
+
GGML_ASSERT(labels_sparse[ilabel] < labels->ne[0]);
|
| 1998 |
+
ggml_backend_tensor_set(labels, &onef, (pos_ubatch*labels->ne[0] + labels_sparse[ilabel])*sizeof(float), sizeof(float));
|
| 1999 |
+
}
|
| 2000 |
+
}
|
| 2001 |
+
ggml_opt_eval(opt_ctx, result);
|
| 2002 |
+
if (callback) {
|
| 2003 |
+
callback(train, opt_ctx, dataset, result, idata_in_loop + (pos_ctx + pos_batch)/n_ubatch + 1, ndata_in_loop, t_loop_start);
|
| 2004 |
+
}
|
| 2005 |
+
ggml_free(ctx_compute_opt);
|
| 2006 |
+
}
|
| 2007 |
+
}
|
| 2008 |
+
|
| 2009 |
+
kv_guard.commit();
|
| 2010 |
+
}
|
| 2011 |
+
|
| 2012 |
+
void llama_context::opt_epoch(
|
| 2013 |
+
ggml_opt_dataset_t dataset,
|
| 2014 |
+
ggml_opt_result_t result_train,
|
| 2015 |
+
ggml_opt_result_t result_eval,
|
| 2016 |
+
int64_t idata_split,
|
| 2017 |
+
ggml_opt_epoch_callback callback_train,
|
| 2018 |
+
ggml_opt_epoch_callback callback_eval) {
|
| 2019 |
+
const uint32_t n_ctx = this->n_ctx();
|
| 2020 |
+
const uint32_t n_batch = std::min(cparams.n_batch, n_ctx);
|
| 2021 |
+
const uint32_t n_ubatch = std::min(cparams.n_ubatch, n_batch);
|
| 2022 |
+
const int64_t ndata = ggml_opt_dataset_ndata(dataset);
|
| 2023 |
+
|
| 2024 |
+
GGML_ASSERT(idata_split >= 0);
|
| 2025 |
+
GGML_ASSERT(idata_split <= ndata);
|
| 2026 |
+
|
| 2027 |
+
const uint32_t ubatch_per_ctx = n_ctx / n_ubatch;
|
| 2028 |
+
|
| 2029 |
+
struct llama_batch batch = llama_batch_init(n_batch, 0, 1);
|
| 2030 |
+
std::vector<llama_token> tokens(n_ctx);
|
| 2031 |
+
std::vector<llama_token> labels_sparse(n_ctx);
|
| 2032 |
+
|
| 2033 |
+
int64_t idata = 0;
|
| 2034 |
+
|
| 2035 |
+
int64_t t_loop_start = ggml_time_us();
|
| 2036 |
+
int64_t ndata_in_loop = idata_split*ubatch_per_ctx;
|
| 2037 |
+
for (; idata < idata_split; ++idata) {
|
| 2038 |
+
constexpr bool train = true;
|
| 2039 |
+
const int64_t idata_in_loop = idata*ubatch_per_ctx;
|
| 2040 |
+
|
| 2041 |
+
ggml_opt_dataset_get_batch_host(dataset, tokens.data(), n_ctx*sizeof(llama_token), labels_sparse.data(), idata);
|
| 2042 |
+
opt_epoch_iter(dataset, result_train, tokens, labels_sparse, batch,
|
| 2043 |
+
callback_train, train, idata_in_loop, ndata_in_loop, t_loop_start);
|
| 2044 |
+
}
|
| 2045 |
+
|
| 2046 |
+
t_loop_start = ggml_time_us();
|
| 2047 |
+
ndata_in_loop = (ndata - idata_split)*ubatch_per_ctx;
|
| 2048 |
+
for (; idata < ndata; ++idata) {
|
| 2049 |
+
constexpr bool train = false;
|
| 2050 |
+
const int64_t idata_in_loop = (idata - idata_split)*ubatch_per_ctx;
|
| 2051 |
+
|
| 2052 |
+
ggml_opt_dataset_get_batch_host(dataset, tokens.data(), n_ctx*sizeof(llama_token), labels_sparse.data(), idata);
|
| 2053 |
+
opt_epoch_iter(dataset, result_eval, tokens, labels_sparse, batch,
|
| 2054 |
+
callback_eval, train, idata_in_loop, ndata_in_loop, t_loop_start);
|
| 2055 |
+
}
|
| 2056 |
+
|
| 2057 |
+
llama_batch_free(batch);
|
| 2058 |
+
}
|
| 2059 |
+
|
| 2060 |
//
|
| 2061 |
// interface implementation
|
| 2062 |
//
|
|
|
|
| 2084 |
/*.cb_eval_user_data =*/ nullptr,
|
| 2085 |
/*.type_k =*/ GGML_TYPE_F16,
|
| 2086 |
/*.type_v =*/ GGML_TYPE_F16,
|
| 2087 |
+
/*.abort_callback =*/ nullptr,
|
| 2088 |
+
/*.abort_callback_data =*/ nullptr,
|
| 2089 |
/*.embeddings =*/ false,
|
| 2090 |
/*.offload_kqv =*/ true,
|
| 2091 |
/*.flash_attn =*/ false,
|
| 2092 |
/*.no_perf =*/ true,
|
| 2093 |
+
/*.op_offload =*/ true,
|
|
|
|
| 2094 |
};
|
| 2095 |
|
| 2096 |
return result;
|
|
|
|
| 2384 |
llama_seq_id seq_id_dst,
|
| 2385 |
llama_pos p0,
|
| 2386 |
llama_pos p1) {
|
| 2387 |
+
llama_kv_self_seq_cp(ctx, seq_id_src, seq_id_dst, p0, p1);
|
| 2388 |
}
|
| 2389 |
|
| 2390 |
void llama_kv_self_seq_cp(
|
|
|
|
| 2398 |
return;
|
| 2399 |
}
|
| 2400 |
|
| 2401 |
+
kv->seq_cp(seq_id_src, seq_id_dst, p0, p1);
|
| 2402 |
}
|
| 2403 |
|
| 2404 |
// deprecated
|
| 2405 |
void llama_kv_cache_seq_keep(
|
| 2406 |
llama_context * ctx,
|
| 2407 |
llama_seq_id seq_id) {
|
| 2408 |
+
llama_kv_self_seq_keep(ctx, seq_id);
|
| 2409 |
}
|
| 2410 |
|
| 2411 |
void llama_kv_self_seq_keep(llama_context * ctx, llama_seq_id seq_id) {
|
|
|
|
| 2414 |
return;
|
| 2415 |
}
|
| 2416 |
|
| 2417 |
+
kv->seq_keep(seq_id);
|
| 2418 |
}
|
| 2419 |
|
| 2420 |
// deprecated
|
|
|
|
| 2424 |
llama_pos p0,
|
| 2425 |
llama_pos p1,
|
| 2426 |
llama_pos delta) {
|
| 2427 |
+
llama_kv_self_seq_add(ctx, seq_id, p0, p1, delta);
|
| 2428 |
}
|
| 2429 |
|
| 2430 |
void llama_kv_self_seq_add(
|
|
|
|
| 2438 |
return;
|
| 2439 |
}
|
| 2440 |
|
| 2441 |
+
kv->seq_add(seq_id, p0, p1, delta);
|
| 2442 |
}
|
| 2443 |
|
| 2444 |
// deprecated
|
|
|
|
| 2448 |
llama_pos p0,
|
| 2449 |
llama_pos p1,
|
| 2450 |
int d) {
|
| 2451 |
+
llama_kv_self_seq_div(ctx, seq_id, p0, p1, d);
|
| 2452 |
}
|
| 2453 |
|
| 2454 |
void llama_kv_self_seq_div(
|
|
|
|
| 2462 |
return;
|
| 2463 |
}
|
| 2464 |
|
| 2465 |
+
kv->seq_div(seq_id, p0, p1, d);
|
| 2466 |
}
|
| 2467 |
|
| 2468 |
// deprecated
|
|
|
|
| 2481 |
|
| 2482 |
// deprecated
|
| 2483 |
void llama_kv_cache_defrag(llama_context * ctx) {
|
| 2484 |
+
llama_kv_self_defrag(ctx);
|
| 2485 |
}
|
| 2486 |
|
| 2487 |
void llama_kv_self_defrag(llama_context * ctx) {
|
|
|
|
| 2490 |
return;
|
| 2491 |
}
|
| 2492 |
|
| 2493 |
+
// force defrag
|
| 2494 |
+
kv->defrag_sched(-1.0f);
|
| 2495 |
}
|
| 2496 |
|
| 2497 |
// deprecated
|
|
|
|
| 2675 |
void llama_perf_context_reset(llama_context * ctx) {
|
| 2676 |
ctx->perf_reset();
|
| 2677 |
}
|
| 2678 |
+
|
| 2679 |
+
//
|
| 2680 |
+
// training
|
| 2681 |
+
//
|
| 2682 |
+
|
| 2683 |
+
bool llama_opt_param_filter_all(const struct ggml_tensor * tensor, void * userdata) {
|
| 2684 |
+
GGML_UNUSED(tensor);
|
| 2685 |
+
GGML_UNUSED(userdata);
|
| 2686 |
+
return true;
|
| 2687 |
+
}
|
| 2688 |
+
|
| 2689 |
+
void llama_opt_init(struct llama_context * ctx, struct llama_model * model, struct llama_opt_params lopt_params) {
|
| 2690 |
+
ctx->opt_init(model, lopt_params);
|
| 2691 |
+
}
|
| 2692 |
+
|
| 2693 |
+
void llama_opt_epoch(
|
| 2694 |
+
struct llama_context * ctx,
|
| 2695 |
+
ggml_opt_dataset_t dataset,
|
| 2696 |
+
ggml_opt_result_t result_train,
|
| 2697 |
+
ggml_opt_result_t result_eval,
|
| 2698 |
+
int64_t idata_split,
|
| 2699 |
+
ggml_opt_epoch_callback callback_train,
|
| 2700 |
+
ggml_opt_epoch_callback callback_eval) {
|
| 2701 |
+
ctx->opt_epoch(
|
| 2702 |
+
dataset,
|
| 2703 |
+
result_train,
|
| 2704 |
+
result_eval,
|
| 2705 |
+
idata_split,
|
| 2706 |
+
callback_train,
|
| 2707 |
+
callback_eval);
|
| 2708 |
+
}
|
examples/talk-llama/llama-context.h
CHANGED
|
@@ -7,6 +7,7 @@
|
|
| 7 |
#include "llama-adapter.h"
|
| 8 |
|
| 9 |
#include "ggml-cpp.h"
|
|
|
|
| 10 |
|
| 11 |
#include <map>
|
| 12 |
#include <vector>
|
|
@@ -27,7 +28,12 @@ struct llama_context {
|
|
| 27 |
|
| 28 |
void synchronize();
|
| 29 |
|
| 30 |
-
const llama_model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
|
| 32 |
uint32_t n_ctx() const;
|
| 33 |
uint32_t n_ctx_per_seq() const;
|
|
@@ -128,6 +134,32 @@ struct llama_context {
|
|
| 128 |
llama_perf_context_data perf_get_data() const;
|
| 129 |
void perf_reset();
|
| 130 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 131 |
private:
|
| 132 |
//
|
| 133 |
// output
|
|
@@ -137,49 +169,30 @@ private:
|
|
| 137 |
// Returns max number of outputs for which space was reserved.
|
| 138 |
int32_t output_reserve(int32_t n_outputs);
|
| 139 |
|
| 140 |
-
// make the outputs have the same order they had in the user-provided batch
|
| 141 |
-
// TODO: maybe remove this
|
| 142 |
-
void output_reorder();
|
| 143 |
-
|
| 144 |
//
|
| 145 |
// graph
|
| 146 |
//
|
| 147 |
|
|
|
|
| 148 |
int32_t graph_max_nodes() const;
|
| 149 |
|
| 150 |
// zero-out inputs and create the ctx_compute for the compute graph
|
| 151 |
ggml_cgraph * graph_init();
|
| 152 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 153 |
llm_graph_result_ptr graph_build(
|
| 154 |
ggml_context * ctx,
|
| 155 |
ggml_cgraph * gf,
|
| 156 |
const llama_ubatch & ubatch,
|
| 157 |
llm_graph_type gtype);
|
| 158 |
|
| 159 |
-
// returns the result of ggml_backend_sched_graph_compute_async execution
|
| 160 |
-
ggml_status graph_compute(
|
| 161 |
-
ggml_cgraph * gf,
|
| 162 |
-
bool batched);
|
| 163 |
-
|
| 164 |
llm_graph_cb graph_get_cb() const;
|
| 165 |
|
| 166 |
-
// used by kv_self_update()
|
| 167 |
-
ggml_tensor * build_rope_shift(
|
| 168 |
-
ggml_context * ctx0,
|
| 169 |
-
ggml_tensor * cur,
|
| 170 |
-
ggml_tensor * shift,
|
| 171 |
-
ggml_tensor * factors,
|
| 172 |
-
float freq_base,
|
| 173 |
-
float freq_scale) const;
|
| 174 |
-
|
| 175 |
-
llm_graph_result_ptr build_kv_self_shift(
|
| 176 |
-
ggml_context * ctx0,
|
| 177 |
-
ggml_cgraph * gf) const;
|
| 178 |
-
|
| 179 |
-
llm_graph_result_ptr build_kv_self_defrag(
|
| 180 |
-
ggml_context * ctx0,
|
| 181 |
-
ggml_cgraph * gf) const;
|
| 182 |
-
|
| 183 |
// TODO: read/write lora adapters and cvec
|
| 184 |
size_t state_write_data(llama_io_write_i & io);
|
| 185 |
size_t state_read_data (llama_io_read_i & io);
|
|
@@ -196,14 +209,10 @@ private:
|
|
| 196 |
llama_cparams cparams;
|
| 197 |
llama_adapter_cvec cvec;
|
| 198 |
llama_adapter_loras loras;
|
| 199 |
-
llama_sbatch sbatch;
|
| 200 |
|
| 201 |
llama_cross cross; // TODO: tmp for handling cross-attention - need something better probably
|
| 202 |
|
| 203 |
-
std::unique_ptr<
|
| 204 |
-
|
| 205 |
-
// TODO: remove
|
| 206 |
-
bool logits_all = false;
|
| 207 |
|
| 208 |
// decode output (2-dimensional array: [n_outputs][n_vocab])
|
| 209 |
size_t logits_size = 0; // capacity (of floats) for logits
|
|
@@ -230,6 +239,9 @@ private:
|
|
| 230 |
|
| 231 |
ggml_context_ptr ctx_compute;
|
| 232 |
|
|
|
|
|
|
|
|
|
|
| 233 |
ggml_threadpool_t threadpool = nullptr;
|
| 234 |
ggml_threadpool_t threadpool_batch = nullptr;
|
| 235 |
|
|
|
|
| 7 |
#include "llama-adapter.h"
|
| 8 |
|
| 9 |
#include "ggml-cpp.h"
|
| 10 |
+
#include "ggml-opt.h"
|
| 11 |
|
| 12 |
#include <map>
|
| 13 |
#include <vector>
|
|
|
|
| 28 |
|
| 29 |
void synchronize();
|
| 30 |
|
| 31 |
+
const llama_model & get_model() const;
|
| 32 |
+
const llama_cparams & get_cparams() const;
|
| 33 |
+
|
| 34 |
+
ggml_backend_sched_t get_sched() const;
|
| 35 |
+
|
| 36 |
+
ggml_context * get_ctx_compute() const;
|
| 37 |
|
| 38 |
uint32_t n_ctx() const;
|
| 39 |
uint32_t n_ctx_per_seq() const;
|
|
|
|
| 134 |
llama_perf_context_data perf_get_data() const;
|
| 135 |
void perf_reset();
|
| 136 |
|
| 137 |
+
//
|
| 138 |
+
// training
|
| 139 |
+
//
|
| 140 |
+
|
| 141 |
+
void opt_init(struct llama_model * model, struct llama_opt_params lopt_params);
|
| 142 |
+
|
| 143 |
+
void opt_epoch(
|
| 144 |
+
ggml_opt_dataset_t dataset,
|
| 145 |
+
ggml_opt_result_t result_train,
|
| 146 |
+
ggml_opt_result_t result_eval,
|
| 147 |
+
int64_t idata_split,
|
| 148 |
+
ggml_opt_epoch_callback callback_train,
|
| 149 |
+
ggml_opt_epoch_callback callback_eval);
|
| 150 |
+
|
| 151 |
+
void opt_epoch_iter(
|
| 152 |
+
ggml_opt_dataset_t dataset,
|
| 153 |
+
ggml_opt_result_t result,
|
| 154 |
+
const std::vector<llama_token> & tokens,
|
| 155 |
+
const std::vector<llama_token> & labels_sparse,
|
| 156 |
+
llama_batch & batch,
|
| 157 |
+
ggml_opt_epoch_callback callback,
|
| 158 |
+
bool train,
|
| 159 |
+
int64_t idata_in_loop,
|
| 160 |
+
int64_t ndata_in_loop,
|
| 161 |
+
int64_t t_loop_start);
|
| 162 |
+
|
| 163 |
private:
|
| 164 |
//
|
| 165 |
// output
|
|
|
|
| 169 |
// Returns max number of outputs for which space was reserved.
|
| 170 |
int32_t output_reserve(int32_t n_outputs);
|
| 171 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 172 |
//
|
| 173 |
// graph
|
| 174 |
//
|
| 175 |
|
| 176 |
+
public:
|
| 177 |
int32_t graph_max_nodes() const;
|
| 178 |
|
| 179 |
// zero-out inputs and create the ctx_compute for the compute graph
|
| 180 |
ggml_cgraph * graph_init();
|
| 181 |
|
| 182 |
+
// returns the result of ggml_backend_sched_graph_compute_async execution
|
| 183 |
+
ggml_status graph_compute(
|
| 184 |
+
ggml_cgraph * gf,
|
| 185 |
+
bool batched);
|
| 186 |
+
|
| 187 |
+
private:
|
| 188 |
llm_graph_result_ptr graph_build(
|
| 189 |
ggml_context * ctx,
|
| 190 |
ggml_cgraph * gf,
|
| 191 |
const llama_ubatch & ubatch,
|
| 192 |
llm_graph_type gtype);
|
| 193 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 194 |
llm_graph_cb graph_get_cb() const;
|
| 195 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 196 |
// TODO: read/write lora adapters and cvec
|
| 197 |
size_t state_write_data(llama_io_write_i & io);
|
| 198 |
size_t state_read_data (llama_io_read_i & io);
|
|
|
|
| 209 |
llama_cparams cparams;
|
| 210 |
llama_adapter_cvec cvec;
|
| 211 |
llama_adapter_loras loras;
|
|
|
|
| 212 |
|
| 213 |
llama_cross cross; // TODO: tmp for handling cross-attention - need something better probably
|
| 214 |
|
| 215 |
+
std::unique_ptr<llama_memory_i> memory;
|
|
|
|
|
|
|
|
|
|
| 216 |
|
| 217 |
// decode output (2-dimensional array: [n_outputs][n_vocab])
|
| 218 |
size_t logits_size = 0; // capacity (of floats) for logits
|
|
|
|
| 239 |
|
| 240 |
ggml_context_ptr ctx_compute;
|
| 241 |
|
| 242 |
+
// training
|
| 243 |
+
ggml_opt_context_t opt_ctx = nullptr;
|
| 244 |
+
|
| 245 |
ggml_threadpool_t threadpool = nullptr;
|
| 246 |
ggml_threadpool_t threadpool_batch = nullptr;
|
| 247 |
|
examples/talk-llama/llama-cparams.h
CHANGED
|
@@ -30,6 +30,7 @@ struct llama_cparams {
|
|
| 30 |
bool flash_attn;
|
| 31 |
bool no_perf;
|
| 32 |
bool warmup;
|
|
|
|
| 33 |
|
| 34 |
enum llama_pooling_type pooling_type;
|
| 35 |
|
|
|
|
| 30 |
bool flash_attn;
|
| 31 |
bool no_perf;
|
| 32 |
bool warmup;
|
| 33 |
+
bool op_offload;
|
| 34 |
|
| 35 |
enum llama_pooling_type pooling_type;
|
| 36 |
|
examples/talk-llama/llama-graph.cpp
CHANGED
|
@@ -284,24 +284,7 @@ void llm_graph_input_s_copy::set_input(const llama_ubatch * ubatch) {
|
|
| 284 |
|
| 285 |
// assuming copy destinations ALWAYS happen ONLY on the cells between head and head+n
|
| 286 |
for (uint32_t i = 0; i < n_kv; ++i) {
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
//////////////////////////////////////////////
|
| 290 |
-
// TODO: this should not mutate the KV cache !
|
| 291 |
-
llama_kv_cell & kv_cell = const_cast<class llama_kv_cache_unified *>(kv_self)->cells[i];
|
| 292 |
-
|
| 293 |
-
// prevent out-of-bound sources
|
| 294 |
-
if (kv_cell.src < 0 || (uint32_t) kv_cell.src >= kv_self->size) {
|
| 295 |
-
kv_cell.src = cell_id;
|
| 296 |
-
}
|
| 297 |
-
|
| 298 |
-
data[i] = kv_cell.src;
|
| 299 |
-
|
| 300 |
-
// TODO: do not mutate the KV cache
|
| 301 |
-
// ensure copy only happens once
|
| 302 |
-
if (kv_cell.src != (int32_t) cell_id) {
|
| 303 |
-
kv_cell.src = cell_id;
|
| 304 |
-
}
|
| 305 |
}
|
| 306 |
}
|
| 307 |
}
|
|
@@ -317,18 +300,7 @@ void llm_graph_input_s_mask::set_input(const llama_ubatch * ubatch) {
|
|
| 317 |
|
| 318 |
// clear unused states
|
| 319 |
for (int i = 0; i < n_kv; ++i) {
|
| 320 |
-
|
| 321 |
-
|
| 322 |
-
//////////////////////////////////////////////
|
| 323 |
-
// TODO: this should not mutate the KV cache !
|
| 324 |
-
llama_kv_cell & kv_cell = const_cast<class llama_kv_cache_unified *>(kv_self)->cells[i];
|
| 325 |
-
|
| 326 |
-
data[i] = (float) (kv_cell.src >= 0);
|
| 327 |
-
|
| 328 |
-
// only clear once
|
| 329 |
-
if (kv_cell.src < 0) {
|
| 330 |
-
kv_cell.src = cell_id;
|
| 331 |
-
}
|
| 332 |
}
|
| 333 |
}
|
| 334 |
}
|
|
@@ -810,7 +782,7 @@ ggml_tensor * llm_graph_context::build_ffn(
|
|
| 810 |
} break;
|
| 811 |
}
|
| 812 |
|
| 813 |
-
if (type_gate == LLM_FFN_PAR) {
|
| 814 |
cur = ggml_mul(ctx0, cur, tmp);
|
| 815 |
cb(cur, "ffn_gate_par", il);
|
| 816 |
}
|
|
@@ -999,6 +971,7 @@ ggml_tensor * llm_graph_context::build_inp_embd(ggml_tensor * tok_embd) const {
|
|
| 999 |
inp->tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, ubatch.n_tokens);
|
| 1000 |
//cb(inp->tokens, "inp_tokens", -1);
|
| 1001 |
ggml_set_input(inp->tokens);
|
|
|
|
| 1002 |
|
| 1003 |
cur = ggml_get_rows(ctx0, tok_embd, inp->tokens);
|
| 1004 |
|
|
@@ -1105,7 +1078,7 @@ ggml_tensor * llm_graph_context::build_inp_cls() const {
|
|
| 1105 |
}
|
| 1106 |
|
| 1107 |
ggml_tensor * llm_graph_context::build_inp_s_copy() const {
|
| 1108 |
-
const
|
| 1109 |
|
| 1110 |
auto inp = std::make_unique<llm_graph_input_s_copy>(kv_self);
|
| 1111 |
|
|
@@ -1122,7 +1095,7 @@ ggml_tensor * llm_graph_context::build_inp_s_copy() const {
|
|
| 1122 |
}
|
| 1123 |
|
| 1124 |
ggml_tensor * llm_graph_context::build_inp_s_mask() const {
|
| 1125 |
-
const
|
| 1126 |
|
| 1127 |
auto inp = std::make_unique<llm_graph_input_s_mask>(kv_self);
|
| 1128 |
|
|
@@ -1255,8 +1228,19 @@ ggml_tensor * llm_graph_context::build_attn_mha(
|
|
| 1255 |
ggml_flash_attn_ext_set_prec(cur, GGML_PREC_F32);
|
| 1256 |
|
| 1257 |
if (v_mla) {
|
|
|
|
|
|
|
|
|
|
| 1258 |
cur = ggml_reshape_4d(ctx0, cur, v_mla->ne[0], 1, n_head, n_tokens);
|
| 1259 |
cur = ggml_mul_mat(ctx0, v_mla, cur);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1260 |
}
|
| 1261 |
|
| 1262 |
cur = ggml_reshape_2d(ctx0, cur, cur->ne[0]*n_head, n_tokens);
|
|
@@ -1436,8 +1420,6 @@ ggml_tensor * llm_graph_context::build_attn(
|
|
| 1436 |
|
| 1437 |
// store to KV cache
|
| 1438 |
{
|
| 1439 |
-
GGML_ASSERT(!kv_self->recurrent);
|
| 1440 |
-
|
| 1441 |
const auto kv_head = kv_self->head;
|
| 1442 |
|
| 1443 |
GGML_ASSERT(kv_self->size == n_ctx);
|
|
@@ -1587,7 +1569,7 @@ ggml_tensor * llm_graph_context::build_copy_mask_state(
|
|
| 1587 |
ggml_tensor * state_mask,
|
| 1588 |
int32_t n_state,
|
| 1589 |
int32_t n_seqs) const {
|
| 1590 |
-
const
|
| 1591 |
|
| 1592 |
const auto n_kv = kv_self->n;
|
| 1593 |
const auto kv_head = kv_self->head;
|
|
@@ -1619,7 +1601,7 @@ ggml_tensor * llm_graph_context::build_rwkv_token_shift_load(
|
|
| 1619 |
ggml_tensor * state_mask,
|
| 1620 |
const llama_ubatch & ubatch,
|
| 1621 |
int il) const {
|
| 1622 |
-
const
|
| 1623 |
|
| 1624 |
const auto token_shift_count = hparams.token_shift_count;
|
| 1625 |
|
|
@@ -1640,7 +1622,7 @@ ggml_tensor * llm_graph_context::build_rwkv_token_shift_store(
|
|
| 1640 |
ggml_tensor * token_shift,
|
| 1641 |
const llama_ubatch & ubatch,
|
| 1642 |
int il) const {
|
| 1643 |
-
const
|
| 1644 |
|
| 1645 |
const auto token_shift_count = hparams.token_shift_count;
|
| 1646 |
const auto n_embd = hparams.n_embd;
|
|
|
|
| 284 |
|
| 285 |
// assuming copy destinations ALWAYS happen ONLY on the cells between head and head+n
|
| 286 |
for (uint32_t i = 0; i < n_kv; ++i) {
|
| 287 |
+
data[i] = kv_self->s_copy(i);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 288 |
}
|
| 289 |
}
|
| 290 |
}
|
|
|
|
| 300 |
|
| 301 |
// clear unused states
|
| 302 |
for (int i = 0; i < n_kv; ++i) {
|
| 303 |
+
data[i] = kv_self->s_mask(i);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 304 |
}
|
| 305 |
}
|
| 306 |
}
|
|
|
|
| 782 |
} break;
|
| 783 |
}
|
| 784 |
|
| 785 |
+
if (gate && type_gate == LLM_FFN_PAR) {
|
| 786 |
cur = ggml_mul(ctx0, cur, tmp);
|
| 787 |
cb(cur, "ffn_gate_par", il);
|
| 788 |
}
|
|
|
|
| 971 |
inp->tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, ubatch.n_tokens);
|
| 972 |
//cb(inp->tokens, "inp_tokens", -1);
|
| 973 |
ggml_set_input(inp->tokens);
|
| 974 |
+
res->t_tokens = inp->tokens;
|
| 975 |
|
| 976 |
cur = ggml_get_rows(ctx0, tok_embd, inp->tokens);
|
| 977 |
|
|
|
|
| 1078 |
}
|
| 1079 |
|
| 1080 |
ggml_tensor * llm_graph_context::build_inp_s_copy() const {
|
| 1081 |
+
const llama_kv_cache_recurrent * kv_self = static_cast<const llama_kv_cache_recurrent *>(memory);
|
| 1082 |
|
| 1083 |
auto inp = std::make_unique<llm_graph_input_s_copy>(kv_self);
|
| 1084 |
|
|
|
|
| 1095 |
}
|
| 1096 |
|
| 1097 |
ggml_tensor * llm_graph_context::build_inp_s_mask() const {
|
| 1098 |
+
const llama_kv_cache_recurrent * kv_self = static_cast<const llama_kv_cache_recurrent *>(memory);
|
| 1099 |
|
| 1100 |
auto inp = std::make_unique<llm_graph_input_s_mask>(kv_self);
|
| 1101 |
|
|
|
|
| 1228 |
ggml_flash_attn_ext_set_prec(cur, GGML_PREC_F32);
|
| 1229 |
|
| 1230 |
if (v_mla) {
|
| 1231 |
+
#if 0
|
| 1232 |
+
// v_mla can be applied as a matrix-vector multiplication with broadcasting across dimension 3 == n_tokens.
|
| 1233 |
+
// However, the code is optimized for dimensions 0 and 1 being large, so this is ineffient.
|
| 1234 |
cur = ggml_reshape_4d(ctx0, cur, v_mla->ne[0], 1, n_head, n_tokens);
|
| 1235 |
cur = ggml_mul_mat(ctx0, v_mla, cur);
|
| 1236 |
+
#else
|
| 1237 |
+
// It's preferable to do the calculation as a matrix-matrix multiplication with n_tokens in dimension 1.
|
| 1238 |
+
// The permutations are noops and only change how the tensor data is interpreted.
|
| 1239 |
+
cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
|
| 1240 |
+
cur = ggml_mul_mat(ctx0, v_mla, cur);
|
| 1241 |
+
cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
|
| 1242 |
+
cur = ggml_cont(ctx0, cur); // Needed because ggml_reshape_2d expects contiguous inputs.
|
| 1243 |
+
#endif
|
| 1244 |
}
|
| 1245 |
|
| 1246 |
cur = ggml_reshape_2d(ctx0, cur, cur->ne[0]*n_head, n_tokens);
|
|
|
|
| 1420 |
|
| 1421 |
// store to KV cache
|
| 1422 |
{
|
|
|
|
|
|
|
| 1423 |
const auto kv_head = kv_self->head;
|
| 1424 |
|
| 1425 |
GGML_ASSERT(kv_self->size == n_ctx);
|
|
|
|
| 1569 |
ggml_tensor * state_mask,
|
| 1570 |
int32_t n_state,
|
| 1571 |
int32_t n_seqs) const {
|
| 1572 |
+
const llama_kv_cache_recurrent * kv_self = static_cast<const llama_kv_cache_recurrent *>(memory);
|
| 1573 |
|
| 1574 |
const auto n_kv = kv_self->n;
|
| 1575 |
const auto kv_head = kv_self->head;
|
|
|
|
| 1601 |
ggml_tensor * state_mask,
|
| 1602 |
const llama_ubatch & ubatch,
|
| 1603 |
int il) const {
|
| 1604 |
+
const llama_kv_cache_recurrent * kv_self = static_cast<const llama_kv_cache_recurrent *>(memory);
|
| 1605 |
|
| 1606 |
const auto token_shift_count = hparams.token_shift_count;
|
| 1607 |
|
|
|
|
| 1622 |
ggml_tensor * token_shift,
|
| 1623 |
const llama_ubatch & ubatch,
|
| 1624 |
int il) const {
|
| 1625 |
+
const llama_kv_cache_recurrent * kv_self = static_cast<const llama_kv_cache_recurrent *>(memory);
|
| 1626 |
|
| 1627 |
const auto token_shift_count = hparams.token_shift_count;
|
| 1628 |
const auto n_embd = hparams.n_embd;
|
examples/talk-llama/llama-graph.h
CHANGED
|
@@ -19,6 +19,7 @@ struct llama_cparams;
|
|
| 19 |
|
| 20 |
class llama_memory_i;
|
| 21 |
class llama_kv_cache_unified;
|
|
|
|
| 22 |
|
| 23 |
// certain models (typically multi-modal) can produce different types of graphs
|
| 24 |
enum llm_graph_type {
|
|
@@ -186,26 +187,26 @@ public:
|
|
| 186 |
|
| 187 |
class llm_graph_input_s_copy : public llm_graph_input_i {
|
| 188 |
public:
|
| 189 |
-
llm_graph_input_s_copy(const
|
| 190 |
virtual ~llm_graph_input_s_copy() = default;
|
| 191 |
|
| 192 |
void set_input(const llama_ubatch * ubatch) override;
|
| 193 |
|
| 194 |
ggml_tensor * s_copy; // I32 [kv_size]
|
| 195 |
|
| 196 |
-
const
|
| 197 |
};
|
| 198 |
|
| 199 |
class llm_graph_input_s_mask : public llm_graph_input_i {
|
| 200 |
public:
|
| 201 |
-
llm_graph_input_s_mask(const
|
| 202 |
virtual ~llm_graph_input_s_mask() = default;
|
| 203 |
|
| 204 |
void set_input(const llama_ubatch * ubatch) override;
|
| 205 |
|
| 206 |
ggml_tensor * s_mask; // F32 [1, n_kv]
|
| 207 |
|
| 208 |
-
const
|
| 209 |
};
|
| 210 |
|
| 211 |
class llm_graph_input_cross_embd : public llm_graph_input_i {
|
|
@@ -297,6 +298,7 @@ class llm_graph_result_i {
|
|
| 297 |
public:
|
| 298 |
virtual ~llm_graph_result_i() = default;
|
| 299 |
|
|
|
|
| 300 |
virtual ggml_tensor * get_logits() = 0;
|
| 301 |
virtual ggml_tensor * get_embd() = 0;
|
| 302 |
virtual ggml_tensor * get_embd_pooled() = 0;
|
|
@@ -311,6 +313,7 @@ class llm_graph_result : public llm_graph_result_i {
|
|
| 311 |
public:
|
| 312 |
virtual ~llm_graph_result() = default;
|
| 313 |
|
|
|
|
| 314 |
ggml_tensor * get_logits() override { return t_logits; }
|
| 315 |
ggml_tensor * get_embd() override { return t_embd; }
|
| 316 |
ggml_tensor * get_embd_pooled() override { return t_embd_pooled; }
|
|
@@ -327,6 +330,7 @@ public:
|
|
| 327 |
}
|
| 328 |
|
| 329 |
// important graph nodes
|
|
|
|
| 330 |
ggml_tensor * t_logits = nullptr;
|
| 331 |
ggml_tensor * t_embd = nullptr;
|
| 332 |
ggml_tensor * t_embd_pooled = nullptr;
|
|
@@ -350,8 +354,8 @@ struct llm_graph_params {
|
|
| 350 |
const llama_cparams & cparams;
|
| 351 |
const llama_ubatch & ubatch;
|
| 352 |
|
| 353 |
-
|
| 354 |
-
|
| 355 |
|
| 356 |
const llama_adapter_cvec * cvec;
|
| 357 |
const llama_adapter_loras * loras;
|
|
@@ -402,9 +406,9 @@ struct llm_graph_context {
|
|
| 402 |
|
| 403 |
ggml_context * ctx0 = nullptr;
|
| 404 |
|
| 405 |
-
|
| 406 |
|
| 407 |
-
|
| 408 |
|
| 409 |
const llama_adapter_cvec * cvec;
|
| 410 |
const llama_adapter_loras * loras;
|
|
|
|
| 19 |
|
| 20 |
class llama_memory_i;
|
| 21 |
class llama_kv_cache_unified;
|
| 22 |
+
class llama_kv_cache_recurrent;
|
| 23 |
|
| 24 |
// certain models (typically multi-modal) can produce different types of graphs
|
| 25 |
enum llm_graph_type {
|
|
|
|
| 187 |
|
| 188 |
class llm_graph_input_s_copy : public llm_graph_input_i {
|
| 189 |
public:
|
| 190 |
+
llm_graph_input_s_copy(const llama_kv_cache_recurrent * kv_self) : kv_self(kv_self) {}
|
| 191 |
virtual ~llm_graph_input_s_copy() = default;
|
| 192 |
|
| 193 |
void set_input(const llama_ubatch * ubatch) override;
|
| 194 |
|
| 195 |
ggml_tensor * s_copy; // I32 [kv_size]
|
| 196 |
|
| 197 |
+
const llama_kv_cache_recurrent * kv_self;
|
| 198 |
};
|
| 199 |
|
| 200 |
class llm_graph_input_s_mask : public llm_graph_input_i {
|
| 201 |
public:
|
| 202 |
+
llm_graph_input_s_mask(const llama_kv_cache_recurrent * kv_self) : kv_self(kv_self) {}
|
| 203 |
virtual ~llm_graph_input_s_mask() = default;
|
| 204 |
|
| 205 |
void set_input(const llama_ubatch * ubatch) override;
|
| 206 |
|
| 207 |
ggml_tensor * s_mask; // F32 [1, n_kv]
|
| 208 |
|
| 209 |
+
const llama_kv_cache_recurrent * kv_self;
|
| 210 |
};
|
| 211 |
|
| 212 |
class llm_graph_input_cross_embd : public llm_graph_input_i {
|
|
|
|
| 298 |
public:
|
| 299 |
virtual ~llm_graph_result_i() = default;
|
| 300 |
|
| 301 |
+
virtual ggml_tensor * get_tokens() = 0;
|
| 302 |
virtual ggml_tensor * get_logits() = 0;
|
| 303 |
virtual ggml_tensor * get_embd() = 0;
|
| 304 |
virtual ggml_tensor * get_embd_pooled() = 0;
|
|
|
|
| 313 |
public:
|
| 314 |
virtual ~llm_graph_result() = default;
|
| 315 |
|
| 316 |
+
ggml_tensor * get_tokens() override { return t_tokens; }
|
| 317 |
ggml_tensor * get_logits() override { return t_logits; }
|
| 318 |
ggml_tensor * get_embd() override { return t_embd; }
|
| 319 |
ggml_tensor * get_embd_pooled() override { return t_embd_pooled; }
|
|
|
|
| 330 |
}
|
| 331 |
|
| 332 |
// important graph nodes
|
| 333 |
+
ggml_tensor * t_tokens = nullptr;
|
| 334 |
ggml_tensor * t_logits = nullptr;
|
| 335 |
ggml_tensor * t_embd = nullptr;
|
| 336 |
ggml_tensor * t_embd_pooled = nullptr;
|
|
|
|
| 354 |
const llama_cparams & cparams;
|
| 355 |
const llama_ubatch & ubatch;
|
| 356 |
|
| 357 |
+
ggml_backend_sched_t sched;
|
| 358 |
+
ggml_backend_t backend_cpu;
|
| 359 |
|
| 360 |
const llama_adapter_cvec * cvec;
|
| 361 |
const llama_adapter_loras * loras;
|
|
|
|
| 406 |
|
| 407 |
ggml_context * ctx0 = nullptr;
|
| 408 |
|
| 409 |
+
ggml_backend_sched_t sched;
|
| 410 |
|
| 411 |
+
ggml_backend_t backend_cpu; // TODO: needed by build_attn_mha, figure out a way to remove?
|
| 412 |
|
| 413 |
const llama_adapter_cvec * cvec;
|
| 414 |
const llama_adapter_loras * loras;
|
examples/talk-llama/llama-kv-cache.cpp
CHANGED
|
@@ -4,33 +4,41 @@
|
|
| 4 |
#include "llama-batch.h"
|
| 5 |
#include "llama-cparams.h"
|
| 6 |
#include "llama-model.h"
|
|
|
|
| 7 |
|
| 8 |
#include <algorithm>
|
| 9 |
#include <cassert>
|
|
|
|
| 10 |
#include <limits>
|
| 11 |
#include <map>
|
| 12 |
#include <stdexcept>
|
| 13 |
|
| 14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
}
|
| 16 |
|
| 17 |
-
|
| 18 |
const llama_model & model,
|
| 19 |
-
const llama_cparams & cparams,
|
| 20 |
ggml_type type_k,
|
| 21 |
ggml_type type_v,
|
|
|
|
|
|
|
| 22 |
uint32_t kv_size,
|
| 23 |
-
|
| 24 |
const int32_t n_layer = hparams.n_layer;
|
| 25 |
|
| 26 |
has_shift = false;
|
|
|
|
| 27 |
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
can_shift = !recurrent;
|
| 31 |
|
| 32 |
-
|
| 33 |
-
__func__, kv_size, offload, ggml_type_name(type_k), ggml_type_name(type_v), n_layer, can_shift);
|
| 34 |
|
| 35 |
head = 0;
|
| 36 |
size = kv_size;
|
|
@@ -76,23 +84,20 @@ bool llama_kv_cache_unified::init(
|
|
| 76 |
|
| 77 |
const char * dev_name = "CPU";
|
| 78 |
|
| 79 |
-
ggml_backend_buffer_type_t buft;
|
|
|
|
| 80 |
if (offload) {
|
| 81 |
auto * dev = model.dev_layer(i);
|
| 82 |
buft = ggml_backend_dev_buffer_type(dev);
|
| 83 |
|
| 84 |
dev_name = ggml_backend_dev_name(dev);
|
| 85 |
-
} else {
|
| 86 |
-
buft = ggml_backend_cpu_buffer_type();
|
| 87 |
}
|
| 88 |
|
| 89 |
-
LLAMA_LOG_DEBUG("%s: layer %3d:
|
| 90 |
-
i, n_embd_k_gqa, n_embd_v_gqa, dev_name);
|
| 91 |
|
| 92 |
ggml_context * ctx = ctx_for_buft(buft);
|
| 93 |
if (!ctx) {
|
| 94 |
-
|
| 95 |
-
return false;
|
| 96 |
}
|
| 97 |
|
| 98 |
ggml_tensor * k = ggml_new_tensor_1d(ctx, type_k, n_embd_k_gqa*kv_size);
|
|
@@ -110,55 +115,28 @@ bool llama_kv_cache_unified::init(
|
|
| 110 |
|
| 111 |
ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
|
| 112 |
if (!buf) {
|
| 113 |
-
|
| 114 |
-
return false;
|
| 115 |
}
|
| 116 |
ggml_backend_buffer_clear(buf, 0);
|
| 117 |
LLAMA_LOG_INFO("%s: %10s KV buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf)/1024.0/1024.0);
|
| 118 |
bufs.emplace_back(buf);
|
| 119 |
}
|
| 120 |
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
int32_t llama_kv_cache_unified::get_n_tokens() const {
|
| 125 |
-
int32_t result = 0;
|
| 126 |
-
|
| 127 |
-
for (uint32_t i = 0; i < size; i++) {
|
| 128 |
-
result += cells[i].seq_id.size();
|
| 129 |
-
}
|
| 130 |
-
|
| 131 |
-
return result;
|
| 132 |
-
}
|
| 133 |
-
|
| 134 |
-
int32_t llama_kv_cache_unified::get_used_cells() const {
|
| 135 |
-
return used;
|
| 136 |
-
}
|
| 137 |
-
|
| 138 |
-
size_t llama_kv_cache_unified::total_size() const {
|
| 139 |
-
size_t size = 0;
|
| 140 |
-
for (const auto & buf : bufs) {
|
| 141 |
-
size += ggml_backend_buffer_get_size(buf.get());
|
| 142 |
-
}
|
| 143 |
-
|
| 144 |
-
return size;
|
| 145 |
-
}
|
| 146 |
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
}
|
| 152 |
-
|
| 153 |
-
return pos_max;
|
| 154 |
}
|
| 155 |
|
| 156 |
void llama_kv_cache_unified::clear() {
|
| 157 |
for (int32_t i = 0; i < (int32_t) size; ++i) {
|
| 158 |
cells[i].pos = -1;
|
| 159 |
cells[i].seq_id.clear();
|
| 160 |
-
cells[i].src = -1;
|
| 161 |
-
cells[i].tail = -1;
|
| 162 |
}
|
| 163 |
head = 0;
|
| 164 |
used = 0;
|
|
@@ -179,35 +157,6 @@ bool llama_kv_cache_unified::seq_rm(llama_seq_id seq_id, llama_pos p0, llama_pos
|
|
| 179 |
p1 = std::numeric_limits<llama_pos>::max();
|
| 180 |
}
|
| 181 |
|
| 182 |
-
// models like Mamba or RWKV can't have a state partially erased
|
| 183 |
-
if (recurrent) {
|
| 184 |
-
if (seq_id >= (int64_t) size) {
|
| 185 |
-
// could be fatal
|
| 186 |
-
return false;
|
| 187 |
-
}
|
| 188 |
-
if (0 <= seq_id) {
|
| 189 |
-
int32_t & tail_id = cells[seq_id].tail;
|
| 190 |
-
if (tail_id >= 0) {
|
| 191 |
-
const llama_kv_cell & cell = cells[tail_id];
|
| 192 |
-
// partial intersection is invalid
|
| 193 |
-
if ((0 < p0 && p0 <= cell.pos) || (0 < p1 && p1 <= cell.pos)) {
|
| 194 |
-
return false;
|
| 195 |
-
}
|
| 196 |
-
// invalidate tails which will be cleared
|
| 197 |
-
if (p0 <= cell.pos && cell.pos < p1) {
|
| 198 |
-
tail_id = -1;
|
| 199 |
-
}
|
| 200 |
-
}
|
| 201 |
-
} else {
|
| 202 |
-
// seq_id is negative, then the range should include everything or nothing
|
| 203 |
-
if (p0 != p1 && (p0 != 0 || p1 != std::numeric_limits<llama_pos>::max())) {
|
| 204 |
-
return false;
|
| 205 |
-
}
|
| 206 |
-
}
|
| 207 |
-
|
| 208 |
-
return true;
|
| 209 |
-
}
|
| 210 |
-
|
| 211 |
for (uint32_t i = 0; i < size; ++i) {
|
| 212 |
if (cells[i].pos >= p0 && cells[i].pos < p1) {
|
| 213 |
if (seq_id < 0) {
|
|
@@ -224,7 +173,6 @@ bool llama_kv_cache_unified::seq_rm(llama_seq_id seq_id, llama_pos p0, llama_pos
|
|
| 224 |
}
|
| 225 |
|
| 226 |
cells[i].pos = -1;
|
| 227 |
-
cells[i].src = -1;
|
| 228 |
|
| 229 |
if (new_head == size) {
|
| 230 |
new_head = i;
|
|
@@ -254,34 +202,6 @@ void llama_kv_cache_unified::seq_cp(llama_seq_id seq_id_src, llama_seq_id seq_id
|
|
| 254 |
p1 = std::numeric_limits<llama_pos>::max();
|
| 255 |
}
|
| 256 |
|
| 257 |
-
if (recurrent) {
|
| 258 |
-
if ((uint32_t) seq_id_dst < size && (uint32_t) seq_id_src < size) {
|
| 259 |
-
llama_kv_cell & tail_src = cells[seq_id_src];
|
| 260 |
-
llama_kv_cell & tail_dst = cells[seq_id_dst];
|
| 261 |
-
if (tail_dst.tail >= 0) {
|
| 262 |
-
// clear destination seq_id if it wasn't empty
|
| 263 |
-
llama_kv_cell & cell_dst = cells[tail_dst.tail];
|
| 264 |
-
|
| 265 |
-
cell_dst.seq_id.erase(seq_id_dst);
|
| 266 |
-
tail_dst.tail = -1;
|
| 267 |
-
if (cell_dst.seq_id.empty()) {
|
| 268 |
-
cell_dst.pos = -1;
|
| 269 |
-
cell_dst.delta = -1;
|
| 270 |
-
cell_dst.src = -1;
|
| 271 |
-
used -= 1;
|
| 272 |
-
}
|
| 273 |
-
}
|
| 274 |
-
if (tail_src.tail >= 0) {
|
| 275 |
-
llama_kv_cell & cell_src = cells[tail_src.tail];
|
| 276 |
-
|
| 277 |
-
cell_src.seq_id.insert(seq_id_dst);
|
| 278 |
-
tail_dst.tail = tail_src.tail;
|
| 279 |
-
}
|
| 280 |
-
}
|
| 281 |
-
|
| 282 |
-
return;
|
| 283 |
-
}
|
| 284 |
-
|
| 285 |
// otherwise, this is the KV of a Transformer-like model
|
| 286 |
head = 0;
|
| 287 |
|
|
@@ -296,17 +216,12 @@ void llama_kv_cache_unified::seq_keep(llama_seq_id seq_id) {
|
|
| 296 |
uint32_t new_head = size;
|
| 297 |
|
| 298 |
for (uint32_t i = 0; i < size; ++i) {
|
| 299 |
-
if (recurrent && (llama_seq_id) i != seq_id) {
|
| 300 |
-
cells[i].tail = -1;
|
| 301 |
-
}
|
| 302 |
-
|
| 303 |
if (!cells[i].has_seq_id(seq_id)) {
|
| 304 |
if (cells[i].pos >= 0) {
|
| 305 |
used--;
|
| 306 |
}
|
| 307 |
|
| 308 |
cells[i].pos = -1;
|
| 309 |
-
cells[i].src = -1;
|
| 310 |
cells[i].seq_id.clear();
|
| 311 |
|
| 312 |
if (new_head == size){
|
|
@@ -344,20 +259,6 @@ void llama_kv_cache_unified::seq_add(llama_seq_id seq_id, llama_pos p0, llama_po
|
|
| 344 |
return;
|
| 345 |
}
|
| 346 |
|
| 347 |
-
if (recurrent) {
|
| 348 |
-
// for Mamba-like or RWKV models, only the pos needs to be shifted
|
| 349 |
-
if (0 <= seq_id && seq_id < (int64_t) size) {
|
| 350 |
-
const int32_t tail_id = cells[seq_id].tail;
|
| 351 |
-
if (tail_id >= 0) {
|
| 352 |
-
llama_kv_cell & cell = cells[tail_id];
|
| 353 |
-
if (cell.has_seq_id(seq_id) && p0 <= cell.pos && cell.pos < p1) {
|
| 354 |
-
cell.pos += delta;
|
| 355 |
-
}
|
| 356 |
-
}
|
| 357 |
-
}
|
| 358 |
-
return;
|
| 359 |
-
}
|
| 360 |
-
|
| 361 |
for (uint32_t i = 0; i < size; ++i) {
|
| 362 |
if (cells[i].has_seq_id(seq_id) && cells[i].pos >= p0 && cells[i].pos < p1) {
|
| 363 |
has_shift = true;
|
|
@@ -400,21 +301,6 @@ void llama_kv_cache_unified::seq_div(llama_seq_id seq_id, llama_pos p0, llama_po
|
|
| 400 |
return;
|
| 401 |
}
|
| 402 |
|
| 403 |
-
if (recurrent) {
|
| 404 |
-
// for Mamba-like or RWKV models, only the pos needs to be changed
|
| 405 |
-
if (0 <= seq_id && seq_id < (int64_t) size) {
|
| 406 |
-
const int32_t tail_id = cells[seq_id].tail;
|
| 407 |
-
if (tail_id >= 0) {
|
| 408 |
-
llama_kv_cell & cell = cells[tail_id];
|
| 409 |
-
if (cell.has_seq_id(seq_id) && p0 <= cell.pos && cell.pos < p1) {
|
| 410 |
-
cell.pos /= d;
|
| 411 |
-
}
|
| 412 |
-
}
|
| 413 |
-
}
|
| 414 |
-
|
| 415 |
-
return;
|
| 416 |
-
}
|
| 417 |
-
|
| 418 |
for (uint32_t i = 0; i < size; ++i) {
|
| 419 |
if (cells[i].has_seq_id(seq_id) && cells[i].pos >= p0 && cells[i].pos < p1) {
|
| 420 |
has_shift = true;
|
|
@@ -440,23 +326,11 @@ llama_pos llama_kv_cache_unified::seq_pos_max(llama_seq_id seq_id) const {
|
|
| 440 |
return result;
|
| 441 |
}
|
| 442 |
|
| 443 |
-
void llama_kv_cache_unified::defrag() {
|
| 444 |
-
if (!recurrent) {
|
| 445 |
-
do_defrag = true;
|
| 446 |
-
}
|
| 447 |
-
}
|
| 448 |
-
|
| 449 |
void llama_kv_cache_unified::restore() {
|
| 450 |
if (pending.ranges.empty()) {
|
| 451 |
return;
|
| 452 |
}
|
| 453 |
|
| 454 |
-
// TODO: tmp - move to llama_kv_cache_recurrent
|
| 455 |
-
if (recurrent) {
|
| 456 |
-
seq_rm(-1, -1, -1);
|
| 457 |
-
return;
|
| 458 |
-
}
|
| 459 |
-
|
| 460 |
uint32_t new_head = size;
|
| 461 |
|
| 462 |
for (auto & range : pending.ranges) {
|
|
@@ -469,7 +343,6 @@ void llama_kv_cache_unified::restore() {
|
|
| 469 |
}
|
| 470 |
|
| 471 |
cells[i].pos = -1;
|
| 472 |
-
cells[i].src = -1;
|
| 473 |
}
|
| 474 |
|
| 475 |
new_head = std::min(new_head, range.c0);
|
|
@@ -481,11 +354,6 @@ void llama_kv_cache_unified::restore() {
|
|
| 481 |
}
|
| 482 |
|
| 483 |
void llama_kv_cache_unified::commit() {
|
| 484 |
-
// TODO: tmp - move to llama_kv_cache_recurrent
|
| 485 |
-
if (recurrent) {
|
| 486 |
-
return;
|
| 487 |
-
}
|
| 488 |
-
|
| 489 |
if (pending.ranges.empty()) {
|
| 490 |
LLAMA_LOG_WARN("%s: no pending KV cache updates to commit - might indicate a bug (ref: %s)\n",
|
| 491 |
__func__, "https://github.com/ggml-org/llama.cpp/pull/12695");
|
|
@@ -495,183 +363,110 @@ void llama_kv_cache_unified::commit() {
|
|
| 495 |
pending.ranges.clear();
|
| 496 |
}
|
| 497 |
|
| 498 |
-
bool llama_kv_cache_unified::
|
| 499 |
-
|
| 500 |
-
}
|
| 501 |
|
| 502 |
-
|
| 503 |
-
const llama_ubatch & ubatch) {
|
| 504 |
-
const uint32_t n_tokens = ubatch.n_tokens;
|
| 505 |
-
const uint32_t n_seqs = ubatch.n_seqs;
|
| 506 |
-
const uint32_t n_seq_tokens = ubatch.n_seq_tokens;
|
| 507 |
|
| 508 |
-
|
| 509 |
-
|
| 510 |
-
|
| 511 |
-
|
| 512 |
-
}
|
| 513 |
|
| 514 |
-
|
| 515 |
-
// For recurrent state architectures (like Mamba or RWKV),
|
| 516 |
-
// each cache cell can store the state for a whole sequence.
|
| 517 |
-
// A slot should be always be contiguous.
|
| 518 |
|
| 519 |
-
//
|
| 520 |
-
|
|
|
|
| 521 |
|
| 522 |
-
|
| 523 |
-
int32_t max = 0;
|
| 524 |
|
| 525 |
-
|
| 526 |
-
for (uint32_t s = 0; s < n_seqs; ++s) {
|
| 527 |
-
const uint32_t n_seq_id = ubatch.n_seq_id[s];
|
| 528 |
-
for (uint32_t j = 0; j < n_seq_id; ++j) {
|
| 529 |
-
const llama_seq_id seq_id = ubatch.seq_id[s][j];
|
| 530 |
|
| 531 |
-
|
| 532 |
-
|
| 533 |
-
|
| 534 |
-
|
| 535 |
-
|
| 536 |
-
|
| 537 |
-
|
| 538 |
-
llama_kv_cell & seq = cells[seq_id];
|
| 539 |
-
if (seq.tail >= 0) {
|
| 540 |
-
llama_kv_cell & cell = cells[seq.tail];
|
| 541 |
-
// clear cells from seq_ids that become shared
|
| 542 |
-
// (should not normally happen, but let's handle it anyway)
|
| 543 |
-
cell.seq_id.erase(seq_id);
|
| 544 |
-
seq.tail = -1;
|
| 545 |
-
if (cell.seq_id.empty()) {
|
| 546 |
-
cell.pos = -1;
|
| 547 |
-
cell.src = -1;
|
| 548 |
-
used -= 1;
|
| 549 |
-
}
|
| 550 |
-
}
|
| 551 |
-
}
|
| 552 |
-
}
|
| 553 |
}
|
| 554 |
|
| 555 |
-
#ifndef NDEBUG
|
| 556 |
{
|
| 557 |
-
|
| 558 |
-
|
| 559 |
-
for (uint32_t i = 0; i < size; ++i) {
|
| 560 |
-
llama_kv_cell & cell = cells[i];
|
| 561 |
-
for (llama_seq_id seq_id : cell.seq_id) {
|
| 562 |
-
if (tails_verif[seq_id] != -1) {
|
| 563 |
-
LLAMA_LOG_ERROR("%s: duplicate tail for seq_id %d in cell %d and %d\n", __func__, seq_id, i, tails_verif[seq_id]);
|
| 564 |
-
}
|
| 565 |
-
tails_verif[seq_id] = i;
|
| 566 |
-
}
|
| 567 |
-
}
|
| 568 |
for (uint32_t i = 0; i < size; ++i) {
|
| 569 |
-
|
| 570 |
-
LLAMA_LOG_ERROR("%s: wrong tail for seq_id %d, (%d instead of %d)\n", __func__, i, cells[i].tail, tails_verif[i]);
|
| 571 |
-
}
|
| 572 |
}
|
| 573 |
}
|
| 574 |
-
|
| 575 |
|
| 576 |
-
|
| 577 |
-
|
| 578 |
|
| 579 |
-
|
| 580 |
-
|
| 581 |
-
llama_kv_cell & cell = cells[next_empty_cell];
|
| 582 |
-
if (cell.is_empty()) { break; }
|
| 583 |
-
next_empty_cell += 1;
|
| 584 |
-
}
|
| 585 |
|
| 586 |
-
|
| 587 |
-
for (uint32_t s = 0; s < n_seqs; ++s) {
|
| 588 |
-
const llama_seq_id seq_id = ubatch.seq_id[s][0];
|
| 589 |
-
llama_kv_cell & seq_meta = cells[seq_id];
|
| 590 |
-
bool has_cell = false;
|
| 591 |
-
if (seq_meta.tail >= 0) {
|
| 592 |
-
llama_kv_cell & cell = cells[seq_meta.tail];
|
| 593 |
-
GGML_ASSERT(cell.has_seq_id(seq_id));
|
| 594 |
-
// does this seq_id "own" the cell?
|
| 595 |
-
if (cell.seq_id.size() == 1) { has_cell = true; }
|
| 596 |
-
}
|
| 597 |
-
if (!has_cell) {
|
| 598 |
-
llama_kv_cell & empty_cell = cells[next_empty_cell];
|
| 599 |
-
GGML_ASSERT(empty_cell.is_empty());
|
| 600 |
-
// copy old tail into the empty cell
|
| 601 |
-
if (seq_meta.tail >= 0) {
|
| 602 |
-
llama_kv_cell & orig_cell = cells[seq_meta.tail];
|
| 603 |
-
empty_cell.pos = orig_cell.pos;
|
| 604 |
-
empty_cell.src = orig_cell.src;
|
| 605 |
-
orig_cell.seq_id.erase(seq_id);
|
| 606 |
-
empty_cell.seq_id.insert(seq_id); // will be overwritten
|
| 607 |
-
}
|
| 608 |
-
seq_meta.tail = next_empty_cell;
|
| 609 |
-
// find next empty cell
|
| 610 |
-
if (s + 1 < n_seqs) {
|
| 611 |
-
next_empty_cell += 1;
|
| 612 |
-
for (uint32_t i = 0; i < size; ++i) {
|
| 613 |
-
if (next_empty_cell >= size) { next_empty_cell -= size; }
|
| 614 |
-
llama_kv_cell & cell = cells[next_empty_cell];
|
| 615 |
-
if (cell.is_empty()) { break; }
|
| 616 |
-
next_empty_cell += 1;
|
| 617 |
-
}
|
| 618 |
-
}
|
| 619 |
-
}
|
| 620 |
-
if (min > seq_meta.tail) { min = seq_meta.tail; }
|
| 621 |
-
if (max < seq_meta.tail) { max = seq_meta.tail; }
|
| 622 |
-
}
|
| 623 |
|
| 624 |
-
|
| 625 |
-
for (uint32_t s = 0; s < n_seqs; ++s) {
|
| 626 |
-
int32_t dst_id = s + min;
|
| 627 |
-
int32_t src_id = cells[ubatch.seq_id[s][0]].tail;
|
| 628 |
-
if (dst_id != src_id) {
|
| 629 |
-
llama_kv_cell & dst_cell = cells[dst_id];
|
| 630 |
-
llama_kv_cell & src_cell = cells[src_id];
|
| 631 |
|
| 632 |
-
|
| 633 |
-
std::swap(dst_cell.src, src_cell.src);
|
| 634 |
-
std::swap(dst_cell.seq_id, src_cell.seq_id);
|
| 635 |
|
| 636 |
-
|
| 637 |
-
for (const llama_seq_id seq_id : src_cell.seq_id) {
|
| 638 |
-
cells[seq_id].tail = src_id;
|
| 639 |
-
}
|
| 640 |
-
for (const llama_seq_id seq_id : dst_cell.seq_id) {
|
| 641 |
-
cells[seq_id].tail = dst_id;
|
| 642 |
-
}
|
| 643 |
-
}
|
| 644 |
-
}
|
| 645 |
|
| 646 |
-
|
| 647 |
-
for (uint32_t s = 0; s < n_seqs; ++s) {
|
| 648 |
-
const llama_pos last_pos = ubatch.pos[n_seq_tokens * s + n_seq_tokens - 1];
|
| 649 |
-
int32_t cell_id = s + min;
|
| 650 |
-
llama_kv_cell & cell = cells[cell_id];
|
| 651 |
|
| 652 |
-
|
| 653 |
-
// What should happen when the pos backtracks or skips a value?
|
| 654 |
-
// Clearing the state mid-batch would require special-casing which isn't done.
|
| 655 |
-
LLAMA_LOG_WARN("%s: non-consecutive token position %d after %d for sequence %d with %u new tokens\n",
|
| 656 |
-
__func__, last_pos, cell.pos, ubatch.seq_id[s][0], n_seq_tokens);
|
| 657 |
-
}
|
| 658 |
-
cell.pos = last_pos;
|
| 659 |
-
cell.seq_id.clear();
|
| 660 |
-
for (int32_t j = 0; j < ubatch.n_seq_id[s]; ++j) {
|
| 661 |
-
const llama_seq_id seq_id = ubatch.seq_id[s][j];
|
| 662 |
-
cell.seq_id.insert(seq_id);
|
| 663 |
-
cells[seq_id].tail = cell_id;
|
| 664 |
-
}
|
| 665 |
}
|
| 666 |
|
| 667 |
-
|
| 668 |
-
|
| 669 |
-
|
| 670 |
-
|
| 671 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 672 |
|
| 673 |
-
|
| 674 |
-
|
|
|
|
|
|
|
| 675 |
}
|
| 676 |
|
| 677 |
// otherwise, one cell per token.
|
|
@@ -725,24 +520,50 @@ bool llama_kv_cache_unified::find_slot(
|
|
| 725 |
|
| 726 |
pending.ranges.push_back({head, head + n_tokens});
|
| 727 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 728 |
return true;
|
| 729 |
}
|
| 730 |
|
| 731 |
-
|
| 732 |
-
|
| 733 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 734 |
}
|
| 735 |
|
| 736 |
-
|
| 737 |
-
|
| 738 |
-
|
| 739 |
|
| 740 |
-
|
| 741 |
-
|
| 742 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 743 |
}
|
| 744 |
|
| 745 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 746 |
}
|
| 747 |
|
| 748 |
size_t llama_kv_cache_unified::size_k_bytes() const {
|
|
@@ -765,68 +586,331 @@ size_t llama_kv_cache_unified::size_v_bytes() const {
|
|
| 765 |
return size_v_bytes;
|
| 766 |
}
|
| 767 |
|
| 768 |
-
|
| 769 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 770 |
|
| 771 |
-
const
|
| 772 |
-
const
|
|
|
|
| 773 |
|
| 774 |
-
|
|
|
|
| 775 |
|
| 776 |
-
//
|
|
|
|
|
|
|
| 777 |
|
| 778 |
-
|
| 779 |
-
uint32_t n_moves = 0;
|
| 780 |
|
| 781 |
-
|
| 782 |
-
|
| 783 |
-
|
| 784 |
-
//const uint32_t max_moves = max_nodes()/(6*n_layer);
|
| 785 |
-
// TODO: tmp fix https://github.com/ggerganov/llama.cpp/issues/6685#issuecomment-2057579516
|
| 786 |
-
const uint32_t max_moves = (n_max_nodes - 2*n_layer)/(6*n_layer);
|
| 787 |
|
| 788 |
-
|
| 789 |
-
|
| 790 |
-
|
| 791 |
-
//
|
| 792 |
-
// if ids[i] == i || ids[i] == n_kv, then cell i is not moved
|
| 793 |
-
//
|
| 794 |
-
auto & ids = defrag_info.ids;
|
| 795 |
|
| 796 |
-
|
| 797 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 798 |
|
| 799 |
-
|
| 800 |
-
|
| 801 |
|
| 802 |
-
|
| 803 |
-
|
|
|
|
|
|
|
| 804 |
|
| 805 |
-
|
| 806 |
-
}
|
| 807 |
|
| 808 |
-
|
| 809 |
|
| 810 |
-
|
|
|
|
| 811 |
|
| 812 |
-
|
| 813 |
-
|
| 814 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 815 |
}
|
|
|
|
|
|
|
| 816 |
|
| 817 |
-
|
| 818 |
-
|
|
|
|
|
|
|
|
|
|
| 819 |
|
| 820 |
-
|
| 821 |
-
for (; is > i0; --is) {
|
| 822 |
-
const auto & cell1 = cells[is];
|
| 823 |
|
| 824 |
-
|
| 825 |
-
|
| 826 |
-
}
|
| 827 |
|
| 828 |
-
|
| 829 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 830 |
|
| 831 |
if (nf == nh) {
|
| 832 |
break;
|
|
@@ -867,7 +951,7 @@ bool llama_kv_cache_unified::defrag_prepare(int32_t n_max_nodes) {
|
|
| 867 |
cells[i0 + nf] = cell1;
|
| 868 |
|
| 869 |
// clear the old cell and move the head there
|
| 870 |
-
cell1 =
|
| 871 |
head = n_used;
|
| 872 |
|
| 873 |
if (!cont) {
|
|
@@ -895,13 +979,25 @@ bool llama_kv_cache_unified::defrag_prepare(int32_t n_max_nodes) {
|
|
| 895 |
return false;
|
| 896 |
}
|
| 897 |
|
| 898 |
-
LLAMA_LOG_DEBUG("(tmp log) KV defrag cell moves: %u\n", n_moves);
|
| 899 |
|
| 900 |
-
LLAMA_LOG_DEBUG("expected gf nodes: %u\n", 6*n_moves*n_layer);
|
| 901 |
|
| 902 |
return true;
|
| 903 |
}
|
| 904 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 905 |
void llama_kv_cache_unified::state_write(llama_io_write_i & io, llama_seq_id seq_id) const {
|
| 906 |
std::vector<std::pair<uint32_t, uint32_t>> cell_ranges; // ranges, from inclusive, to exclusive
|
| 907 |
uint32_t cell_count = 0;
|
|
@@ -1110,7 +1206,7 @@ bool llama_kv_cache_unified::state_read_meta(llama_io_read_i & io, uint32_t cell
|
|
| 1110 |
clear();
|
| 1111 |
|
| 1112 |
for (uint32_t i = 0; i < cell_count; ++i) {
|
| 1113 |
-
|
| 1114 |
|
| 1115 |
llama_pos pos;
|
| 1116 |
uint32_t n_seq_id;
|
|
@@ -1133,15 +1229,6 @@ bool llama_kv_cache_unified::state_read_meta(llama_io_read_i & io, uint32_t cell
|
|
| 1133 |
}
|
| 1134 |
|
| 1135 |
cell.seq_id.insert(seq_id);
|
| 1136 |
-
|
| 1137 |
-
if (recurrent) {
|
| 1138 |
-
int32_t & tail = cells[seq_id].tail;
|
| 1139 |
-
if (tail != -1) {
|
| 1140 |
-
LLAMA_LOG_ERROR("%s: duplicate tail for seq_id %d in cell %d and %d\n", __func__, seq_id, i, tail);
|
| 1141 |
-
return false;
|
| 1142 |
-
}
|
| 1143 |
-
tail = i;
|
| 1144 |
-
}
|
| 1145 |
}
|
| 1146 |
}
|
| 1147 |
|
|
@@ -1149,14 +1236,6 @@ bool llama_kv_cache_unified::state_read_meta(llama_io_read_i & io, uint32_t cell
|
|
| 1149 |
used = cell_count;
|
| 1150 |
}
|
| 1151 |
|
| 1152 |
-
if (recurrent) {
|
| 1153 |
-
for (uint32_t i = 0; i < cell_count; ++i) {
|
| 1154 |
-
uint32_t cell_id = head + i;
|
| 1155 |
-
// make sure the recurrent states will keep their restored state
|
| 1156 |
-
cells[cell_id].src = cell_id;
|
| 1157 |
-
}
|
| 1158 |
-
}
|
| 1159 |
-
|
| 1160 |
return true;
|
| 1161 |
}
|
| 1162 |
|
|
@@ -1174,7 +1253,1034 @@ bool llama_kv_cache_unified::state_read_data(llama_io_read_i & io, uint32_t cell
|
|
| 1174 |
LLAMA_LOG_ERROR("%s: not enough cells in kv cache to restore state (%u > %u)\n", __func__, cell_count, size);
|
| 1175 |
return false;
|
| 1176 |
}
|
| 1177 |
-
if (v_trans != (bool) v_trans) {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1178 |
LLAMA_LOG_ERROR("%s: incompatible V transposition\n", __func__);
|
| 1179 |
return false;
|
| 1180 |
}
|
|
@@ -1326,7 +2432,7 @@ void llama_kv_cache_view_update(llama_kv_cache_view * view, const llama_kv_cache
|
|
| 1326 |
view->cells_sequences = (llama_seq_id *)p;
|
| 1327 |
}
|
| 1328 |
|
| 1329 |
-
const std::vector<
|
| 1330 |
llama_kv_cache_view_cell * c_curr = view->cells;
|
| 1331 |
llama_seq_id * cs_curr = view->cells_sequences;
|
| 1332 |
int32_t used_cells = 0;
|
|
|
|
| 4 |
#include "llama-batch.h"
|
| 5 |
#include "llama-cparams.h"
|
| 6 |
#include "llama-model.h"
|
| 7 |
+
#include "llama-context.h"
|
| 8 |
|
| 9 |
#include <algorithm>
|
| 10 |
#include <cassert>
|
| 11 |
+
#include <cmath>
|
| 12 |
#include <limits>
|
| 13 |
#include <map>
|
| 14 |
#include <stdexcept>
|
| 15 |
|
| 16 |
+
//
|
| 17 |
+
// llama_kv_cache_unified
|
| 18 |
+
//
|
| 19 |
+
|
| 20 |
+
uint32_t llama_kv_cache_unified::get_padding(const llama_cparams & cparams) {
|
| 21 |
+
// the FA kernels require padding to avoid extra runtime boundary checks
|
| 22 |
+
return cparams.flash_attn ? 256u : 32u;
|
| 23 |
}
|
| 24 |
|
| 25 |
+
llama_kv_cache_unified::llama_kv_cache_unified(
|
| 26 |
const llama_model & model,
|
|
|
|
| 27 |
ggml_type type_k,
|
| 28 |
ggml_type type_v,
|
| 29 |
+
bool v_trans,
|
| 30 |
+
bool offload,
|
| 31 |
uint32_t kv_size,
|
| 32 |
+
uint32_t padding) : model(model), hparams(model.hparams), v_trans(v_trans), padding(padding) {
|
| 33 |
const int32_t n_layer = hparams.n_layer;
|
| 34 |
|
| 35 |
has_shift = false;
|
| 36 |
+
can_shift = true;
|
| 37 |
|
| 38 |
+
LLAMA_LOG_INFO("%s: kv_size = %d, type_k = '%s', type_v = '%s', n_layer = %d, can_shift = %d, padding = %d\n",
|
| 39 |
+
__func__, kv_size, ggml_type_name(type_k), ggml_type_name(type_v), n_layer, can_shift, padding);
|
|
|
|
| 40 |
|
| 41 |
+
GGML_ASSERT(kv_size % padding == 0 && "kv_size must be a multiple of padding");
|
|
|
|
| 42 |
|
| 43 |
head = 0;
|
| 44 |
size = kv_size;
|
|
|
|
| 84 |
|
| 85 |
const char * dev_name = "CPU";
|
| 86 |
|
| 87 |
+
ggml_backend_buffer_type_t buft = ggml_backend_cpu_buffer_type();
|
| 88 |
+
|
| 89 |
if (offload) {
|
| 90 |
auto * dev = model.dev_layer(i);
|
| 91 |
buft = ggml_backend_dev_buffer_type(dev);
|
| 92 |
|
| 93 |
dev_name = ggml_backend_dev_name(dev);
|
|
|
|
|
|
|
| 94 |
}
|
| 95 |
|
| 96 |
+
LLAMA_LOG_DEBUG("%s: layer %3d: dev = %s\n", __func__, i, dev_name);
|
|
|
|
| 97 |
|
| 98 |
ggml_context * ctx = ctx_for_buft(buft);
|
| 99 |
if (!ctx) {
|
| 100 |
+
throw std::runtime_error("failed to create ggml context for kv cache");
|
|
|
|
| 101 |
}
|
| 102 |
|
| 103 |
ggml_tensor * k = ggml_new_tensor_1d(ctx, type_k, n_embd_k_gqa*kv_size);
|
|
|
|
| 115 |
|
| 116 |
ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
|
| 117 |
if (!buf) {
|
| 118 |
+
throw std::runtime_error("failed to allocate buffer for kv cache");
|
|
|
|
| 119 |
}
|
| 120 |
ggml_backend_buffer_clear(buf, 0);
|
| 121 |
LLAMA_LOG_INFO("%s: %10s KV buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf)/1024.0/1024.0);
|
| 122 |
bufs.emplace_back(buf);
|
| 123 |
}
|
| 124 |
|
| 125 |
+
{
|
| 126 |
+
const size_t memory_size_k = size_k_bytes();
|
| 127 |
+
const size_t memory_size_v = size_v_bytes();
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 128 |
|
| 129 |
+
LLAMA_LOG_INFO("%s: KV self size = %7.2f MiB, K (%s): %7.2f MiB, V (%s): %7.2f MiB\n", __func__,
|
| 130 |
+
(float)(memory_size_k + memory_size_v) / (1024.0f * 1024.0f),
|
| 131 |
+
ggml_type_name(type_k), (float)memory_size_k / (1024.0f * 1024.0f),
|
| 132 |
+
ggml_type_name(type_v), (float)memory_size_v / (1024.0f * 1024.0f));
|
| 133 |
}
|
|
|
|
|
|
|
| 134 |
}
|
| 135 |
|
| 136 |
void llama_kv_cache_unified::clear() {
|
| 137 |
for (int32_t i = 0; i < (int32_t) size; ++i) {
|
| 138 |
cells[i].pos = -1;
|
| 139 |
cells[i].seq_id.clear();
|
|
|
|
|
|
|
| 140 |
}
|
| 141 |
head = 0;
|
| 142 |
used = 0;
|
|
|
|
| 157 |
p1 = std::numeric_limits<llama_pos>::max();
|
| 158 |
}
|
| 159 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 160 |
for (uint32_t i = 0; i < size; ++i) {
|
| 161 |
if (cells[i].pos >= p0 && cells[i].pos < p1) {
|
| 162 |
if (seq_id < 0) {
|
|
|
|
| 173 |
}
|
| 174 |
|
| 175 |
cells[i].pos = -1;
|
|
|
|
| 176 |
|
| 177 |
if (new_head == size) {
|
| 178 |
new_head = i;
|
|
|
|
| 202 |
p1 = std::numeric_limits<llama_pos>::max();
|
| 203 |
}
|
| 204 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 205 |
// otherwise, this is the KV of a Transformer-like model
|
| 206 |
head = 0;
|
| 207 |
|
|
|
|
| 216 |
uint32_t new_head = size;
|
| 217 |
|
| 218 |
for (uint32_t i = 0; i < size; ++i) {
|
|
|
|
|
|
|
|
|
|
|
|
|
| 219 |
if (!cells[i].has_seq_id(seq_id)) {
|
| 220 |
if (cells[i].pos >= 0) {
|
| 221 |
used--;
|
| 222 |
}
|
| 223 |
|
| 224 |
cells[i].pos = -1;
|
|
|
|
| 225 |
cells[i].seq_id.clear();
|
| 226 |
|
| 227 |
if (new_head == size){
|
|
|
|
| 259 |
return;
|
| 260 |
}
|
| 261 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 262 |
for (uint32_t i = 0; i < size; ++i) {
|
| 263 |
if (cells[i].has_seq_id(seq_id) && cells[i].pos >= p0 && cells[i].pos < p1) {
|
| 264 |
has_shift = true;
|
|
|
|
| 301 |
return;
|
| 302 |
}
|
| 303 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 304 |
for (uint32_t i = 0; i < size; ++i) {
|
| 305 |
if (cells[i].has_seq_id(seq_id) && cells[i].pos >= p0 && cells[i].pos < p1) {
|
| 306 |
has_shift = true;
|
|
|
|
| 326 |
return result;
|
| 327 |
}
|
| 328 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 329 |
void llama_kv_cache_unified::restore() {
|
| 330 |
if (pending.ranges.empty()) {
|
| 331 |
return;
|
| 332 |
}
|
| 333 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 334 |
uint32_t new_head = size;
|
| 335 |
|
| 336 |
for (auto & range : pending.ranges) {
|
|
|
|
| 343 |
}
|
| 344 |
|
| 345 |
cells[i].pos = -1;
|
|
|
|
| 346 |
}
|
| 347 |
|
| 348 |
new_head = std::min(new_head, range.c0);
|
|
|
|
| 354 |
}
|
| 355 |
|
| 356 |
void llama_kv_cache_unified::commit() {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 357 |
if (pending.ranges.empty()) {
|
| 358 |
LLAMA_LOG_WARN("%s: no pending KV cache updates to commit - might indicate a bug (ref: %s)\n",
|
| 359 |
__func__, "https://github.com/ggml-org/llama.cpp/pull/12695");
|
|
|
|
| 363 |
pending.ranges.clear();
|
| 364 |
}
|
| 365 |
|
| 366 |
+
bool llama_kv_cache_unified::update(llama_context & lctx) {
|
| 367 |
+
bool need_reserve = false;
|
|
|
|
| 368 |
|
| 369 |
+
auto * sched = lctx.get_sched();
|
|
|
|
|
|
|
|
|
|
|
|
|
| 370 |
|
| 371 |
+
if (has_shift) {
|
| 372 |
+
if (!get_can_shift()) {
|
| 373 |
+
GGML_ABORT("The current KV cache / model configuration does not support K-shift");
|
| 374 |
+
}
|
|
|
|
| 375 |
|
| 376 |
+
LLAMA_LOG_DEBUG("%s: applying K-shift\n", __func__);
|
|
|
|
|
|
|
|
|
|
| 377 |
|
| 378 |
+
// apply K-shift if needed
|
| 379 |
+
if (hparams.rope_type != LLAMA_ROPE_TYPE_NONE) {
|
| 380 |
+
ggml_backend_sched_reset(sched);
|
| 381 |
|
| 382 |
+
auto * gf = lctx.graph_init();
|
|
|
|
| 383 |
|
| 384 |
+
auto res = build_graph_shift(lctx.get_cparams(), lctx.get_ctx_compute(), gf);
|
|
|
|
|
|
|
|
|
|
|
|
|
| 385 |
|
| 386 |
+
ggml_backend_sched_alloc_graph(sched, gf);
|
| 387 |
+
|
| 388 |
+
res->set_inputs(nullptr);
|
| 389 |
+
|
| 390 |
+
lctx.graph_compute(gf, false);
|
| 391 |
+
|
| 392 |
+
need_reserve = true;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 393 |
}
|
| 394 |
|
|
|
|
| 395 |
{
|
| 396 |
+
has_shift = false;
|
| 397 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 398 |
for (uint32_t i = 0; i < size; ++i) {
|
| 399 |
+
cells[i].delta = 0;
|
|
|
|
|
|
|
| 400 |
}
|
| 401 |
}
|
| 402 |
+
}
|
| 403 |
|
| 404 |
+
if (do_defrag) {
|
| 405 |
+
LLAMA_LOG_DEBUG("%s: defragmenting KV cache\n", __func__);
|
| 406 |
|
| 407 |
+
if (defrag_prepare(lctx.graph_max_nodes())) {
|
| 408 |
+
ggml_backend_sched_reset(sched);
|
|
|
|
|
|
|
|
|
|
|
|
|
| 409 |
|
| 410 |
+
auto * gf = lctx.graph_init();
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 411 |
|
| 412 |
+
auto res = build_graph_defrag(lctx.get_cparams(), lctx.get_ctx_compute(), gf);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 413 |
|
| 414 |
+
ggml_backend_sched_alloc_graph(sched, gf);
|
|
|
|
|
|
|
| 415 |
|
| 416 |
+
res->set_inputs(nullptr);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 417 |
|
| 418 |
+
lctx.graph_compute(gf, false);
|
|
|
|
|
|
|
|
|
|
|
|
|
| 419 |
|
| 420 |
+
need_reserve = true;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 421 |
}
|
| 422 |
|
| 423 |
+
do_defrag = false;
|
| 424 |
+
}
|
| 425 |
+
|
| 426 |
+
return need_reserve;
|
| 427 |
+
}
|
| 428 |
+
|
| 429 |
+
void llama_kv_cache_unified::defrag_sched(float thold) {
|
| 430 |
+
// - do not defrag small contexts (i.e. < 2048 tokens)
|
| 431 |
+
// - count the padding towards the number of used tokens
|
| 432 |
+
const float fragmentation = n >= 2048 ? std::max(0.0f, 1.0f - (float(used + padding)/n)) : 0.0f;
|
| 433 |
+
|
| 434 |
+
// queue defragmentation for next llama_kv_cache_update
|
| 435 |
+
if (fragmentation > thold) {
|
| 436 |
+
LLAMA_LOG_DEBUG("%s: fragmentation: %.2f - requesting defrag\n", __func__, fragmentation);
|
| 437 |
+
|
| 438 |
+
do_defrag = true;
|
| 439 |
+
}
|
| 440 |
+
}
|
| 441 |
+
|
| 442 |
+
void llama_kv_cache_unified::set_full() {
|
| 443 |
+
n = size;
|
| 444 |
+
}
|
| 445 |
+
|
| 446 |
+
llama_sbatch llama_kv_cache_unified::sbatch_init(
|
| 447 |
+
const llama_batch & batch,
|
| 448 |
+
bool logits_all) {
|
| 449 |
+
return llama_sbatch(batch, hparams.n_embd, true, logits_all);
|
| 450 |
+
}
|
| 451 |
+
|
| 452 |
+
llama_ubatch llama_kv_cache_unified::ubatch_next(
|
| 453 |
+
llama_sbatch & sbatch,
|
| 454 |
+
uint32_t n_ubatch,
|
| 455 |
+
bool embd_pooled) const {
|
| 456 |
+
GGML_UNUSED(embd_pooled);
|
| 457 |
+
return sbatch.split_simple(n_ubatch);
|
| 458 |
+
}
|
| 459 |
+
|
| 460 |
+
bool llama_kv_cache_unified::find_slot(
|
| 461 |
+
const llama_ubatch & ubatch) {
|
| 462 |
+
const uint32_t n_tokens = ubatch.n_tokens;
|
| 463 |
+
const uint32_t n_seqs = ubatch.n_seqs;
|
| 464 |
+
const uint32_t n_seq_tokens = ubatch.n_seq_tokens;
|
| 465 |
|
| 466 |
+
// if we have enough unused cells before the current head ->
|
| 467 |
+
// better to start searching from the beginning of the cache, hoping to fill it
|
| 468 |
+
if (head > used + 2*ubatch.n_tokens) {
|
| 469 |
+
head = 0;
|
| 470 |
}
|
| 471 |
|
| 472 |
// otherwise, one cell per token.
|
|
|
|
| 520 |
|
| 521 |
pending.ranges.push_back({head, head + n_tokens});
|
| 522 |
|
| 523 |
+
// a heuristic, to avoid attending the full cache if it is not yet utilized
|
| 524 |
+
// after enough generations, the benefit from this heuristic disappears
|
| 525 |
+
// if we start defragmenting the cache, the benefit from this will be more important
|
| 526 |
+
n = std::min(size, std::max(padding, GGML_PAD(cell_max(), padding)));
|
| 527 |
+
|
| 528 |
+
//printf("n = %5d, used = %5d, head = %5d\n", n, used, head);
|
| 529 |
+
|
| 530 |
return true;
|
| 531 |
}
|
| 532 |
|
| 533 |
+
int32_t llama_kv_cache_unified::get_n_tokens() const {
|
| 534 |
+
int32_t result = 0;
|
| 535 |
+
|
| 536 |
+
for (uint32_t i = 0; i < size; i++) {
|
| 537 |
+
result += cells[i].seq_id.size();
|
| 538 |
+
}
|
| 539 |
+
|
| 540 |
+
return result;
|
| 541 |
}
|
| 542 |
|
| 543 |
+
int32_t llama_kv_cache_unified::get_used_cells() const {
|
| 544 |
+
return used;
|
| 545 |
+
}
|
| 546 |
|
| 547 |
+
bool llama_kv_cache_unified::get_can_shift() const {
|
| 548 |
+
return can_shift;
|
| 549 |
+
}
|
| 550 |
+
|
| 551 |
+
llama_pos llama_kv_cache_unified::get_pos_max() const {
|
| 552 |
+
llama_pos pos_max = -1;
|
| 553 |
+
for (const auto & cell : cells) {
|
| 554 |
+
pos_max = std::max(pos_max, cell.pos);
|
| 555 |
}
|
| 556 |
|
| 557 |
+
return pos_max;
|
| 558 |
+
}
|
| 559 |
+
|
| 560 |
+
size_t llama_kv_cache_unified::total_size() const {
|
| 561 |
+
size_t size = 0;
|
| 562 |
+
for (const auto & buf : bufs) {
|
| 563 |
+
size += ggml_backend_buffer_get_size(buf.get());
|
| 564 |
+
}
|
| 565 |
+
|
| 566 |
+
return size;
|
| 567 |
}
|
| 568 |
|
| 569 |
size_t llama_kv_cache_unified::size_k_bytes() const {
|
|
|
|
| 586 |
return size_v_bytes;
|
| 587 |
}
|
| 588 |
|
| 589 |
+
ggml_tensor * llama_kv_cache_unified::build_rope_shift(
|
| 590 |
+
const llama_cparams & cparams,
|
| 591 |
+
ggml_context * ctx,
|
| 592 |
+
ggml_tensor * cur,
|
| 593 |
+
ggml_tensor * shift,
|
| 594 |
+
ggml_tensor * factors,
|
| 595 |
+
float freq_base,
|
| 596 |
+
float freq_scale) const {
|
| 597 |
+
const auto & n_ctx_orig = cparams.n_ctx_orig_yarn;
|
| 598 |
|
| 599 |
+
const auto & yarn_ext_factor = cparams.yarn_ext_factor;
|
| 600 |
+
const auto & yarn_beta_fast = cparams.yarn_beta_fast;
|
| 601 |
+
const auto & yarn_beta_slow = cparams.yarn_beta_slow;
|
| 602 |
|
| 603 |
+
const auto & n_rot = hparams.n_rot;
|
| 604 |
+
const auto & rope_type = hparams.rope_type;
|
| 605 |
|
| 606 |
+
// See llm_build_deepseek2() for why attn_factor has to be scaled for YaRN RoPE to work correctly.
|
| 607 |
+
// See https://github.com/ggerganov/llama.cpp/discussions/7416 for detailed explanation.
|
| 608 |
+
const float yarn_attn_factor = model.arch == LLM_ARCH_DEEPSEEK2 ? 1.0f / (1.0f + 0.1f * logf(1.0f / freq_scale)) : cparams.yarn_attn_factor;
|
| 609 |
|
| 610 |
+
ggml_tensor * tmp;
|
|
|
|
| 611 |
|
| 612 |
+
if (ggml_is_quantized(cur->type)) {
|
| 613 |
+
// dequantize to f32 -> RoPE -> quantize back
|
| 614 |
+
tmp = ggml_cast(ctx, cur, GGML_TYPE_F32);
|
|
|
|
|
|
|
|
|
|
| 615 |
|
| 616 |
+
tmp = ggml_rope_ext(ctx, tmp,
|
| 617 |
+
shift, factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
| 618 |
+
yarn_ext_factor, yarn_attn_factor, yarn_beta_fast, yarn_beta_slow);
|
|
|
|
|
|
|
|
|
|
|
|
|
| 619 |
|
| 620 |
+
tmp = ggml_cpy(ctx, tmp, cur);
|
| 621 |
+
} else {
|
| 622 |
+
// we rotate only the first n_rot dimensions
|
| 623 |
+
tmp = ggml_rope_ext_inplace(ctx, cur,
|
| 624 |
+
shift, factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
| 625 |
+
yarn_ext_factor, yarn_attn_factor, yarn_beta_fast, yarn_beta_slow);
|
| 626 |
+
}
|
| 627 |
|
| 628 |
+
return tmp;
|
| 629 |
+
}
|
| 630 |
|
| 631 |
+
class llm_graph_input_k_shift : public llm_graph_input_i {
|
| 632 |
+
public:
|
| 633 |
+
llm_graph_input_k_shift(const llama_kv_cache_unified * kv_self) : kv_self(kv_self) {}
|
| 634 |
+
virtual ~llm_graph_input_k_shift() = default;
|
| 635 |
|
| 636 |
+
void set_input(const llama_ubatch * ubatch) override;
|
|
|
|
| 637 |
|
| 638 |
+
ggml_tensor * k_shift; // I32 [kv_size]
|
| 639 |
|
| 640 |
+
const llama_kv_cache_unified * kv_self;
|
| 641 |
+
};
|
| 642 |
|
| 643 |
+
void llm_graph_input_k_shift::set_input(const llama_ubatch * ubatch) {
|
| 644 |
+
GGML_UNUSED(ubatch);
|
| 645 |
+
|
| 646 |
+
if (k_shift) {
|
| 647 |
+
assert(ggml_backend_buffer_is_host(k_shift->buffer));
|
| 648 |
+
|
| 649 |
+
int32_t * data = (int32_t *) k_shift->data;
|
| 650 |
+
|
| 651 |
+
for (uint32_t i = 0; i < kv_self->size; ++i) {
|
| 652 |
+
data[i] = kv_self->cells[i].delta;
|
| 653 |
}
|
| 654 |
+
}
|
| 655 |
+
}
|
| 656 |
|
| 657 |
+
llm_graph_result_ptr llama_kv_cache_unified::build_graph_shift(
|
| 658 |
+
const llama_cparams & cparams,
|
| 659 |
+
ggml_context * ctx,
|
| 660 |
+
ggml_cgraph * gf) const {
|
| 661 |
+
auto res = std::make_unique<llm_graph_result>();
|
| 662 |
|
| 663 |
+
const auto & n_layer = hparams.n_layer;
|
|
|
|
|
|
|
| 664 |
|
| 665 |
+
const auto & n_embd_head_k = hparams.n_embd_head_k;
|
| 666 |
+
//const auto & n_embd_head_v = hparams.n_embd_head_v;
|
|
|
|
| 667 |
|
| 668 |
+
const uint32_t n_ctx_per_seq = cparams.n_ctx / cparams.n_seq_max;
|
| 669 |
+
|
| 670 |
+
//GGML_ASSERT(kv_self->size == n_ctx);
|
| 671 |
+
|
| 672 |
+
auto inp = std::make_unique<llm_graph_input_k_shift>(this);
|
| 673 |
+
|
| 674 |
+
inp->k_shift = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, cparams.n_ctx);
|
| 675 |
+
ggml_set_input(inp->k_shift);
|
| 676 |
+
|
| 677 |
+
for (uint32_t il = 0; il < n_layer; ++il) {
|
| 678 |
+
const int64_t n_head_kv = hparams.n_head_kv(il);
|
| 679 |
+
const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(il);
|
| 680 |
+
|
| 681 |
+
const bool is_swa = hparams.is_swa(il);
|
| 682 |
+
|
| 683 |
+
// note: the swa rope params could become part of the cparams in the future
|
| 684 |
+
// if we decide to make them configurable, like the non-sliding ones
|
| 685 |
+
const float freq_base_l = is_swa ? hparams.rope_freq_base_train_swa : cparams.rope_freq_base;
|
| 686 |
+
const float freq_scale_l = is_swa ? hparams.rope_freq_scale_train_swa : cparams.rope_freq_scale;
|
| 687 |
+
|
| 688 |
+
ggml_tensor * rope_factors = model.get_rope_factors(n_ctx_per_seq, il);
|
| 689 |
+
|
| 690 |
+
ggml_tensor * k =
|
| 691 |
+
ggml_view_3d(ctx, k_l[il],
|
| 692 |
+
n_embd_head_k, n_head_kv, size,
|
| 693 |
+
ggml_row_size(k_l[il]->type, n_embd_head_k),
|
| 694 |
+
ggml_row_size(k_l[il]->type, n_embd_k_gqa),
|
| 695 |
+
0);
|
| 696 |
+
|
| 697 |
+
ggml_tensor * cur = build_rope_shift(cparams, ctx, k, inp->k_shift, rope_factors, freq_base_l, freq_scale_l);
|
| 698 |
+
|
| 699 |
+
ggml_build_forward_expand(gf, cur);
|
| 700 |
+
}
|
| 701 |
+
|
| 702 |
+
res->add_input(std::move(inp));
|
| 703 |
+
|
| 704 |
+
return res;
|
| 705 |
+
}
|
| 706 |
+
|
| 707 |
+
llm_graph_result_ptr llama_kv_cache_unified::build_graph_defrag(
|
| 708 |
+
const llama_cparams & cparams,
|
| 709 |
+
ggml_context * ctx,
|
| 710 |
+
ggml_cgraph * gf) const {
|
| 711 |
+
auto res = std::make_unique<llm_graph_result>();
|
| 712 |
+
|
| 713 |
+
const auto & ids = defrag_info.ids;
|
| 714 |
+
|
| 715 |
+
#if 0
|
| 716 |
+
// CPU defrag
|
| 717 |
+
//
|
| 718 |
+
// TODO: optimizations are possible:
|
| 719 |
+
// - multiple threads
|
| 720 |
+
// - avoid copying to the host memory when already there
|
| 721 |
+
//
|
| 722 |
+
// likely not worth the effort, as we have ggml_graph based defrag
|
| 723 |
+
//
|
| 724 |
+
|
| 725 |
+
const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa();
|
| 726 |
+
const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa();
|
| 727 |
+
|
| 728 |
+
const uint32_t kv_size = size;
|
| 729 |
+
|
| 730 |
+
std::vector<uint8_t> buf_k;
|
| 731 |
+
std::vector<uint8_t> buf_v;
|
| 732 |
+
|
| 733 |
+
for (uint32_t il = 0; il < n_layer; ++il) {
|
| 734 |
+
const size_t k_size_row = ggml_row_size(k_l[il]->type, n_embd_k_gqa);
|
| 735 |
+
const size_t k_size = ggml_row_size(k_l[il]->type, n_embd_k_gqa*kv_size);
|
| 736 |
+
|
| 737 |
+
const size_t v_size_el = ggml_type_size(v_l[il]->type);
|
| 738 |
+
const size_t v_size = ggml_row_size (v_l[il]->type, n_embd_v_gqa*kv_size);
|
| 739 |
+
|
| 740 |
+
buf_k.resize(k_size);
|
| 741 |
+
buf_v.resize(v_size);
|
| 742 |
+
|
| 743 |
+
ggml_backend_tensor_get(k_l[il], buf_k.data(), 0, buf_k.size());
|
| 744 |
+
ggml_backend_tensor_get(v_l[il], buf_v.data(), 0, buf_v.size());
|
| 745 |
+
|
| 746 |
+
// batch move [i, i+nm) to [id, id+nm)
|
| 747 |
+
// note: cells can move only to a lower index
|
| 748 |
+
for (uint32_t i = 0; i < n_kv; ++i) {
|
| 749 |
+
const uint32_t id = ids[i];
|
| 750 |
+
|
| 751 |
+
if (i == id || id == n_kv) {
|
| 752 |
+
continue;
|
| 753 |
+
}
|
| 754 |
+
|
| 755 |
+
uint32_t nm = 1;
|
| 756 |
+
|
| 757 |
+
while (i + nm < n_kv && ids[i + nm] == id + nm) {
|
| 758 |
+
nm++;
|
| 759 |
+
}
|
| 760 |
+
|
| 761 |
+
// move keys
|
| 762 |
+
{
|
| 763 |
+
const int64_t os = i*k_size_row;
|
| 764 |
+
const int64_t od = id*k_size_row;
|
| 765 |
+
|
| 766 |
+
memcpy(buf_k.data() + od, buf_k.data() + os, nm*k_size_row);
|
| 767 |
+
}
|
| 768 |
+
|
| 769 |
+
// move values (note: they are transposed)
|
| 770 |
+
{
|
| 771 |
+
const int64_t os = i;
|
| 772 |
+
const int64_t od = id;
|
| 773 |
+
|
| 774 |
+
for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
|
| 775 |
+
memcpy(buf_v.data() + (od + j*kv_size)*v_size_el, buf_v.data() + (os + j*kv_size)*v_size_el, nm*v_size_el);
|
| 776 |
+
}
|
| 777 |
+
}
|
| 778 |
+
|
| 779 |
+
i += nm - 1;
|
| 780 |
+
}
|
| 781 |
+
|
| 782 |
+
ggml_backend_tensor_set(k_l[il], buf_k.data(), 0, buf_k.size());
|
| 783 |
+
ggml_backend_tensor_set(v_l[il], buf_v.data(), 0, buf_v.size());
|
| 784 |
+
}
|
| 785 |
+
#else
|
| 786 |
+
for (uint32_t i = 0; i < ids.size(); ++i) {
|
| 787 |
+
const uint32_t id = ids[i];
|
| 788 |
+
|
| 789 |
+
if (i == id || id == ids.size()) {
|
| 790 |
+
continue;
|
| 791 |
+
}
|
| 792 |
+
|
| 793 |
+
uint32_t nm = 1;
|
| 794 |
+
|
| 795 |
+
while (i + nm < ids.size() && ids[i + nm] == id + nm) {
|
| 796 |
+
nm++;
|
| 797 |
+
}
|
| 798 |
+
|
| 799 |
+
for (uint32_t il = 0; il < hparams.n_layer; ++il) { // NOLINT
|
| 800 |
+
const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(il);
|
| 801 |
+
const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa(il);
|
| 802 |
+
|
| 803 |
+
ggml_tensor * view_k_src = ggml_view_2d(ctx, k_l[il],
|
| 804 |
+
n_embd_k_gqa, nm,
|
| 805 |
+
ggml_row_size(k_l[il]->type, n_embd_k_gqa),
|
| 806 |
+
ggml_row_size(k_l[il]->type, n_embd_k_gqa*i));
|
| 807 |
+
|
| 808 |
+
ggml_tensor * view_k_dst = ggml_view_2d(ctx, k_l[il],
|
| 809 |
+
n_embd_k_gqa, nm,
|
| 810 |
+
ggml_row_size(k_l[il]->type, n_embd_k_gqa),
|
| 811 |
+
ggml_row_size(k_l[il]->type, n_embd_k_gqa*id));
|
| 812 |
+
|
| 813 |
+
ggml_tensor * view_v_src;
|
| 814 |
+
ggml_tensor * view_v_dst;
|
| 815 |
+
|
| 816 |
+
if (cparams.flash_attn) {
|
| 817 |
+
// NOTE: the V cache is not transposed when using flash attention
|
| 818 |
+
view_v_src = ggml_view_2d(ctx, v_l[il],
|
| 819 |
+
n_embd_v_gqa, nm,
|
| 820 |
+
ggml_row_size(v_l[il]->type, n_embd_v_gqa),
|
| 821 |
+
ggml_row_size(v_l[il]->type, n_embd_v_gqa*i));
|
| 822 |
+
|
| 823 |
+
view_v_dst = ggml_view_2d(ctx, v_l[il],
|
| 824 |
+
n_embd_v_gqa, nm,
|
| 825 |
+
ggml_row_size(v_l[il]->type, n_embd_v_gqa),
|
| 826 |
+
ggml_row_size(v_l[il]->type, n_embd_v_gqa*id));
|
| 827 |
+
} else {
|
| 828 |
+
view_v_src = ggml_view_2d(ctx, v_l[il],
|
| 829 |
+
nm, n_embd_v_gqa,
|
| 830 |
+
ggml_row_size(v_l[il]->type, size),
|
| 831 |
+
ggml_row_size(v_l[il]->type, i));
|
| 832 |
+
|
| 833 |
+
view_v_dst = ggml_view_2d(ctx, v_l[il],
|
| 834 |
+
nm, n_embd_v_gqa,
|
| 835 |
+
ggml_row_size(v_l[il]->type, size),
|
| 836 |
+
ggml_row_size(v_l[il]->type, id));
|
| 837 |
+
}
|
| 838 |
+
|
| 839 |
+
ggml_build_forward_expand(gf, ggml_cpy(ctx, view_k_src, view_k_dst));
|
| 840 |
+
ggml_build_forward_expand(gf, ggml_cpy(ctx, view_v_src, view_v_dst));
|
| 841 |
+
}
|
| 842 |
+
|
| 843 |
+
i += nm - 1;
|
| 844 |
+
}
|
| 845 |
+
|
| 846 |
+
//LLAMA_LOG_INFO("gf->n_nodes = %d\n", gf->n_nodes);
|
| 847 |
+
#endif
|
| 848 |
+
|
| 849 |
+
return res;
|
| 850 |
+
}
|
| 851 |
+
|
| 852 |
+
bool llama_kv_cache_unified::defrag_prepare(int32_t n_max_nodes) {
|
| 853 |
+
const uint32_t n_layer = hparams.n_layer;
|
| 854 |
+
|
| 855 |
+
const uint32_t n_kv = cell_max();
|
| 856 |
+
const uint32_t n_used = used;
|
| 857 |
+
|
| 858 |
+
assert(n_used <= n_kv);
|
| 859 |
+
|
| 860 |
+
//const int64_t t_start = ggml_time_us();
|
| 861 |
+
|
| 862 |
+
// number of cells moved
|
| 863 |
+
uint32_t n_moves = 0;
|
| 864 |
+
|
| 865 |
+
// each move requires 6*n_layer tensors (see graph_build_kv_self_defrag)
|
| 866 |
+
// - source view, destination view, copy operation
|
| 867 |
+
// - x2 for keys and values
|
| 868 |
+
//const uint32_t max_moves = max_nodes()/(6*n_layer);
|
| 869 |
+
// TODO: tmp fix https://github.com/ggerganov/llama.cpp/issues/6685#issuecomment-2057579516
|
| 870 |
+
const uint32_t max_moves = (n_max_nodes - 2*n_layer)/(6*n_layer);
|
| 871 |
+
|
| 872 |
+
// determine which KV cells to move where
|
| 873 |
+
//
|
| 874 |
+
// cell i moves to ids[i]
|
| 875 |
+
//
|
| 876 |
+
// if ids[i] == i || ids[i] == n_kv, then cell i is not moved
|
| 877 |
+
//
|
| 878 |
+
auto & ids = defrag_info.ids;
|
| 879 |
+
|
| 880 |
+
ids.clear();
|
| 881 |
+
ids.resize(n_kv, n_kv);
|
| 882 |
+
|
| 883 |
+
for (uint32_t i0 = 0; i0 < n_used; ++i0) {
|
| 884 |
+
const auto & cell0 = cells[i0];
|
| 885 |
+
|
| 886 |
+
if (!cell0.is_empty()) {
|
| 887 |
+
ids[i0] = i0;
|
| 888 |
+
|
| 889 |
+
continue;
|
| 890 |
+
}
|
| 891 |
+
|
| 892 |
+
// found a hole - fill it with data from the end of the cache
|
| 893 |
+
|
| 894 |
+
uint32_t nh = 1;
|
| 895 |
+
|
| 896 |
+
// determine the size of the hole
|
| 897 |
+
while (i0 + nh < n_used && cells[i0 + nh].is_empty()) {
|
| 898 |
+
nh++;
|
| 899 |
+
}
|
| 900 |
+
|
| 901 |
+
uint32_t nf = 0;
|
| 902 |
+
uint32_t is = n_kv - 1;
|
| 903 |
+
|
| 904 |
+
// starting from the end, find nh non-empty cells
|
| 905 |
+
for (; is > i0; --is) {
|
| 906 |
+
const auto & cell1 = cells[is];
|
| 907 |
+
|
| 908 |
+
if (cell1.is_empty() || ids[is] != n_kv) {
|
| 909 |
+
continue;
|
| 910 |
+
}
|
| 911 |
+
|
| 912 |
+
// non-empty cell which is not yet moved
|
| 913 |
+
nf++;
|
| 914 |
|
| 915 |
if (nf == nh) {
|
| 916 |
break;
|
|
|
|
| 951 |
cells[i0 + nf] = cell1;
|
| 952 |
|
| 953 |
// clear the old cell and move the head there
|
| 954 |
+
cell1 = kv_cell();
|
| 955 |
head = n_used;
|
| 956 |
|
| 957 |
if (!cont) {
|
|
|
|
| 979 |
return false;
|
| 980 |
}
|
| 981 |
|
| 982 |
+
LLAMA_LOG_DEBUG("%s: (tmp log) KV defrag cell moves: %u\n", __func__, n_moves);
|
| 983 |
|
| 984 |
+
LLAMA_LOG_DEBUG("%s: expected gf nodes: %u\n", __func__, 6*n_moves*n_layer);
|
| 985 |
|
| 986 |
return true;
|
| 987 |
}
|
| 988 |
|
| 989 |
+
uint32_t llama_kv_cache_unified::cell_max() const {
|
| 990 |
+
for (uint32_t i = size; i > 0; --i) {
|
| 991 |
+
const kv_cell & cell = cells[i - 1];
|
| 992 |
+
|
| 993 |
+
if (cell.pos >= 0 && !cell.is_empty()) {
|
| 994 |
+
return i;
|
| 995 |
+
}
|
| 996 |
+
}
|
| 997 |
+
|
| 998 |
+
return 0;
|
| 999 |
+
}
|
| 1000 |
+
|
| 1001 |
void llama_kv_cache_unified::state_write(llama_io_write_i & io, llama_seq_id seq_id) const {
|
| 1002 |
std::vector<std::pair<uint32_t, uint32_t>> cell_ranges; // ranges, from inclusive, to exclusive
|
| 1003 |
uint32_t cell_count = 0;
|
|
|
|
| 1206 |
clear();
|
| 1207 |
|
| 1208 |
for (uint32_t i = 0; i < cell_count; ++i) {
|
| 1209 |
+
kv_cell & cell = cells[i];
|
| 1210 |
|
| 1211 |
llama_pos pos;
|
| 1212 |
uint32_t n_seq_id;
|
|
|
|
| 1229 |
}
|
| 1230 |
|
| 1231 |
cell.seq_id.insert(seq_id);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1232 |
}
|
| 1233 |
}
|
| 1234 |
|
|
|
|
| 1236 |
used = cell_count;
|
| 1237 |
}
|
| 1238 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1239 |
return true;
|
| 1240 |
}
|
| 1241 |
|
|
|
|
| 1253 |
LLAMA_LOG_ERROR("%s: not enough cells in kv cache to restore state (%u > %u)\n", __func__, cell_count, size);
|
| 1254 |
return false;
|
| 1255 |
}
|
| 1256 |
+
if (this->v_trans != (bool) v_trans) {
|
| 1257 |
+
LLAMA_LOG_ERROR("%s: incompatible V transposition\n", __func__);
|
| 1258 |
+
return false;
|
| 1259 |
+
}
|
| 1260 |
+
|
| 1261 |
+
// For each layer, read the keys for each cell, one row is one cell, read as one contiguous block
|
| 1262 |
+
for (uint32_t il = 0; il < n_layer; ++il) {
|
| 1263 |
+
const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(il) + hparams.n_embd_k_s();
|
| 1264 |
+
|
| 1265 |
+
// Read type of key
|
| 1266 |
+
int32_t k_type_i_ref;
|
| 1267 |
+
io.read_to(&k_type_i_ref, sizeof(k_type_i_ref));
|
| 1268 |
+
const int32_t k_type_i = (int32_t) k_l[il]->type;
|
| 1269 |
+
if (k_type_i != k_type_i_ref) {
|
| 1270 |
+
LLAMA_LOG_ERROR("%s: mismatched key type (%d != %d, layer %d)\n", __func__, k_type_i, k_type_i_ref, il);
|
| 1271 |
+
return false;
|
| 1272 |
+
}
|
| 1273 |
+
|
| 1274 |
+
// Read row size of key
|
| 1275 |
+
uint64_t k_size_row_ref;
|
| 1276 |
+
io.read_to(&k_size_row_ref, sizeof(k_size_row_ref));
|
| 1277 |
+
const size_t k_size_row = ggml_row_size(k_l[il]->type, n_embd_k_gqa);
|
| 1278 |
+
if (k_size_row != k_size_row_ref) {
|
| 1279 |
+
LLAMA_LOG_ERROR("%s: mismatched key row size (%zu != %zu, layer %d)\n", __func__, k_size_row, (size_t) k_size_row_ref, il);
|
| 1280 |
+
return false;
|
| 1281 |
+
}
|
| 1282 |
+
|
| 1283 |
+
if (cell_count) {
|
| 1284 |
+
// Read and set the keys for the whole cell range
|
| 1285 |
+
ggml_backend_tensor_set(k_l[il], io.read(cell_count * k_size_row), head * k_size_row, cell_count * k_size_row);
|
| 1286 |
+
}
|
| 1287 |
+
}
|
| 1288 |
+
|
| 1289 |
+
if (!this->v_trans) {
|
| 1290 |
+
for (uint32_t il = 0; il < n_layer; ++il) {
|
| 1291 |
+
const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s();
|
| 1292 |
+
|
| 1293 |
+
// Read type of value
|
| 1294 |
+
int32_t v_type_i_ref;
|
| 1295 |
+
io.read_to(&v_type_i_ref, sizeof(v_type_i_ref));
|
| 1296 |
+
const int32_t v_type_i = (int32_t)v_l[il]->type;
|
| 1297 |
+
if (v_type_i != v_type_i_ref) {
|
| 1298 |
+
LLAMA_LOG_ERROR("%s: mismatched value type (%d != %d, layer %d)\n", __func__, v_type_i, v_type_i_ref, il);
|
| 1299 |
+
return false;
|
| 1300 |
+
}
|
| 1301 |
+
|
| 1302 |
+
// Read row size of value
|
| 1303 |
+
uint64_t v_size_row_ref;
|
| 1304 |
+
io.read_to(&v_size_row_ref, sizeof(v_size_row_ref));
|
| 1305 |
+
const size_t v_size_row = ggml_row_size(v_l[il]->type, n_embd_v_gqa);
|
| 1306 |
+
if (v_size_row != v_size_row_ref) {
|
| 1307 |
+
LLAMA_LOG_ERROR("%s: mismatched value row size (%zu != %zu, layer %d)\n", __func__, v_size_row, (size_t) v_size_row_ref, il);
|
| 1308 |
+
return false;
|
| 1309 |
+
}
|
| 1310 |
+
|
| 1311 |
+
if (cell_count) {
|
| 1312 |
+
// Read and set the values for the whole cell range
|
| 1313 |
+
ggml_backend_tensor_set(v_l[il], io.read(cell_count * v_size_row), head * v_size_row, cell_count * v_size_row);
|
| 1314 |
+
}
|
| 1315 |
+
}
|
| 1316 |
+
} else {
|
| 1317 |
+
// For each layer, read the values for each cell (transposed)
|
| 1318 |
+
for (uint32_t il = 0; il < n_layer; ++il) {
|
| 1319 |
+
const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s();
|
| 1320 |
+
|
| 1321 |
+
// Read type of value
|
| 1322 |
+
int32_t v_type_i_ref;
|
| 1323 |
+
io.read_to(&v_type_i_ref, sizeof(v_type_i_ref));
|
| 1324 |
+
const int32_t v_type_i = (int32_t)v_l[il]->type;
|
| 1325 |
+
if (v_type_i != v_type_i_ref) {
|
| 1326 |
+
LLAMA_LOG_ERROR("%s: mismatched value type (%d != %d, layer %d)\n", __func__, v_type_i, v_type_i_ref, il);
|
| 1327 |
+
return false;
|
| 1328 |
+
}
|
| 1329 |
+
|
| 1330 |
+
// Read element size of value
|
| 1331 |
+
uint32_t v_size_el_ref;
|
| 1332 |
+
io.read_to(&v_size_el_ref, sizeof(v_size_el_ref));
|
| 1333 |
+
const size_t v_size_el = ggml_type_size(v_l[il]->type);
|
| 1334 |
+
if (v_size_el != v_size_el_ref) {
|
| 1335 |
+
LLAMA_LOG_ERROR("%s: mismatched value element size (%zu != %zu, layer %d)\n", __func__, v_size_el, (size_t) v_size_el_ref, il);
|
| 1336 |
+
return false;
|
| 1337 |
+
}
|
| 1338 |
+
|
| 1339 |
+
// Read GQA embedding size
|
| 1340 |
+
uint32_t n_embd_v_gqa_ref;
|
| 1341 |
+
io.read_to(&n_embd_v_gqa_ref, sizeof(n_embd_v_gqa_ref));
|
| 1342 |
+
if (n_embd_v_gqa != n_embd_v_gqa_ref) {
|
| 1343 |
+
LLAMA_LOG_ERROR("%s: mismatched GQA embedding size (%u != %u, layer %d)\n", __func__, n_embd_v_gqa, n_embd_v_gqa_ref, il);
|
| 1344 |
+
return false;
|
| 1345 |
+
}
|
| 1346 |
+
|
| 1347 |
+
if (cell_count) {
|
| 1348 |
+
// For each row in the transposed matrix, read the values for the whole cell range
|
| 1349 |
+
for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
|
| 1350 |
+
const size_t dst_offset = (head + j * size) * v_size_el;
|
| 1351 |
+
ggml_backend_tensor_set(v_l[il], io.read(cell_count * v_size_el), dst_offset, cell_count * v_size_el);
|
| 1352 |
+
}
|
| 1353 |
+
}
|
| 1354 |
+
}
|
| 1355 |
+
}
|
| 1356 |
+
|
| 1357 |
+
return true;
|
| 1358 |
+
}
|
| 1359 |
+
|
| 1360 |
+
//
|
| 1361 |
+
// llama_kv_cache_recurrent
|
| 1362 |
+
//
|
| 1363 |
+
|
| 1364 |
+
llama_kv_cache_recurrent::llama_kv_cache_recurrent(
|
| 1365 |
+
const llama_model & model,
|
| 1366 |
+
ggml_type type_k,
|
| 1367 |
+
ggml_type type_v,
|
| 1368 |
+
bool offload,
|
| 1369 |
+
uint32_t kv_size) : hparams(model.hparams) {
|
| 1370 |
+
const int32_t n_layer = hparams.n_layer;
|
| 1371 |
+
|
| 1372 |
+
LLAMA_LOG_INFO("%s: kv_size = %d, type_k = '%s', type_v = '%s', n_layer = %d\n",
|
| 1373 |
+
__func__, kv_size, ggml_type_name(type_k), ggml_type_name(type_v), n_layer);
|
| 1374 |
+
|
| 1375 |
+
head = 0;
|
| 1376 |
+
size = kv_size;
|
| 1377 |
+
used = 0;
|
| 1378 |
+
|
| 1379 |
+
this->type_k = type_k;
|
| 1380 |
+
this->type_v = type_v;
|
| 1381 |
+
|
| 1382 |
+
cells.clear();
|
| 1383 |
+
cells.resize(kv_size);
|
| 1384 |
+
|
| 1385 |
+
// create a context for each buffer type
|
| 1386 |
+
std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
|
| 1387 |
+
auto ctx_for_buft = [&](ggml_backend_buffer_type_t buft) -> ggml_context * {
|
| 1388 |
+
auto it = ctx_map.find(buft);
|
| 1389 |
+
if (it == ctx_map.end()) {
|
| 1390 |
+
ggml_init_params params = {
|
| 1391 |
+
/*.mem_size =*/ size_t(2u*n_layer*ggml_tensor_overhead()),
|
| 1392 |
+
/*.mem_buffer =*/ NULL,
|
| 1393 |
+
/*.no_alloc =*/ true,
|
| 1394 |
+
};
|
| 1395 |
+
|
| 1396 |
+
ggml_context * ctx = ggml_init(params);
|
| 1397 |
+
if (!ctx) {
|
| 1398 |
+
return nullptr;
|
| 1399 |
+
}
|
| 1400 |
+
|
| 1401 |
+
ctx_map[buft] = ctx;
|
| 1402 |
+
ctxs.emplace_back(ctx);
|
| 1403 |
+
|
| 1404 |
+
return ctx;
|
| 1405 |
+
}
|
| 1406 |
+
|
| 1407 |
+
return it->second;
|
| 1408 |
+
};
|
| 1409 |
+
|
| 1410 |
+
k_l.reserve(n_layer);
|
| 1411 |
+
v_l.reserve(n_layer);
|
| 1412 |
+
|
| 1413 |
+
for (int i = 0; i < n_layer; i++) {
|
| 1414 |
+
const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(i) + hparams.n_embd_k_s();
|
| 1415 |
+
const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(i) + hparams.n_embd_v_s();
|
| 1416 |
+
|
| 1417 |
+
const char * dev_name = "CPU";
|
| 1418 |
+
|
| 1419 |
+
ggml_backend_buffer_type_t buft = ggml_backend_cpu_buffer_type();
|
| 1420 |
+
|
| 1421 |
+
if (offload) {
|
| 1422 |
+
auto * dev = model.dev_layer(i);
|
| 1423 |
+
buft = ggml_backend_dev_buffer_type(dev);
|
| 1424 |
+
|
| 1425 |
+
dev_name = ggml_backend_dev_name(dev);
|
| 1426 |
+
}
|
| 1427 |
+
|
| 1428 |
+
LLAMA_LOG_DEBUG("%s, layer %3d: dev = %s\n", __func__, i, dev_name);
|
| 1429 |
+
|
| 1430 |
+
ggml_context * ctx = ctx_for_buft(buft);
|
| 1431 |
+
if (!ctx) {
|
| 1432 |
+
throw std::runtime_error("failed to create ggml context for kv cache");
|
| 1433 |
+
}
|
| 1434 |
+
|
| 1435 |
+
ggml_tensor * k = ggml_new_tensor_1d(ctx, type_k, n_embd_k_gqa*kv_size);
|
| 1436 |
+
ggml_tensor * v = ggml_new_tensor_1d(ctx, type_v, n_embd_v_gqa*kv_size);
|
| 1437 |
+
ggml_format_name(k, "cache_k_l%d", i);
|
| 1438 |
+
ggml_format_name(v, "cache_v_l%d", i);
|
| 1439 |
+
k_l.push_back(k);
|
| 1440 |
+
v_l.push_back(v);
|
| 1441 |
+
}
|
| 1442 |
+
|
| 1443 |
+
// allocate tensors and initialize the buffers to avoid NaNs in the padding
|
| 1444 |
+
for (auto it : ctx_map) {
|
| 1445 |
+
auto * buft = it.first;
|
| 1446 |
+
auto * ctx = it.second;
|
| 1447 |
+
|
| 1448 |
+
ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
|
| 1449 |
+
if (!buf) {
|
| 1450 |
+
throw std::runtime_error("failed to allocate buffer for kv cache");
|
| 1451 |
+
}
|
| 1452 |
+
ggml_backend_buffer_clear(buf, 0);
|
| 1453 |
+
LLAMA_LOG_INFO("%s: %10s KV buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf)/1024.0/1024.0);
|
| 1454 |
+
bufs.emplace_back(buf);
|
| 1455 |
+
}
|
| 1456 |
+
|
| 1457 |
+
{
|
| 1458 |
+
const size_t memory_size_k = size_k_bytes();
|
| 1459 |
+
const size_t memory_size_v = size_v_bytes();
|
| 1460 |
+
|
| 1461 |
+
LLAMA_LOG_INFO("%s: KV self size = %7.2f MiB, K (%s): %7.2f MiB, V (%s): %7.2f MiB\n", __func__,
|
| 1462 |
+
(float)(memory_size_k + memory_size_v) / (1024.0f * 1024.0f),
|
| 1463 |
+
ggml_type_name(type_k), (float)memory_size_k / (1024.0f * 1024.0f),
|
| 1464 |
+
ggml_type_name(type_v), (float)memory_size_v / (1024.0f * 1024.0f));
|
| 1465 |
+
}
|
| 1466 |
+
}
|
| 1467 |
+
|
| 1468 |
+
void llama_kv_cache_recurrent::clear() {
|
| 1469 |
+
for (int32_t i = 0; i < (int32_t) size; ++i) {
|
| 1470 |
+
cells[i].pos = -1;
|
| 1471 |
+
cells[i].seq_id.clear();
|
| 1472 |
+
cells[i].src = -1;
|
| 1473 |
+
cells[i].tail = -1;
|
| 1474 |
+
}
|
| 1475 |
+
head = 0;
|
| 1476 |
+
used = 0;
|
| 1477 |
+
|
| 1478 |
+
for (auto & buf : bufs) {
|
| 1479 |
+
ggml_backend_buffer_clear(buf.get(), 0);
|
| 1480 |
+
}
|
| 1481 |
+
}
|
| 1482 |
+
|
| 1483 |
+
bool llama_kv_cache_recurrent::seq_rm(llama_seq_id seq_id, llama_pos p0, llama_pos p1) {
|
| 1484 |
+
uint32_t new_head = size;
|
| 1485 |
+
|
| 1486 |
+
if (p0 < 0) {
|
| 1487 |
+
p0 = 0;
|
| 1488 |
+
}
|
| 1489 |
+
|
| 1490 |
+
if (p1 < 0) {
|
| 1491 |
+
p1 = std::numeric_limits<llama_pos>::max();
|
| 1492 |
+
}
|
| 1493 |
+
|
| 1494 |
+
// models like Mamba or RWKV can't have a state partially erased
|
| 1495 |
+
if (seq_id >= (int64_t) size) {
|
| 1496 |
+
// could be fatal
|
| 1497 |
+
return false;
|
| 1498 |
+
}
|
| 1499 |
+
if (0 <= seq_id) {
|
| 1500 |
+
int32_t & tail_id = cells[seq_id].tail;
|
| 1501 |
+
if (tail_id >= 0) {
|
| 1502 |
+
const kv_cell & cell = cells[tail_id];
|
| 1503 |
+
// partial intersection is invalid
|
| 1504 |
+
if ((0 < p0 && p0 <= cell.pos) || (0 < p1 && p1 <= cell.pos)) {
|
| 1505 |
+
return false;
|
| 1506 |
+
}
|
| 1507 |
+
// invalidate tails which will be cleared
|
| 1508 |
+
if (p0 <= cell.pos && cell.pos < p1) {
|
| 1509 |
+
tail_id = -1;
|
| 1510 |
+
}
|
| 1511 |
+
}
|
| 1512 |
+
} else {
|
| 1513 |
+
// seq_id is negative, then the range should include everything or nothing
|
| 1514 |
+
if (p0 != p1 && (p0 != 0 || p1 != std::numeric_limits<llama_pos>::max())) {
|
| 1515 |
+
return false;
|
| 1516 |
+
}
|
| 1517 |
+
}
|
| 1518 |
+
|
| 1519 |
+
for (uint32_t i = 0; i < size; ++i) {
|
| 1520 |
+
if (cells[i].pos >= p0 && cells[i].pos < p1) {
|
| 1521 |
+
if (seq_id < 0) {
|
| 1522 |
+
cells[i].seq_id.clear();
|
| 1523 |
+
} else if (cells[i].has_seq_id(seq_id)) {
|
| 1524 |
+
cells[i].seq_id.erase(seq_id);
|
| 1525 |
+
} else {
|
| 1526 |
+
continue;
|
| 1527 |
+
}
|
| 1528 |
+
if (cells[i].is_empty()) {
|
| 1529 |
+
// keep count of the number of used cells
|
| 1530 |
+
if (cells[i].pos >= 0) {
|
| 1531 |
+
used--;
|
| 1532 |
+
}
|
| 1533 |
+
cells[i].pos = -1;
|
| 1534 |
+
cells[i].src = -1;
|
| 1535 |
+
if (new_head == size) {
|
| 1536 |
+
new_head = i;
|
| 1537 |
+
}
|
| 1538 |
+
}
|
| 1539 |
+
}
|
| 1540 |
+
}
|
| 1541 |
+
|
| 1542 |
+
// If we freed up a slot, set head to it so searching can start there.
|
| 1543 |
+
if (new_head != size && new_head < head) {
|
| 1544 |
+
head = new_head;
|
| 1545 |
+
}
|
| 1546 |
+
|
| 1547 |
+
return true;
|
| 1548 |
+
}
|
| 1549 |
+
|
| 1550 |
+
void llama_kv_cache_recurrent::seq_cp(llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) {
|
| 1551 |
+
if (seq_id_src == seq_id_dst) {
|
| 1552 |
+
return;
|
| 1553 |
+
}
|
| 1554 |
+
|
| 1555 |
+
if (p0 < 0) {
|
| 1556 |
+
p0 = 0;
|
| 1557 |
+
}
|
| 1558 |
+
|
| 1559 |
+
if (p1 < 0) {
|
| 1560 |
+
p1 = std::numeric_limits<llama_pos>::max();
|
| 1561 |
+
}
|
| 1562 |
+
|
| 1563 |
+
if ((uint32_t) seq_id_dst < size && (uint32_t) seq_id_src < size) {
|
| 1564 |
+
kv_cell & tail_src = cells[seq_id_src];
|
| 1565 |
+
kv_cell & tail_dst = cells[seq_id_dst];
|
| 1566 |
+
if (tail_dst.tail >= 0) {
|
| 1567 |
+
// clear destination seq_id if it wasn't empty
|
| 1568 |
+
kv_cell & cell_dst = cells[tail_dst.tail];
|
| 1569 |
+
|
| 1570 |
+
cell_dst.seq_id.erase(seq_id_dst);
|
| 1571 |
+
tail_dst.tail = -1;
|
| 1572 |
+
if (cell_dst.seq_id.empty()) {
|
| 1573 |
+
cell_dst.pos = -1;
|
| 1574 |
+
cell_dst.src = -1;
|
| 1575 |
+
used -= 1;
|
| 1576 |
+
}
|
| 1577 |
+
}
|
| 1578 |
+
if (tail_src.tail >= 0) {
|
| 1579 |
+
kv_cell & cell_src = cells[tail_src.tail];
|
| 1580 |
+
|
| 1581 |
+
cell_src.seq_id.insert(seq_id_dst);
|
| 1582 |
+
tail_dst.tail = tail_src.tail;
|
| 1583 |
+
}
|
| 1584 |
+
}
|
| 1585 |
+
}
|
| 1586 |
+
|
| 1587 |
+
void llama_kv_cache_recurrent::seq_keep(llama_seq_id seq_id) {
|
| 1588 |
+
uint32_t new_head = size;
|
| 1589 |
+
|
| 1590 |
+
for (uint32_t i = 0; i < size; ++i) {
|
| 1591 |
+
if ((llama_seq_id) i != seq_id) {
|
| 1592 |
+
cells[i].tail = -1;
|
| 1593 |
+
}
|
| 1594 |
+
|
| 1595 |
+
if (!cells[i].has_seq_id(seq_id)) {
|
| 1596 |
+
if (cells[i].pos >= 0) {
|
| 1597 |
+
used--;
|
| 1598 |
+
}
|
| 1599 |
+
|
| 1600 |
+
cells[i].pos = -1;
|
| 1601 |
+
cells[i].src = -1;
|
| 1602 |
+
cells[i].seq_id.clear();
|
| 1603 |
+
|
| 1604 |
+
if (new_head == size){
|
| 1605 |
+
new_head = i;
|
| 1606 |
+
}
|
| 1607 |
+
} else {
|
| 1608 |
+
cells[i].seq_id.clear();
|
| 1609 |
+
cells[i].seq_id.insert(seq_id);
|
| 1610 |
+
}
|
| 1611 |
+
}
|
| 1612 |
+
|
| 1613 |
+
// If we freed up a slot, set head to it so searching can start there.
|
| 1614 |
+
if (new_head != size && new_head < head) {
|
| 1615 |
+
head = new_head;
|
| 1616 |
+
}
|
| 1617 |
+
}
|
| 1618 |
+
|
| 1619 |
+
void llama_kv_cache_recurrent::seq_add(llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos delta) {
|
| 1620 |
+
if (delta == 0) {
|
| 1621 |
+
return;
|
| 1622 |
+
}
|
| 1623 |
+
|
| 1624 |
+
if (p0 < 0) {
|
| 1625 |
+
p0 = 0;
|
| 1626 |
+
}
|
| 1627 |
+
|
| 1628 |
+
if (p1 < 0) {
|
| 1629 |
+
p1 = std::numeric_limits<llama_pos>::max();
|
| 1630 |
+
}
|
| 1631 |
+
|
| 1632 |
+
// If there is no range then return early to avoid looping over the
|
| 1633 |
+
if (p0 == p1) {
|
| 1634 |
+
return;
|
| 1635 |
+
}
|
| 1636 |
+
|
| 1637 |
+
// for Mamba-like or RWKV models, only the pos needs to be shifted
|
| 1638 |
+
if (0 <= seq_id && seq_id < (int64_t) size) {
|
| 1639 |
+
const int32_t tail_id = cells[seq_id].tail;
|
| 1640 |
+
if (tail_id >= 0) {
|
| 1641 |
+
kv_cell & cell = cells[tail_id];
|
| 1642 |
+
if (cell.has_seq_id(seq_id) && p0 <= cell.pos && cell.pos < p1) {
|
| 1643 |
+
cell.pos += delta;
|
| 1644 |
+
}
|
| 1645 |
+
}
|
| 1646 |
+
}
|
| 1647 |
+
}
|
| 1648 |
+
|
| 1649 |
+
void llama_kv_cache_recurrent::seq_div(llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) {
|
| 1650 |
+
if (d == 1) {
|
| 1651 |
+
return;
|
| 1652 |
+
}
|
| 1653 |
+
|
| 1654 |
+
if (p0 < 0) {
|
| 1655 |
+
p0 = 0;
|
| 1656 |
+
}
|
| 1657 |
+
|
| 1658 |
+
if (p1 < 0) {
|
| 1659 |
+
p1 = std::numeric_limits<llama_pos>::max();
|
| 1660 |
+
}
|
| 1661 |
+
|
| 1662 |
+
// If there is no range then return early to avoid looping over the cache.
|
| 1663 |
+
if (p0 == p1) {
|
| 1664 |
+
return;
|
| 1665 |
+
}
|
| 1666 |
+
|
| 1667 |
+
// for Mamba-like or RWKV models, only the pos needs to be changed
|
| 1668 |
+
if (0 <= seq_id && seq_id < (int64_t) size) {
|
| 1669 |
+
const int32_t tail_id = cells[seq_id].tail;
|
| 1670 |
+
if (tail_id >= 0) {
|
| 1671 |
+
kv_cell & cell = cells[tail_id];
|
| 1672 |
+
if (cell.has_seq_id(seq_id) && p0 <= cell.pos && cell.pos < p1) {
|
| 1673 |
+
cell.pos /= d;
|
| 1674 |
+
}
|
| 1675 |
+
}
|
| 1676 |
+
}
|
| 1677 |
+
}
|
| 1678 |
+
|
| 1679 |
+
llama_pos llama_kv_cache_recurrent::seq_pos_max(llama_seq_id seq_id) const {
|
| 1680 |
+
llama_pos result = 0;
|
| 1681 |
+
|
| 1682 |
+
for (uint32_t i = 0; i < size; ++i) {
|
| 1683 |
+
if (cells[i].has_seq_id(seq_id)) {
|
| 1684 |
+
result = std::max(result, cells[i].pos);
|
| 1685 |
+
}
|
| 1686 |
+
}
|
| 1687 |
+
|
| 1688 |
+
return result;
|
| 1689 |
+
}
|
| 1690 |
+
|
| 1691 |
+
void llama_kv_cache_recurrent::restore() {
|
| 1692 |
+
if (pending.ranges.empty()) {
|
| 1693 |
+
return;
|
| 1694 |
+
}
|
| 1695 |
+
|
| 1696 |
+
seq_rm(-1, -1, -1);
|
| 1697 |
+
}
|
| 1698 |
+
|
| 1699 |
+
void llama_kv_cache_recurrent::commit() {
|
| 1700 |
+
pending.ranges.clear();
|
| 1701 |
+
}
|
| 1702 |
+
|
| 1703 |
+
bool llama_kv_cache_recurrent::update(llama_context & lctx) {
|
| 1704 |
+
GGML_UNUSED(lctx);
|
| 1705 |
+
return false;
|
| 1706 |
+
}
|
| 1707 |
+
|
| 1708 |
+
void llama_kv_cache_recurrent::defrag_sched(float thold) {
|
| 1709 |
+
GGML_UNUSED(thold);
|
| 1710 |
+
// noop
|
| 1711 |
+
}
|
| 1712 |
+
|
| 1713 |
+
void llama_kv_cache_recurrent::set_full() {
|
| 1714 |
+
n = size;
|
| 1715 |
+
}
|
| 1716 |
+
|
| 1717 |
+
llama_sbatch llama_kv_cache_recurrent::sbatch_init(
|
| 1718 |
+
const llama_batch & batch,
|
| 1719 |
+
bool logits_all) {
|
| 1720 |
+
return llama_sbatch(batch, hparams.n_embd, false, logits_all);
|
| 1721 |
+
}
|
| 1722 |
+
|
| 1723 |
+
llama_ubatch llama_kv_cache_recurrent::ubatch_next(llama_sbatch & sbatch, uint32_t n_ubatch, bool embd_pooled) const {
|
| 1724 |
+
if (embd_pooled) {
|
| 1725 |
+
// Pooled embeddings cannot be split across ubatches (yet)
|
| 1726 |
+
return sbatch.split_seq(n_ubatch);
|
| 1727 |
+
}
|
| 1728 |
+
|
| 1729 |
+
return sbatch.split_equal(n_ubatch);
|
| 1730 |
+
}
|
| 1731 |
+
|
| 1732 |
+
bool llama_kv_cache_recurrent::find_slot(
|
| 1733 |
+
const llama_ubatch & ubatch) {
|
| 1734 |
+
const uint32_t n_tokens = ubatch.n_tokens;
|
| 1735 |
+
const uint32_t n_seqs = ubatch.n_seqs;
|
| 1736 |
+
|
| 1737 |
+
const uint32_t n_seq_tokens = ubatch.n_seq_tokens;
|
| 1738 |
+
|
| 1739 |
+
// if we have enough unused cells before the current head ->
|
| 1740 |
+
// better to start searching from the beginning of the cache, hoping to fill it
|
| 1741 |
+
if (head > used + 2*n_tokens) {
|
| 1742 |
+
head = 0;
|
| 1743 |
+
}
|
| 1744 |
+
|
| 1745 |
+
// For recurrent state architectures (like Mamba or RWKV),
|
| 1746 |
+
// each cache cell can store the state for a whole sequence.
|
| 1747 |
+
// A slot should be always be contiguous.
|
| 1748 |
+
|
| 1749 |
+
// can only process batches with an equal number of new tokens in each sequence
|
| 1750 |
+
GGML_ASSERT(ubatch.equal_seqs);
|
| 1751 |
+
|
| 1752 |
+
int32_t min = size - 1;
|
| 1753 |
+
int32_t max = 0;
|
| 1754 |
+
|
| 1755 |
+
// everything should fit if all seq_ids are smaller than the max
|
| 1756 |
+
for (uint32_t s = 0; s < n_seqs; ++s) {
|
| 1757 |
+
const uint32_t n_seq_id = ubatch.n_seq_id[s];
|
| 1758 |
+
for (uint32_t j = 0; j < n_seq_id; ++j) {
|
| 1759 |
+
const llama_seq_id seq_id = ubatch.seq_id[s][j];
|
| 1760 |
+
|
| 1761 |
+
if (seq_id < 0 || (uint32_t) seq_id >= size) {
|
| 1762 |
+
// too big seq_id
|
| 1763 |
+
// TODO: would it be possible to resize the cache instead?
|
| 1764 |
+
LLAMA_LOG_ERROR("%s: seq_id=%d >= n_seq_max=%d Try using a bigger --parallel value\n", __func__, seq_id, size);
|
| 1765 |
+
return false;
|
| 1766 |
+
}
|
| 1767 |
+
if (j > 0) {
|
| 1768 |
+
kv_cell & seq = cells[seq_id];
|
| 1769 |
+
if (seq.tail >= 0) {
|
| 1770 |
+
kv_cell & cell = cells[seq.tail];
|
| 1771 |
+
// clear cells from seq_ids that become shared
|
| 1772 |
+
// (should not normally happen, but let's handle it anyway)
|
| 1773 |
+
cell.seq_id.erase(seq_id);
|
| 1774 |
+
seq.tail = -1;
|
| 1775 |
+
if (cell.seq_id.empty()) {
|
| 1776 |
+
cell.pos = -1;
|
| 1777 |
+
cell.src = -1;
|
| 1778 |
+
used -= 1;
|
| 1779 |
+
}
|
| 1780 |
+
}
|
| 1781 |
+
}
|
| 1782 |
+
}
|
| 1783 |
+
}
|
| 1784 |
+
|
| 1785 |
+
#ifndef NDEBUG
|
| 1786 |
+
{
|
| 1787 |
+
std::vector<int32_t> tails_verif;
|
| 1788 |
+
tails_verif.assign(size, -1);
|
| 1789 |
+
for (uint32_t i = 0; i < size; ++i) {
|
| 1790 |
+
kv_cell & cell = cells[i];
|
| 1791 |
+
for (llama_seq_id seq_id : cell.seq_id) {
|
| 1792 |
+
if (tails_verif[seq_id] != -1) {
|
| 1793 |
+
LLAMA_LOG_ERROR("%s: duplicate tail for seq_id %d in cell %d and %d\n", __func__, seq_id, i, tails_verif[seq_id]);
|
| 1794 |
+
}
|
| 1795 |
+
tails_verif[seq_id] = i;
|
| 1796 |
+
}
|
| 1797 |
+
}
|
| 1798 |
+
for (uint32_t i = 0; i < size; ++i) {
|
| 1799 |
+
if (tails_verif[i] != cells[i].tail) {
|
| 1800 |
+
LLAMA_LOG_ERROR("%s: wrong tail for seq_id %d, (%d instead of %d)\n", __func__, i, cells[i].tail, tails_verif[i]);
|
| 1801 |
+
}
|
| 1802 |
+
}
|
| 1803 |
+
}
|
| 1804 |
+
#endif
|
| 1805 |
+
|
| 1806 |
+
// find next empty cell
|
| 1807 |
+
uint32_t next_empty_cell = head;
|
| 1808 |
+
|
| 1809 |
+
for (uint32_t i = 0; i < size; ++i) {
|
| 1810 |
+
if (next_empty_cell >= size) { next_empty_cell -= size; }
|
| 1811 |
+
kv_cell & cell = cells[next_empty_cell];
|
| 1812 |
+
if (cell.is_empty()) { break; }
|
| 1813 |
+
next_empty_cell += 1;
|
| 1814 |
+
}
|
| 1815 |
+
|
| 1816 |
+
// find usable cell range
|
| 1817 |
+
for (uint32_t s = 0; s < n_seqs; ++s) {
|
| 1818 |
+
const llama_seq_id seq_id = ubatch.seq_id[s][0];
|
| 1819 |
+
kv_cell & seq_meta = cells[seq_id];
|
| 1820 |
+
bool has_cell = false;
|
| 1821 |
+
if (seq_meta.tail >= 0) {
|
| 1822 |
+
kv_cell & cell = cells[seq_meta.tail];
|
| 1823 |
+
GGML_ASSERT(cell.has_seq_id(seq_id));
|
| 1824 |
+
// does this seq_id "own" the cell?
|
| 1825 |
+
if (cell.seq_id.size() == 1) { has_cell = true; }
|
| 1826 |
+
}
|
| 1827 |
+
if (!has_cell) {
|
| 1828 |
+
kv_cell & empty_cell = cells[next_empty_cell];
|
| 1829 |
+
GGML_ASSERT(empty_cell.is_empty());
|
| 1830 |
+
// copy old tail into the empty cell
|
| 1831 |
+
if (seq_meta.tail >= 0) {
|
| 1832 |
+
kv_cell & orig_cell = cells[seq_meta.tail];
|
| 1833 |
+
empty_cell.pos = orig_cell.pos;
|
| 1834 |
+
empty_cell.src = orig_cell.src;
|
| 1835 |
+
orig_cell.seq_id.erase(seq_id);
|
| 1836 |
+
empty_cell.seq_id.insert(seq_id); // will be overwritten
|
| 1837 |
+
}
|
| 1838 |
+
seq_meta.tail = next_empty_cell;
|
| 1839 |
+
// find next empty cell
|
| 1840 |
+
if (s + 1 < n_seqs) {
|
| 1841 |
+
next_empty_cell += 1;
|
| 1842 |
+
for (uint32_t i = 0; i < size; ++i) {
|
| 1843 |
+
if (next_empty_cell >= size) { next_empty_cell -= size; }
|
| 1844 |
+
kv_cell & cell = cells[next_empty_cell];
|
| 1845 |
+
if (cell.is_empty()) { break; }
|
| 1846 |
+
next_empty_cell += 1;
|
| 1847 |
+
}
|
| 1848 |
+
}
|
| 1849 |
+
}
|
| 1850 |
+
if (min > seq_meta.tail) { min = seq_meta.tail; }
|
| 1851 |
+
if (max < seq_meta.tail) { max = seq_meta.tail; }
|
| 1852 |
+
}
|
| 1853 |
+
|
| 1854 |
+
// gather and re-order
|
| 1855 |
+
for (uint32_t s = 0; s < n_seqs; ++s) {
|
| 1856 |
+
int32_t dst_id = s + min;
|
| 1857 |
+
int32_t src_id = cells[ubatch.seq_id[s][0]].tail;
|
| 1858 |
+
if (dst_id != src_id) {
|
| 1859 |
+
kv_cell & dst_cell = cells[dst_id];
|
| 1860 |
+
kv_cell & src_cell = cells[src_id];
|
| 1861 |
+
|
| 1862 |
+
std::swap(dst_cell.pos, src_cell.pos);
|
| 1863 |
+
std::swap(dst_cell.src, src_cell.src);
|
| 1864 |
+
std::swap(dst_cell.seq_id, src_cell.seq_id);
|
| 1865 |
+
|
| 1866 |
+
// swap tails (assuming they NEVER overlap)
|
| 1867 |
+
for (const llama_seq_id seq_id : src_cell.seq_id) {
|
| 1868 |
+
cells[seq_id].tail = src_id;
|
| 1869 |
+
}
|
| 1870 |
+
for (const llama_seq_id seq_id : dst_cell.seq_id) {
|
| 1871 |
+
cells[seq_id].tail = dst_id;
|
| 1872 |
+
}
|
| 1873 |
+
}
|
| 1874 |
+
}
|
| 1875 |
+
|
| 1876 |
+
// update the pos of the used seqs
|
| 1877 |
+
for (uint32_t s = 0; s < n_seqs; ++s) {
|
| 1878 |
+
const llama_pos last_pos = ubatch.pos[n_seq_tokens * s + n_seq_tokens - 1];
|
| 1879 |
+
int32_t cell_id = s + min;
|
| 1880 |
+
kv_cell & cell = cells[cell_id];
|
| 1881 |
+
|
| 1882 |
+
if (cell.pos >= 0 && last_pos != cell.pos + (llama_pos) n_seq_tokens) {
|
| 1883 |
+
// What should happen when the pos backtracks or skips a value?
|
| 1884 |
+
// Clearing the state mid-batch would require special-casing which isn't done.
|
| 1885 |
+
LLAMA_LOG_WARN("%s: non-consecutive token position %d after %d for sequence %d with %u new tokens\n",
|
| 1886 |
+
__func__, last_pos, cell.pos, ubatch.seq_id[s][0], n_seq_tokens);
|
| 1887 |
+
}
|
| 1888 |
+
cell.pos = last_pos;
|
| 1889 |
+
cell.seq_id.clear();
|
| 1890 |
+
for (int32_t j = 0; j < ubatch.n_seq_id[s]; ++j) {
|
| 1891 |
+
const llama_seq_id seq_id = ubatch.seq_id[s][j];
|
| 1892 |
+
cell.seq_id.insert(seq_id);
|
| 1893 |
+
cells[seq_id].tail = cell_id;
|
| 1894 |
+
}
|
| 1895 |
+
}
|
| 1896 |
+
|
| 1897 |
+
// allow getting the range of used cells, from head to head + n
|
| 1898 |
+
head = min;
|
| 1899 |
+
n = max - min + 1;
|
| 1900 |
+
used = std::count_if(cells.begin(), cells.end(),
|
| 1901 |
+
[](const kv_cell & cell){ return !cell.is_empty(); });
|
| 1902 |
+
|
| 1903 |
+
// sanity check
|
| 1904 |
+
return n >= n_seqs;
|
| 1905 |
+
}
|
| 1906 |
+
|
| 1907 |
+
int32_t llama_kv_cache_recurrent::get_n_tokens() const {
|
| 1908 |
+
int32_t result = 0;
|
| 1909 |
+
|
| 1910 |
+
for (uint32_t i = 0; i < size; i++) {
|
| 1911 |
+
result += cells[i].seq_id.size();
|
| 1912 |
+
}
|
| 1913 |
+
|
| 1914 |
+
return result;
|
| 1915 |
+
}
|
| 1916 |
+
|
| 1917 |
+
int32_t llama_kv_cache_recurrent::get_used_cells() const {
|
| 1918 |
+
return used;
|
| 1919 |
+
}
|
| 1920 |
+
|
| 1921 |
+
llama_pos llama_kv_cache_recurrent::get_pos_max() const {
|
| 1922 |
+
llama_pos pos_max = -1;
|
| 1923 |
+
for (const auto & cell : cells) {
|
| 1924 |
+
pos_max = std::max(pos_max, cell.pos);
|
| 1925 |
+
}
|
| 1926 |
+
|
| 1927 |
+
return pos_max;
|
| 1928 |
+
}
|
| 1929 |
+
|
| 1930 |
+
bool llama_kv_cache_recurrent::get_can_shift() const {
|
| 1931 |
+
return false;
|
| 1932 |
+
}
|
| 1933 |
+
|
| 1934 |
+
int32_t llama_kv_cache_recurrent::s_copy(int i) const {
|
| 1935 |
+
const uint32_t cell_id = i + head;
|
| 1936 |
+
|
| 1937 |
+
//////////////////////////////////////////////
|
| 1938 |
+
// TODO: this should not mutate the KV cache !
|
| 1939 |
+
kv_cell & cell = const_cast<kv_cell &>(cells[cell_id]);
|
| 1940 |
+
|
| 1941 |
+
// prevent out-of-bound sources
|
| 1942 |
+
if (cell.src < 0 || (uint32_t) cell.src >= size) {
|
| 1943 |
+
cell.src = cell_id;
|
| 1944 |
+
}
|
| 1945 |
+
|
| 1946 |
+
int32_t res = cell.src;
|
| 1947 |
+
|
| 1948 |
+
// TODO: do not mutate the KV cache
|
| 1949 |
+
// ensure copy only happens once
|
| 1950 |
+
if (cell.src != (int32_t) cell_id) {
|
| 1951 |
+
cell.src = cell_id;
|
| 1952 |
+
}
|
| 1953 |
+
|
| 1954 |
+
return res;
|
| 1955 |
+
}
|
| 1956 |
+
|
| 1957 |
+
float llama_kv_cache_recurrent::s_mask(int i) const {
|
| 1958 |
+
const uint32_t cell_id = i + head;
|
| 1959 |
+
|
| 1960 |
+
//////////////////////////////////////////////
|
| 1961 |
+
// TODO: this should not mutate the KV cache !
|
| 1962 |
+
kv_cell & cell = const_cast<kv_cell &>(cells[cell_id]);
|
| 1963 |
+
|
| 1964 |
+
float res = (float) (cell.src >= 0);
|
| 1965 |
+
|
| 1966 |
+
// only clear once
|
| 1967 |
+
if (cell.src < 0) {
|
| 1968 |
+
cell.src = cell_id;
|
| 1969 |
+
}
|
| 1970 |
+
|
| 1971 |
+
return res;
|
| 1972 |
+
}
|
| 1973 |
+
|
| 1974 |
+
uint32_t llama_kv_cache_recurrent::cell_max() const {
|
| 1975 |
+
for (uint32_t i = size; i > 0; --i) {
|
| 1976 |
+
const kv_cell & cell = cells[i - 1];
|
| 1977 |
+
|
| 1978 |
+
if (cell.pos >= 0 && !cell.is_empty()) {
|
| 1979 |
+
return i;
|
| 1980 |
+
}
|
| 1981 |
+
}
|
| 1982 |
+
|
| 1983 |
+
return 0;
|
| 1984 |
+
}
|
| 1985 |
+
|
| 1986 |
+
size_t llama_kv_cache_recurrent::total_size() const {
|
| 1987 |
+
size_t size = 0;
|
| 1988 |
+
for (const auto & buf : bufs) {
|
| 1989 |
+
size += ggml_backend_buffer_get_size(buf.get());
|
| 1990 |
+
}
|
| 1991 |
+
|
| 1992 |
+
return size;
|
| 1993 |
+
}
|
| 1994 |
+
|
| 1995 |
+
size_t llama_kv_cache_recurrent::size_k_bytes() const {
|
| 1996 |
+
size_t size_k_bytes = 0;
|
| 1997 |
+
|
| 1998 |
+
for (const auto & k : k_l) {
|
| 1999 |
+
size_k_bytes += ggml_nbytes(k);
|
| 2000 |
+
}
|
| 2001 |
+
|
| 2002 |
+
return size_k_bytes;
|
| 2003 |
+
}
|
| 2004 |
+
|
| 2005 |
+
size_t llama_kv_cache_recurrent::size_v_bytes() const {
|
| 2006 |
+
size_t size_v_bytes = 0;
|
| 2007 |
+
|
| 2008 |
+
for (const auto & v : v_l) {
|
| 2009 |
+
size_v_bytes += ggml_nbytes(v);
|
| 2010 |
+
}
|
| 2011 |
+
|
| 2012 |
+
return size_v_bytes;
|
| 2013 |
+
}
|
| 2014 |
+
|
| 2015 |
+
void llama_kv_cache_recurrent::state_write(llama_io_write_i & io, llama_seq_id seq_id) const {
|
| 2016 |
+
std::vector<std::pair<uint32_t, uint32_t>> cell_ranges; // ranges, from inclusive, to exclusive
|
| 2017 |
+
uint32_t cell_count = 0;
|
| 2018 |
+
|
| 2019 |
+
// Count the number of cells with the specified seq_id
|
| 2020 |
+
// Find all the ranges of cells with this seq id (or all, when -1)
|
| 2021 |
+
uint32_t cell_range_begin = size;
|
| 2022 |
+
for (uint32_t i = 0; i < size; ++i) {
|
| 2023 |
+
const auto & cell = cells[i];
|
| 2024 |
+
if ((seq_id == -1 && !cell.is_empty()) || cell.has_seq_id(seq_id)) {
|
| 2025 |
+
++cell_count;
|
| 2026 |
+
if (cell_range_begin == size) {
|
| 2027 |
+
cell_range_begin = i;
|
| 2028 |
+
}
|
| 2029 |
+
} else {
|
| 2030 |
+
if (cell_range_begin != size) {
|
| 2031 |
+
cell_ranges.emplace_back(cell_range_begin, i);
|
| 2032 |
+
cell_range_begin = size;
|
| 2033 |
+
}
|
| 2034 |
+
}
|
| 2035 |
+
}
|
| 2036 |
+
if (cell_range_begin != size) {
|
| 2037 |
+
cell_ranges.emplace_back(cell_range_begin, size);
|
| 2038 |
+
}
|
| 2039 |
+
|
| 2040 |
+
// DEBUG CHECK: Sum of cell counts in ranges should equal the total cell count
|
| 2041 |
+
uint32_t cell_count_check = 0;
|
| 2042 |
+
for (const auto & range : cell_ranges) {
|
| 2043 |
+
cell_count_check += range.second - range.first;
|
| 2044 |
+
}
|
| 2045 |
+
GGML_ASSERT(cell_count == cell_count_check);
|
| 2046 |
+
|
| 2047 |
+
io.write(&cell_count, sizeof(cell_count));
|
| 2048 |
+
|
| 2049 |
+
state_write_meta(io, cell_ranges, seq_id);
|
| 2050 |
+
state_write_data(io, cell_ranges);
|
| 2051 |
+
}
|
| 2052 |
+
|
| 2053 |
+
void llama_kv_cache_recurrent::state_read(llama_io_read_i & io, llama_seq_id seq_id) {
|
| 2054 |
+
uint32_t cell_count;
|
| 2055 |
+
io.read_to(&cell_count, sizeof(cell_count));
|
| 2056 |
+
|
| 2057 |
+
bool res = true;
|
| 2058 |
+
res = res && state_read_meta(io, cell_count, seq_id);
|
| 2059 |
+
res = res && state_read_data(io, cell_count);
|
| 2060 |
+
|
| 2061 |
+
if (!res) {
|
| 2062 |
+
if (seq_id == -1) {
|
| 2063 |
+
clear();
|
| 2064 |
+
} else {
|
| 2065 |
+
seq_rm(seq_id, -1, -1);
|
| 2066 |
+
}
|
| 2067 |
+
throw std::runtime_error("failed to restore kv cache");
|
| 2068 |
+
}
|
| 2069 |
+
}
|
| 2070 |
+
|
| 2071 |
+
void llama_kv_cache_recurrent::state_write_meta(llama_io_write_i & io, const std::vector<std::pair<uint32_t, uint32_t>> & cell_ranges, llama_seq_id seq_id) const {
|
| 2072 |
+
for (const auto & range : cell_ranges) {
|
| 2073 |
+
for (uint32_t i = range.first; i < range.second; ++i) {
|
| 2074 |
+
const auto & cell = cells[i];
|
| 2075 |
+
const llama_pos pos = cell.pos;
|
| 2076 |
+
const uint32_t n_seq_id = seq_id == -1 ? cell.seq_id.size() : 0;
|
| 2077 |
+
|
| 2078 |
+
io.write(&pos, sizeof(pos));
|
| 2079 |
+
io.write(&n_seq_id, sizeof(n_seq_id));
|
| 2080 |
+
|
| 2081 |
+
if (n_seq_id) {
|
| 2082 |
+
for (auto seq_id : cell.seq_id) {
|
| 2083 |
+
io.write(&seq_id, sizeof(seq_id));
|
| 2084 |
+
}
|
| 2085 |
+
}
|
| 2086 |
+
}
|
| 2087 |
+
}
|
| 2088 |
+
}
|
| 2089 |
+
|
| 2090 |
+
void llama_kv_cache_recurrent::state_write_data(llama_io_write_i & io, const std::vector<std::pair<uint32_t, uint32_t>> & cell_ranges) const {
|
| 2091 |
+
const uint32_t v_trans = 0;
|
| 2092 |
+
const uint32_t n_layer = hparams.n_layer;
|
| 2093 |
+
|
| 2094 |
+
io.write(&v_trans, sizeof(v_trans));
|
| 2095 |
+
io.write(&n_layer, sizeof(n_layer));
|
| 2096 |
+
|
| 2097 |
+
std::vector<uint8_t> tmp_buf;
|
| 2098 |
+
|
| 2099 |
+
// Iterate and write all the keys first, each row is a cell
|
| 2100 |
+
// Get whole range at a time
|
| 2101 |
+
for (uint32_t il = 0; il < n_layer; ++il) {
|
| 2102 |
+
const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(il) + hparams.n_embd_k_s();
|
| 2103 |
+
|
| 2104 |
+
// Write key type
|
| 2105 |
+
const int32_t k_type_i = (int32_t)k_l[il]->type;
|
| 2106 |
+
io.write(&k_type_i, sizeof(k_type_i));
|
| 2107 |
+
|
| 2108 |
+
// Write row size of key
|
| 2109 |
+
const uint64_t k_size_row = ggml_row_size(k_l[il]->type, n_embd_k_gqa);
|
| 2110 |
+
io.write(&k_size_row, sizeof(k_size_row));
|
| 2111 |
+
|
| 2112 |
+
// Read each range of cells of k_size length each into tmp_buf and write out
|
| 2113 |
+
for (const auto & range : cell_ranges) {
|
| 2114 |
+
const size_t range_size = range.second - range.first;
|
| 2115 |
+
const size_t buf_size = range_size * k_size_row;
|
| 2116 |
+
io.write_tensor(k_l[il], range.first * k_size_row, buf_size);
|
| 2117 |
+
}
|
| 2118 |
+
}
|
| 2119 |
+
|
| 2120 |
+
if (!v_trans) {
|
| 2121 |
+
for (uint32_t il = 0; il < n_layer; ++il) {
|
| 2122 |
+
const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s();
|
| 2123 |
+
|
| 2124 |
+
// Write value type
|
| 2125 |
+
const int32_t v_type_i = (int32_t)v_l[il]->type;
|
| 2126 |
+
io.write(&v_type_i, sizeof(v_type_i));
|
| 2127 |
+
|
| 2128 |
+
// Write row size of value
|
| 2129 |
+
const uint64_t v_size_row = ggml_row_size(v_l[il]->type, n_embd_v_gqa);
|
| 2130 |
+
io.write(&v_size_row, sizeof(v_size_row));
|
| 2131 |
+
|
| 2132 |
+
// Read each range of cells of v_size length each into tmp_buf and write out
|
| 2133 |
+
for (const auto & range : cell_ranges) {
|
| 2134 |
+
const size_t range_size = range.second - range.first;
|
| 2135 |
+
const size_t buf_size = range_size * v_size_row;
|
| 2136 |
+
io.write_tensor(v_l[il], range.first * v_size_row, buf_size);
|
| 2137 |
+
}
|
| 2138 |
+
}
|
| 2139 |
+
} else {
|
| 2140 |
+
// When v is transposed, we also need the element size and get the element ranges from each row
|
| 2141 |
+
const uint32_t kv_size = size;
|
| 2142 |
+
for (uint32_t il = 0; il < n_layer; ++il) {
|
| 2143 |
+
const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s();
|
| 2144 |
+
|
| 2145 |
+
// Write value type
|
| 2146 |
+
const int32_t v_type_i = (int32_t)v_l[il]->type;
|
| 2147 |
+
io.write(&v_type_i, sizeof(v_type_i));
|
| 2148 |
+
|
| 2149 |
+
// Write element size
|
| 2150 |
+
const uint32_t v_size_el = ggml_type_size(v_l[il]->type);
|
| 2151 |
+
io.write(&v_size_el, sizeof(v_size_el));
|
| 2152 |
+
|
| 2153 |
+
// Write GQA embedding size
|
| 2154 |
+
io.write(&n_embd_v_gqa, sizeof(n_embd_v_gqa));
|
| 2155 |
+
|
| 2156 |
+
// For each row, we get the element values of each cell
|
| 2157 |
+
for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
|
| 2158 |
+
// Read each range of cells of v_size_el length each into tmp_buf and write out
|
| 2159 |
+
for (const auto & range : cell_ranges) {
|
| 2160 |
+
const size_t range_size = range.second - range.first;
|
| 2161 |
+
const size_t src_offset = (range.first + j * kv_size) * v_size_el;
|
| 2162 |
+
const size_t buf_size = range_size * v_size_el;
|
| 2163 |
+
io.write_tensor(v_l[il], src_offset, buf_size);
|
| 2164 |
+
}
|
| 2165 |
+
}
|
| 2166 |
+
}
|
| 2167 |
+
}
|
| 2168 |
+
}
|
| 2169 |
+
|
| 2170 |
+
bool llama_kv_cache_recurrent::state_read_meta(llama_io_read_i & io, uint32_t cell_count, llama_seq_id dest_seq_id) {
|
| 2171 |
+
if (dest_seq_id != -1) {
|
| 2172 |
+
// single sequence
|
| 2173 |
+
|
| 2174 |
+
seq_rm(dest_seq_id, -1, -1);
|
| 2175 |
+
|
| 2176 |
+
llama_sbatch sbatch;
|
| 2177 |
+
llama_ubatch batch = sbatch.reserve_ubatch(cell_count, /* has_embd */ false);
|
| 2178 |
+
|
| 2179 |
+
batch.n_tokens = cell_count;
|
| 2180 |
+
batch.n_seq_tokens = cell_count;
|
| 2181 |
+
batch.n_seqs = 1;
|
| 2182 |
+
|
| 2183 |
+
for (uint32_t i = 0; i < cell_count; ++i) {
|
| 2184 |
+
llama_pos pos;
|
| 2185 |
+
uint32_t n_seq_id;
|
| 2186 |
+
|
| 2187 |
+
io.read_to(&pos, sizeof(pos));
|
| 2188 |
+
io.read_to(&n_seq_id, sizeof(n_seq_id));
|
| 2189 |
+
|
| 2190 |
+
if (n_seq_id != 0) {
|
| 2191 |
+
LLAMA_LOG_ERROR("%s: invalid seq_id-agnostic kv cell\n", __func__);
|
| 2192 |
+
return false;
|
| 2193 |
+
}
|
| 2194 |
+
|
| 2195 |
+
batch.pos[i] = pos;
|
| 2196 |
+
}
|
| 2197 |
+
batch.n_seq_id[0] = 1;
|
| 2198 |
+
batch.seq_id[0] = &dest_seq_id;
|
| 2199 |
+
if (!find_slot(batch)) {
|
| 2200 |
+
LLAMA_LOG_ERROR("%s: failed to find available cells in kv cache\n", __func__);
|
| 2201 |
+
return false;
|
| 2202 |
+
}
|
| 2203 |
+
commit();
|
| 2204 |
+
|
| 2205 |
+
// DEBUG CHECK: kv.head should be our first cell, kv.head + cell_count - 1 should be our last cell (verify seq_id and pos values)
|
| 2206 |
+
// Assume that this is one contiguous block of cells
|
| 2207 |
+
GGML_ASSERT(head + cell_count <= size);
|
| 2208 |
+
GGML_ASSERT(cells[head].pos == batch.pos[0]);
|
| 2209 |
+
GGML_ASSERT(cells[head + cell_count - 1].pos == batch.pos[cell_count - 1]);
|
| 2210 |
+
GGML_ASSERT(cells[head].has_seq_id(dest_seq_id));
|
| 2211 |
+
GGML_ASSERT(cells[head + cell_count - 1].has_seq_id(dest_seq_id));
|
| 2212 |
+
} else {
|
| 2213 |
+
// whole KV cache restore
|
| 2214 |
+
|
| 2215 |
+
if (cell_count > size) {
|
| 2216 |
+
LLAMA_LOG_ERROR("%s: not enough cells in kv cache\n", __func__);
|
| 2217 |
+
return false;
|
| 2218 |
+
}
|
| 2219 |
+
|
| 2220 |
+
clear();
|
| 2221 |
+
|
| 2222 |
+
for (uint32_t i = 0; i < cell_count; ++i) {
|
| 2223 |
+
kv_cell & cell = cells[i];
|
| 2224 |
+
|
| 2225 |
+
llama_pos pos;
|
| 2226 |
+
uint32_t n_seq_id;
|
| 2227 |
+
|
| 2228 |
+
io.read_to(&pos, sizeof(pos));
|
| 2229 |
+
io.read_to(&n_seq_id, sizeof(n_seq_id));
|
| 2230 |
+
|
| 2231 |
+
cell.pos = pos;
|
| 2232 |
+
|
| 2233 |
+
for (uint32_t j = 0; j < n_seq_id; ++j) {
|
| 2234 |
+
llama_seq_id seq_id;
|
| 2235 |
+
io.read_to(&seq_id, sizeof(seq_id));
|
| 2236 |
+
|
| 2237 |
+
// TODO: llama_kv_cache_recurrent should have a notion of max sequences
|
| 2238 |
+
//if (seq_id < 0 || (uint32_t) seq_id >= llama_n_seq_max(ctx)) {
|
| 2239 |
+
if (seq_id < 0) {
|
| 2240 |
+
//LLAMA_LOG_ERROR("%s: invalid seq_id, %d is out of range [0, %u)\n", __func__, seq_id, llama_n_seq_max(ctx));
|
| 2241 |
+
LLAMA_LOG_ERROR("%s: invalid seq_id, %d is out of range [0, inf)\n", __func__, seq_id);
|
| 2242 |
+
return false;
|
| 2243 |
+
}
|
| 2244 |
+
|
| 2245 |
+
cell.seq_id.insert(seq_id);
|
| 2246 |
+
|
| 2247 |
+
int32_t & tail = cells[seq_id].tail;
|
| 2248 |
+
if (tail != -1) {
|
| 2249 |
+
LLAMA_LOG_ERROR("%s: duplicate tail for seq_id %d in cell %d and %d\n", __func__, seq_id, i, tail);
|
| 2250 |
+
return false;
|
| 2251 |
+
}
|
| 2252 |
+
tail = i;
|
| 2253 |
+
}
|
| 2254 |
+
}
|
| 2255 |
+
|
| 2256 |
+
head = 0;
|
| 2257 |
+
used = cell_count;
|
| 2258 |
+
}
|
| 2259 |
+
|
| 2260 |
+
for (uint32_t i = 0; i < cell_count; ++i) {
|
| 2261 |
+
uint32_t cell_id = head + i;
|
| 2262 |
+
// make sure the recurrent states will keep their restored state
|
| 2263 |
+
cells[cell_id].src = cell_id;
|
| 2264 |
+
}
|
| 2265 |
+
|
| 2266 |
+
return true;
|
| 2267 |
+
}
|
| 2268 |
+
|
| 2269 |
+
bool llama_kv_cache_recurrent::state_read_data(llama_io_read_i & io, uint32_t cell_count) {
|
| 2270 |
+
uint32_t v_trans;
|
| 2271 |
+
uint32_t n_layer;
|
| 2272 |
+
io.read_to(&v_trans, sizeof(v_trans));
|
| 2273 |
+
io.read_to(&n_layer, sizeof(n_layer));
|
| 2274 |
+
|
| 2275 |
+
if (n_layer != hparams.n_layer) {
|
| 2276 |
+
LLAMA_LOG_ERROR("%s: mismatched layer count (%u instead of %u)\n", __func__, n_layer, hparams.n_layer);
|
| 2277 |
+
return false;
|
| 2278 |
+
}
|
| 2279 |
+
if (cell_count > size) {
|
| 2280 |
+
LLAMA_LOG_ERROR("%s: not enough cells in kv cache to restore state (%u > %u)\n", __func__, cell_count, size);
|
| 2281 |
+
return false;
|
| 2282 |
+
}
|
| 2283 |
+
if (false != (bool) v_trans) {
|
| 2284 |
LLAMA_LOG_ERROR("%s: incompatible V transposition\n", __func__);
|
| 2285 |
return false;
|
| 2286 |
}
|
|
|
|
| 2432 |
view->cells_sequences = (llama_seq_id *)p;
|
| 2433 |
}
|
| 2434 |
|
| 2435 |
+
const std::vector<llama_kv_cache_unified::kv_cell> & kv_cells = kvu->cells;
|
| 2436 |
llama_kv_cache_view_cell * c_curr = view->cells;
|
| 2437 |
llama_seq_id * cs_curr = view->cells_sequences;
|
| 2438 |
int32_t used_cells = 0;
|
examples/talk-llama/llama-kv-cache.h
CHANGED
|
@@ -2,32 +2,72 @@
|
|
| 2 |
|
| 3 |
#include "llama.h"
|
| 4 |
#include "llama-io.h"
|
|
|
|
| 5 |
#include "llama-memory.h"
|
| 6 |
|
| 7 |
#include "ggml-cpp.h"
|
| 8 |
|
| 9 |
-
#include <functional>
|
| 10 |
#include <set>
|
| 11 |
#include <vector>
|
| 12 |
|
| 13 |
struct llama_cparams;
|
| 14 |
struct llama_hparams;
|
| 15 |
struct llama_ubatch;
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
struct llama_kv_cache : public llama_memory_i {
|
| 18 |
-
|
| 19 |
|
| 20 |
-
|
| 21 |
-
virtual void
|
| 22 |
|
| 23 |
-
|
| 24 |
-
virtual
|
| 25 |
|
| 26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
|
| 28 |
bool get_can_edit() const override { return get_can_shift(); }
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
};
|
| 30 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
struct llama_kv_cache_guard {
|
| 32 |
llama_kv_cache_guard(llama_kv_cache * kv) : kv(kv) {}
|
| 33 |
|
|
@@ -43,65 +83,50 @@ private:
|
|
| 43 |
llama_kv_cache * kv;
|
| 44 |
};
|
| 45 |
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
int32_t src = -1; // used by recurrent state models to copy states
|
| 50 |
-
int32_t tail = -1;
|
| 51 |
|
| 52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
|
| 54 |
-
|
| 55 |
-
return seq_id.find(id) != seq_id.end();
|
| 56 |
-
}
|
| 57 |
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
};
|
| 66 |
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
class llama_kv_cache_unified : public llama_kv_cache {
|
| 71 |
-
public:
|
| 72 |
-
// can be used to query data from the model if needed
|
| 73 |
-
struct callbacks {
|
| 74 |
-
std::function<ggml_tensor * (uint32_t n_ctx_per_seq, int il)> get_rope_factors;
|
| 75 |
};
|
| 76 |
|
| 77 |
-
|
| 78 |
-
const llama_hparams & hparams,
|
| 79 |
-
callbacks cbs);
|
| 80 |
-
|
| 81 |
-
virtual ~llama_kv_cache_unified() = default;
|
| 82 |
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
const llama_model & model, // TODO: do not reference the model
|
| 86 |
-
const llama_cparams & cparams,
|
| 87 |
ggml_type type_k,
|
| 88 |
ggml_type type_v,
|
|
|
|
|
|
|
| 89 |
uint32_t kv_size,
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
int32_t get_n_tokens() const override;
|
| 93 |
-
int32_t get_used_cells() const override;
|
| 94 |
|
| 95 |
-
|
| 96 |
|
| 97 |
-
//
|
| 98 |
-
|
|
|
|
| 99 |
|
| 100 |
void clear() override;
|
| 101 |
-
void defrag() override;
|
| 102 |
-
|
| 103 |
-
virtual void restore() override;
|
| 104 |
-
virtual void commit() override;
|
| 105 |
|
| 106 |
bool seq_rm (llama_seq_id seq_id, llama_pos p0, llama_pos p1) override;
|
| 107 |
void seq_cp (llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) override;
|
|
@@ -111,25 +136,76 @@ public:
|
|
| 111 |
|
| 112 |
llama_pos seq_pos_max(llama_seq_id seq_id) const override;
|
| 113 |
|
| 114 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 115 |
|
| 116 |
-
// find an empty slot of size "n_tokens" in the cache
|
| 117 |
// updates the cache head
|
| 118 |
// Note: On success, it's important that cache.head points
|
| 119 |
// to the first cell of the slot.
|
| 120 |
-
bool find_slot(const llama_ubatch & batch);
|
| 121 |
|
| 122 |
-
|
| 123 |
-
|
| 124 |
|
| 125 |
-
//
|
| 126 |
-
|
| 127 |
|
| 128 |
-
|
| 129 |
-
size_t size_v_bytes() const;
|
| 130 |
|
| 131 |
-
//
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 132 |
|
|
|
|
| 133 |
struct {
|
| 134 |
std::vector<uint32_t> ids;
|
| 135 |
} defrag_info;
|
|
@@ -138,7 +214,6 @@ public:
|
|
| 138 |
bool defrag_prepare(int32_t n_max_nodes);
|
| 139 |
|
| 140 |
// commit/restore cache
|
| 141 |
-
|
| 142 |
struct slot_range {
|
| 143 |
uint32_t c0 = 0; // note: these are cell indices, not sequence positions
|
| 144 |
uint32_t c1 = 0;
|
|
@@ -149,25 +224,124 @@ public:
|
|
| 149 |
std::vector<slot_range> ranges;
|
| 150 |
} pending;
|
| 151 |
|
| 152 |
-
//
|
|
|
|
| 153 |
|
| 154 |
-
|
| 155 |
-
void state_read (llama_io_read_i & io, llama_seq_id seq_id = -1);
|
| 156 |
|
| 157 |
-
|
|
|
|
| 158 |
|
| 159 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 160 |
|
| 161 |
-
|
|
|
|
| 162 |
|
| 163 |
-
bool
|
| 164 |
-
bool
|
|
|
|
| 165 |
|
| 166 |
-
|
| 167 |
-
|
|
|
|
| 168 |
|
| 169 |
-
|
| 170 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 171 |
|
| 172 |
// Note: The value of head isn't only used to optimize searching
|
| 173 |
// for a free KV slot. llama_decode_impl also uses it, so it
|
|
@@ -179,18 +353,41 @@ public:
|
|
| 179 |
// computed before each graph build
|
| 180 |
uint32_t n = 0;
|
| 181 |
|
| 182 |
-
std::vector<
|
| 183 |
|
| 184 |
std::vector<ggml_tensor *> k_l; // per layer
|
| 185 |
std::vector<ggml_tensor *> v_l;
|
| 186 |
|
| 187 |
private:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 188 |
ggml_type type_k = GGML_TYPE_F16;
|
| 189 |
ggml_type type_v = GGML_TYPE_F16;
|
| 190 |
|
| 191 |
std::vector<ggml_context_ptr> ctxs;
|
| 192 |
std::vector<ggml_backend_buffer_ptr> bufs;
|
| 193 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 194 |
void state_write_meta(llama_io_write_i & io, const std::vector<std::pair<uint32_t, uint32_t>> & cell_ranges, llama_seq_id seq_id = -1) const;
|
| 195 |
void state_write_data(llama_io_write_i & io, const std::vector<std::pair<uint32_t, uint32_t>> & cell_ranges) const;
|
| 196 |
|
|
@@ -198,11 +395,6 @@ private:
|
|
| 198 |
bool state_read_data(llama_io_read_i & io, uint32_t cell_count);
|
| 199 |
};
|
| 200 |
|
| 201 |
-
// TODO: temporary reusing llama_kv_cache_unified -- implement recurrent cache and simplify llama_kv_cache_unified
|
| 202 |
-
//class llama_kv_cache_recurrent : public llama_kv_cache_unified {
|
| 203 |
-
//public:
|
| 204 |
-
// using llama_kv_cache_unified::llama_kv_cache_unified;
|
| 205 |
-
//};
|
| 206 |
|
| 207 |
//
|
| 208 |
// kv cache view
|
|
|
|
| 2 |
|
| 3 |
#include "llama.h"
|
| 4 |
#include "llama-io.h"
|
| 5 |
+
#include "llama-graph.h"
|
| 6 |
#include "llama-memory.h"
|
| 7 |
|
| 8 |
#include "ggml-cpp.h"
|
| 9 |
|
|
|
|
| 10 |
#include <set>
|
| 11 |
#include <vector>
|
| 12 |
|
| 13 |
struct llama_cparams;
|
| 14 |
struct llama_hparams;
|
| 15 |
struct llama_ubatch;
|
| 16 |
+
struct llama_sbatch;
|
| 17 |
+
struct llama_model;
|
| 18 |
+
struct llama_context;
|
| 19 |
|
| 20 |
struct llama_kv_cache : public llama_memory_i {
|
| 21 |
+
virtual ~llama_kv_cache() = default;
|
| 22 |
|
| 23 |
+
// call if batch processing fails - restores the cache state
|
| 24 |
+
virtual void restore() = 0;
|
| 25 |
|
| 26 |
+
// call after successful batch processing - clears any pending state
|
| 27 |
+
virtual void commit() = 0;
|
| 28 |
|
| 29 |
+
// process any pending defrag/shift/etc. operations
|
| 30 |
+
// optionally call once before processing a new batch
|
| 31 |
+
virtual bool update(llama_context & lctx) = 0;
|
| 32 |
+
|
| 33 |
+
// schedule a defrag if the fragmentation threshold is exceeded. otherwise, do nothing
|
| 34 |
+
virtual void defrag_sched(float thold) = 0;
|
| 35 |
+
|
| 36 |
+
// simulate full cache, used for allocating worst-case compute buffers
|
| 37 |
+
virtual void set_full() = 0;
|
| 38 |
+
|
| 39 |
+
//
|
| 40 |
+
// batch processing
|
| 41 |
+
//
|
| 42 |
+
|
| 43 |
+
virtual llama_sbatch sbatch_init(const llama_batch & batch, bool logits_all) = 0;
|
| 44 |
+
|
| 45 |
+
// different KV caches require different batch splitting strategies
|
| 46 |
+
virtual llama_ubatch ubatch_next(llama_sbatch & sbatch, uint32_t n_ubatch, bool embd_pooled) const = 0;
|
| 47 |
+
|
| 48 |
+
// find an empty slot of size "n_tokens" in the cache
|
| 49 |
+
virtual bool find_slot(const llama_ubatch & batch) = 0;
|
| 50 |
+
|
| 51 |
+
// getters
|
| 52 |
+
virtual int32_t get_n_tokens() const = 0;
|
| 53 |
+
virtual int32_t get_used_cells() const = 0; // TODO: remove, this is too-specific to the unified cache
|
| 54 |
+
virtual llama_pos get_pos_max() const = 0;
|
| 55 |
+
virtual bool get_can_shift() const = 0;
|
| 56 |
|
| 57 |
bool get_can_edit() const override { return get_can_shift(); }
|
| 58 |
+
|
| 59 |
+
//
|
| 60 |
+
// state write/read
|
| 61 |
+
//
|
| 62 |
+
|
| 63 |
+
virtual void state_write(llama_io_write_i & io, llama_seq_id seq_id = -1) const = 0;
|
| 64 |
+
virtual void state_read (llama_io_read_i & io, llama_seq_id seq_id = -1) = 0;
|
| 65 |
};
|
| 66 |
|
| 67 |
+
//
|
| 68 |
+
// llama_kv_cache_guard
|
| 69 |
+
//
|
| 70 |
+
|
| 71 |
struct llama_kv_cache_guard {
|
| 72 |
llama_kv_cache_guard(llama_kv_cache * kv) : kv(kv) {}
|
| 73 |
|
|
|
|
| 83 |
llama_kv_cache * kv;
|
| 84 |
};
|
| 85 |
|
| 86 |
+
//
|
| 87 |
+
// llama_kv_cache_unified
|
| 88 |
+
//
|
|
|
|
|
|
|
| 89 |
|
| 90 |
+
// TODO: add notion of max sequences
|
| 91 |
+
class llama_kv_cache_unified : public llama_kv_cache {
|
| 92 |
+
public:
|
| 93 |
+
struct kv_cell {
|
| 94 |
+
llama_pos pos = -1;
|
| 95 |
+
llama_pos delta = 0;
|
| 96 |
|
| 97 |
+
std::set<llama_seq_id> seq_id;
|
|
|
|
|
|
|
| 98 |
|
| 99 |
+
bool has_seq_id(const llama_seq_id & id) const {
|
| 100 |
+
return seq_id.find(id) != seq_id.end();
|
| 101 |
+
}
|
| 102 |
|
| 103 |
+
bool is_empty() const {
|
| 104 |
+
return seq_id.empty();
|
| 105 |
+
}
|
|
|
|
| 106 |
|
| 107 |
+
bool is_same_seq(const kv_cell & other) const {
|
| 108 |
+
return seq_id == other.seq_id;
|
| 109 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 110 |
};
|
| 111 |
|
| 112 |
+
static uint32_t get_padding(const llama_cparams & cparams);
|
|
|
|
|
|
|
|
|
|
|
|
|
| 113 |
|
| 114 |
+
llama_kv_cache_unified(
|
| 115 |
+
const llama_model & model,
|
|
|
|
|
|
|
| 116 |
ggml_type type_k,
|
| 117 |
ggml_type type_v,
|
| 118 |
+
bool v_trans,
|
| 119 |
+
bool offload,
|
| 120 |
uint32_t kv_size,
|
| 121 |
+
uint32_t padding);
|
|
|
|
|
|
|
|
|
|
| 122 |
|
| 123 |
+
~llama_kv_cache_unified() = default;
|
| 124 |
|
| 125 |
+
//
|
| 126 |
+
// llama_memory_i
|
| 127 |
+
//
|
| 128 |
|
| 129 |
void clear() override;
|
|
|
|
|
|
|
|
|
|
|
|
|
| 130 |
|
| 131 |
bool seq_rm (llama_seq_id seq_id, llama_pos p0, llama_pos p1) override;
|
| 132 |
void seq_cp (llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) override;
|
|
|
|
| 136 |
|
| 137 |
llama_pos seq_pos_max(llama_seq_id seq_id) const override;
|
| 138 |
|
| 139 |
+
//
|
| 140 |
+
// llama_kv_cache
|
| 141 |
+
//
|
| 142 |
+
|
| 143 |
+
void restore() override;
|
| 144 |
+
void commit() override;
|
| 145 |
+
|
| 146 |
+
bool update(llama_context & ctx) override;
|
| 147 |
+
|
| 148 |
+
void defrag_sched(float thold) override;
|
| 149 |
+
|
| 150 |
+
void set_full() override;
|
| 151 |
+
|
| 152 |
+
llama_sbatch sbatch_init(const llama_batch & batch, bool logits_all) override;
|
| 153 |
+
|
| 154 |
+
llama_ubatch ubatch_next(llama_sbatch & sbatch, uint32_t n_ubatch, bool embd_pooled) const override;
|
| 155 |
|
|
|
|
| 156 |
// updates the cache head
|
| 157 |
// Note: On success, it's important that cache.head points
|
| 158 |
// to the first cell of the slot.
|
| 159 |
+
bool find_slot(const llama_ubatch & batch) override;
|
| 160 |
|
| 161 |
+
int32_t get_n_tokens() const override;
|
| 162 |
+
int32_t get_used_cells() const override;
|
| 163 |
|
| 164 |
+
// TODO: better data structures to reduce the cost of this operation
|
| 165 |
+
llama_pos get_pos_max() const override;
|
| 166 |
|
| 167 |
+
bool get_can_shift() const override;
|
|
|
|
| 168 |
|
| 169 |
+
// state write/load
|
| 170 |
+
|
| 171 |
+
void state_write(llama_io_write_i & io, llama_seq_id seq_id = -1) const override;
|
| 172 |
+
void state_read (llama_io_read_i & io, llama_seq_id seq_id = -1) override;
|
| 173 |
+
|
| 174 |
+
// Note: The value of head isn't only used to optimize searching
|
| 175 |
+
// for a free KV slot. llama_decode_impl also uses it, so it
|
| 176 |
+
// cannot be freely changed after a slot has been allocated.
|
| 177 |
+
uint32_t head = 0;
|
| 178 |
+
uint32_t size = 0;
|
| 179 |
+
uint32_t used = 0; // used cells (i.e. at least one seq_id)
|
| 180 |
+
|
| 181 |
+
// computed before each graph build
|
| 182 |
+
uint32_t n = 0;
|
| 183 |
+
|
| 184 |
+
std::vector<kv_cell> cells;
|
| 185 |
+
|
| 186 |
+
std::vector<ggml_tensor *> k_l; // per layer
|
| 187 |
+
std::vector<ggml_tensor *> v_l;
|
| 188 |
+
|
| 189 |
+
private:
|
| 190 |
+
const llama_model & model;
|
| 191 |
+
const llama_hparams & hparams;
|
| 192 |
+
|
| 193 |
+
bool has_shift = false;
|
| 194 |
+
bool do_defrag = false;
|
| 195 |
+
|
| 196 |
+
bool v_trans = true; // the value tensor is transposed
|
| 197 |
+
bool can_shift = false;
|
| 198 |
+
|
| 199 |
+
// required padding
|
| 200 |
+
uint32_t padding = 1;
|
| 201 |
+
|
| 202 |
+
ggml_type type_k = GGML_TYPE_F16;
|
| 203 |
+
ggml_type type_v = GGML_TYPE_F16;
|
| 204 |
+
|
| 205 |
+
std::vector<ggml_context_ptr> ctxs;
|
| 206 |
+
std::vector<ggml_backend_buffer_ptr> bufs;
|
| 207 |
|
| 208 |
+
// defrag
|
| 209 |
struct {
|
| 210 |
std::vector<uint32_t> ids;
|
| 211 |
} defrag_info;
|
|
|
|
| 214 |
bool defrag_prepare(int32_t n_max_nodes);
|
| 215 |
|
| 216 |
// commit/restore cache
|
|
|
|
| 217 |
struct slot_range {
|
| 218 |
uint32_t c0 = 0; // note: these are cell indices, not sequence positions
|
| 219 |
uint32_t c1 = 0;
|
|
|
|
| 224 |
std::vector<slot_range> ranges;
|
| 225 |
} pending;
|
| 226 |
|
| 227 |
+
// find how many cells are currently in use
|
| 228 |
+
uint32_t cell_max() const;
|
| 229 |
|
| 230 |
+
size_t total_size() const;
|
|
|
|
| 231 |
|
| 232 |
+
size_t size_k_bytes() const;
|
| 233 |
+
size_t size_v_bytes() const;
|
| 234 |
|
| 235 |
+
ggml_tensor * build_rope_shift(
|
| 236 |
+
const llama_cparams & cparams,
|
| 237 |
+
ggml_context * ctx,
|
| 238 |
+
ggml_tensor * cur,
|
| 239 |
+
ggml_tensor * shift,
|
| 240 |
+
ggml_tensor * factors,
|
| 241 |
+
float freq_base,
|
| 242 |
+
float freq_scale) const;
|
| 243 |
+
|
| 244 |
+
llm_graph_result_ptr build_graph_shift(
|
| 245 |
+
const llama_cparams & cparams,
|
| 246 |
+
ggml_context * ctx,
|
| 247 |
+
ggml_cgraph * gf) const;
|
| 248 |
+
|
| 249 |
+
llm_graph_result_ptr build_graph_defrag(
|
| 250 |
+
const llama_cparams & cparams,
|
| 251 |
+
ggml_context * ctx,
|
| 252 |
+
ggml_cgraph * gf) const;
|
| 253 |
|
| 254 |
+
void state_write_meta(llama_io_write_i & io, const std::vector<std::pair<uint32_t, uint32_t>> & cell_ranges, llama_seq_id seq_id = -1) const;
|
| 255 |
+
void state_write_data(llama_io_write_i & io, const std::vector<std::pair<uint32_t, uint32_t>> & cell_ranges) const;
|
| 256 |
|
| 257 |
+
bool state_read_meta(llama_io_read_i & io, uint32_t cell_count, llama_seq_id dest_seq_id = -1);
|
| 258 |
+
bool state_read_data(llama_io_read_i & io, uint32_t cell_count);
|
| 259 |
+
};
|
| 260 |
|
| 261 |
+
//
|
| 262 |
+
// llama_kv_cache_recurrent
|
| 263 |
+
//
|
| 264 |
|
| 265 |
+
class llama_kv_cache_recurrent : public llama_kv_cache {
|
| 266 |
+
public:
|
| 267 |
+
struct kv_cell {
|
| 268 |
+
llama_pos pos = -1;
|
| 269 |
+
int32_t src = -1; // used to copy states
|
| 270 |
+
int32_t tail = -1;
|
| 271 |
+
|
| 272 |
+
std::set<llama_seq_id> seq_id;
|
| 273 |
+
|
| 274 |
+
bool has_seq_id(const llama_seq_id & id) const {
|
| 275 |
+
return seq_id.find(id) != seq_id.end();
|
| 276 |
+
}
|
| 277 |
+
|
| 278 |
+
bool is_empty() const {
|
| 279 |
+
return seq_id.empty();
|
| 280 |
+
}
|
| 281 |
+
|
| 282 |
+
bool is_same_seq(const kv_cell & other) const {
|
| 283 |
+
return seq_id == other.seq_id;
|
| 284 |
+
}
|
| 285 |
+
};
|
| 286 |
+
|
| 287 |
+
llama_kv_cache_recurrent(
|
| 288 |
+
const llama_model & model,
|
| 289 |
+
ggml_type type_k,
|
| 290 |
+
ggml_type type_v,
|
| 291 |
+
bool offload,
|
| 292 |
+
uint32_t kv_size);
|
| 293 |
+
|
| 294 |
+
~llama_kv_cache_recurrent() = default;
|
| 295 |
+
|
| 296 |
+
//
|
| 297 |
+
// llama_memory_i
|
| 298 |
+
//
|
| 299 |
+
|
| 300 |
+
void clear() override;
|
| 301 |
+
|
| 302 |
+
bool seq_rm (llama_seq_id seq_id, llama_pos p0, llama_pos p1) override;
|
| 303 |
+
void seq_cp (llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) override;
|
| 304 |
+
void seq_keep(llama_seq_id seq_id) override;
|
| 305 |
+
void seq_add (llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos delta) override;
|
| 306 |
+
void seq_div (llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) override;
|
| 307 |
+
|
| 308 |
+
llama_pos seq_pos_max(llama_seq_id seq_id) const override;
|
| 309 |
+
|
| 310 |
+
//
|
| 311 |
+
// llama_kv_cache
|
| 312 |
+
//
|
| 313 |
+
|
| 314 |
+
void restore() override;
|
| 315 |
+
void commit() override;
|
| 316 |
+
|
| 317 |
+
bool update(llama_context & lctx) override;
|
| 318 |
+
|
| 319 |
+
void defrag_sched(float thold) override;
|
| 320 |
+
|
| 321 |
+
void set_full() override;
|
| 322 |
+
|
| 323 |
+
llama_sbatch sbatch_init(const llama_batch & batch, bool logits_all) override;
|
| 324 |
+
|
| 325 |
+
llama_ubatch ubatch_next(llama_sbatch & sbatch, uint32_t n_ubatch, bool embd_pooled) const override;
|
| 326 |
+
|
| 327 |
+
bool find_slot(const llama_ubatch & batch) override;
|
| 328 |
+
|
| 329 |
+
int32_t get_n_tokens() const override;
|
| 330 |
+
int32_t get_used_cells() const override;
|
| 331 |
+
|
| 332 |
+
// TODO: better data structures to reduce the cost of this operation
|
| 333 |
+
llama_pos get_pos_max() const override;
|
| 334 |
+
|
| 335 |
+
bool get_can_shift() const override;
|
| 336 |
+
|
| 337 |
+
// TODO: temporary methods - they are not really const as they do const_cast<>, fix this
|
| 338 |
+
int32_t s_copy(int i) const;
|
| 339 |
+
float s_mask(int i) const;
|
| 340 |
+
|
| 341 |
+
// state write/load
|
| 342 |
+
|
| 343 |
+
void state_write(llama_io_write_i & io, llama_seq_id seq_id = -1) const override;
|
| 344 |
+
void state_read (llama_io_read_i & io, llama_seq_id seq_id = -1) override;
|
| 345 |
|
| 346 |
// Note: The value of head isn't only used to optimize searching
|
| 347 |
// for a free KV slot. llama_decode_impl also uses it, so it
|
|
|
|
| 353 |
// computed before each graph build
|
| 354 |
uint32_t n = 0;
|
| 355 |
|
| 356 |
+
std::vector<kv_cell> cells;
|
| 357 |
|
| 358 |
std::vector<ggml_tensor *> k_l; // per layer
|
| 359 |
std::vector<ggml_tensor *> v_l;
|
| 360 |
|
| 361 |
private:
|
| 362 |
+
//const llama_model & model;
|
| 363 |
+
const llama_hparams & hparams;
|
| 364 |
+
|
| 365 |
+
// commit/restore cache
|
| 366 |
+
// TODO: rework for recurrent cache
|
| 367 |
+
struct slot_range {
|
| 368 |
+
uint32_t c0 = 0; // note: these are cell indices, not sequence positions
|
| 369 |
+
uint32_t c1 = 0;
|
| 370 |
+
};
|
| 371 |
+
|
| 372 |
+
// pending cell updates that are not yet committed
|
| 373 |
+
struct {
|
| 374 |
+
std::vector<slot_range> ranges;
|
| 375 |
+
} pending;
|
| 376 |
+
|
| 377 |
ggml_type type_k = GGML_TYPE_F16;
|
| 378 |
ggml_type type_v = GGML_TYPE_F16;
|
| 379 |
|
| 380 |
std::vector<ggml_context_ptr> ctxs;
|
| 381 |
std::vector<ggml_backend_buffer_ptr> bufs;
|
| 382 |
|
| 383 |
+
// find how many cells are currently in use
|
| 384 |
+
uint32_t cell_max() const;
|
| 385 |
+
|
| 386 |
+
size_t total_size() const;
|
| 387 |
+
|
| 388 |
+
size_t size_k_bytes() const;
|
| 389 |
+
size_t size_v_bytes() const;
|
| 390 |
+
|
| 391 |
void state_write_meta(llama_io_write_i & io, const std::vector<std::pair<uint32_t, uint32_t>> & cell_ranges, llama_seq_id seq_id = -1) const;
|
| 392 |
void state_write_data(llama_io_write_i & io, const std::vector<std::pair<uint32_t, uint32_t>> & cell_ranges) const;
|
| 393 |
|
|
|
|
| 395 |
bool state_read_data(llama_io_read_i & io, uint32_t cell_count);
|
| 396 |
};
|
| 397 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 398 |
|
| 399 |
//
|
| 400 |
// kv cache view
|
examples/talk-llama/llama-memory.h
CHANGED
|
@@ -2,12 +2,22 @@
|
|
| 2 |
|
| 3 |
#include "llama.h"
|
| 4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
// general concept of LLM memory
|
| 6 |
// the KV cache is a type of LLM memory, but there can be other types
|
| 7 |
class llama_memory_i {
|
| 8 |
public:
|
|
|
|
|
|
|
| 9 |
virtual void clear() = 0;
|
| 10 |
-
virtual void defrag() = 0;
|
| 11 |
|
| 12 |
virtual bool seq_rm (llama_seq_id seq_id, llama_pos p0, llama_pos p1) = 0;
|
| 13 |
virtual void seq_cp (llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) = 0;
|
|
|
|
| 2 |
|
| 3 |
#include "llama.h"
|
| 4 |
|
| 5 |
+
struct llama_memory_params {
|
| 6 |
+
// kv cache
|
| 7 |
+
ggml_type type_k;
|
| 8 |
+
ggml_type type_v;
|
| 9 |
+
|
| 10 |
+
// parameters for other types of memory
|
| 11 |
+
// ...
|
| 12 |
+
};
|
| 13 |
+
|
| 14 |
// general concept of LLM memory
|
| 15 |
// the KV cache is a type of LLM memory, but there can be other types
|
| 16 |
class llama_memory_i {
|
| 17 |
public:
|
| 18 |
+
virtual ~llama_memory_i() = default;
|
| 19 |
+
|
| 20 |
virtual void clear() = 0;
|
|
|
|
| 21 |
|
| 22 |
virtual bool seq_rm (llama_seq_id seq_id, llama_pos p0, llama_pos p1) = 0;
|
| 23 |
virtual void seq_cp (llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) = 0;
|
examples/talk-llama/llama-model-loader.cpp
CHANGED
|
@@ -301,12 +301,12 @@ namespace GGUFMeta {
|
|
| 301 |
GGUFMeta::GKV<GGUFMeta::ArrayInfo>::get_kv(meta.get(), kid);
|
| 302 |
|
| 303 |
switch (arr_info.gt) {
|
| 304 |
-
case
|
| 305 |
-
case GGUF_TYPE_INT32: GGML_ASSERT(
|
| 306 |
-
|
| 307 |
-
|
| 308 |
default:
|
| 309 |
-
throw std::runtime_error(format("%s is not a float32
|
| 310 |
}
|
| 311 |
|
| 312 |
result.resize(arr_info.length);
|
|
@@ -330,12 +330,12 @@ namespace GGUFMeta {
|
|
| 330 |
GGUFMeta::GKV<GGUFMeta::ArrayInfo>::get_kv(meta.get(), kid);
|
| 331 |
|
| 332 |
switch (arr_info.gt) {
|
| 333 |
-
case
|
| 334 |
-
case GGUF_TYPE_INT32: GGML_ASSERT(
|
| 335 |
-
|
| 336 |
-
|
| 337 |
default:
|
| 338 |
-
throw std::runtime_error(format("%s is not a float32
|
| 339 |
}
|
| 340 |
|
| 341 |
if (arr_info.length > N_MAX) {
|
|
@@ -823,6 +823,10 @@ void llama_model_loader::init_mappings(bool prefetch, llama_mlocks * mlock_mmaps
|
|
| 823 |
mmaps_used.reserve(files.size());
|
| 824 |
for (const auto & file : files) {
|
| 825 |
auto * reg = ggml_backend_dev_backend_reg(ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU));
|
|
|
|
|
|
|
|
|
|
|
|
|
| 826 |
auto * is_numa_fn = (decltype(ggml_is_numa) *) ggml_backend_reg_get_proc_address(reg, "ggml_backend_cpu_is_numa");
|
| 827 |
std::unique_ptr<llama_mmap> mapping = std::make_unique<llama_mmap>(file.get(), prefetch ? -1 : 0, is_numa_fn());
|
| 828 |
mmaps_used.emplace_back(mapping->size(), 0);
|
|
|
|
| 301 |
GGUFMeta::GKV<GGUFMeta::ArrayInfo>::get_kv(meta.get(), kid);
|
| 302 |
|
| 303 |
switch (arr_info.gt) {
|
| 304 |
+
case GGUF_TYPE_UINT32:
|
| 305 |
+
case GGUF_TYPE_INT32: GGML_ASSERT((std::is_same<T, int32_t>::value) ||
|
| 306 |
+
(std::is_same<T, uint32_t>::value)); break;
|
| 307 |
+
case GGUF_TYPE_FLOAT32: GGML_ASSERT((std::is_same<T, float>::value)); break;
|
| 308 |
default:
|
| 309 |
+
throw std::runtime_error(format("%s is not a float32/uint32/int32 array", key.c_str()));
|
| 310 |
}
|
| 311 |
|
| 312 |
result.resize(arr_info.length);
|
|
|
|
| 330 |
GGUFMeta::GKV<GGUFMeta::ArrayInfo>::get_kv(meta.get(), kid);
|
| 331 |
|
| 332 |
switch (arr_info.gt) {
|
| 333 |
+
case GGUF_TYPE_UINT32:
|
| 334 |
+
case GGUF_TYPE_INT32: GGML_ASSERT((std::is_same<T, int32_t>::value) ||
|
| 335 |
+
(std::is_same<T, uint32_t>::value)); break;
|
| 336 |
+
case GGUF_TYPE_FLOAT32: GGML_ASSERT((std::is_same<T, float>::value)); break;
|
| 337 |
default:
|
| 338 |
+
throw std::runtime_error(format("%s is not a float32/uint32/int32 array", key.c_str()));
|
| 339 |
}
|
| 340 |
|
| 341 |
if (arr_info.length > N_MAX) {
|
|
|
|
| 823 |
mmaps_used.reserve(files.size());
|
| 824 |
for (const auto & file : files) {
|
| 825 |
auto * reg = ggml_backend_dev_backend_reg(ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU));
|
| 826 |
+
if (!reg) {
|
| 827 |
+
throw std::runtime_error(format("%s: no CPU backend found", __func__));
|
| 828 |
+
}
|
| 829 |
+
|
| 830 |
auto * is_numa_fn = (decltype(ggml_is_numa) *) ggml_backend_reg_get_proc_address(reg, "ggml_backend_cpu_is_numa");
|
| 831 |
std::unique_ptr<llama_mmap> mapping = std::make_unique<llama_mmap>(file.get(), prefetch ? -1 : 0, is_numa_fn());
|
| 832 |
mmaps_used.emplace_back(mapping->size(), 0);
|
examples/talk-llama/llama-model-saver.cpp
ADDED
|
@@ -0,0 +1,281 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#include "llama-model-saver.h"
|
| 2 |
+
|
| 3 |
+
#include "gguf.h"
|
| 4 |
+
|
| 5 |
+
#include "llama.h"
|
| 6 |
+
#include "llama-hparams.h"
|
| 7 |
+
#include "llama-model.h"
|
| 8 |
+
#include "llama-vocab.h"
|
| 9 |
+
|
| 10 |
+
#include <string>
|
| 11 |
+
|
| 12 |
+
llama_model_saver::llama_model_saver(const struct llama_model & model) : model(model), llm_kv(model.arch) {
|
| 13 |
+
gguf_ctx = gguf_init_empty();
|
| 14 |
+
}
|
| 15 |
+
|
| 16 |
+
llama_model_saver::~llama_model_saver() {
|
| 17 |
+
gguf_free(gguf_ctx);
|
| 18 |
+
}
|
| 19 |
+
|
| 20 |
+
void llama_model_saver::add_kv(const enum llm_kv key, const uint32_t value) {
|
| 21 |
+
gguf_set_val_u32(gguf_ctx, llm_kv(key).c_str(), value);
|
| 22 |
+
}
|
| 23 |
+
|
| 24 |
+
void llama_model_saver::add_kv(const enum llm_kv key, const int32_t value) {
|
| 25 |
+
gguf_set_val_i32(gguf_ctx, llm_kv(key).c_str(), value);
|
| 26 |
+
}
|
| 27 |
+
|
| 28 |
+
void llama_model_saver::add_kv(const enum llm_kv key, const float value) {
|
| 29 |
+
gguf_set_val_f32(gguf_ctx, llm_kv(key).c_str(), value);
|
| 30 |
+
}
|
| 31 |
+
|
| 32 |
+
void llama_model_saver::add_kv(const enum llm_kv key, const bool value) {
|
| 33 |
+
gguf_set_val_bool(gguf_ctx, llm_kv(key).c_str(), value);
|
| 34 |
+
}
|
| 35 |
+
|
| 36 |
+
void llama_model_saver::add_kv(const enum llm_kv key, const char * value) {
|
| 37 |
+
gguf_set_val_str(gguf_ctx, llm_kv(key).c_str(), value);
|
| 38 |
+
}
|
| 39 |
+
|
| 40 |
+
[[noreturn]]
|
| 41 |
+
void llama_model_saver::add_kv(const enum llm_kv key, const char value) {
|
| 42 |
+
GGML_UNUSED(key);
|
| 43 |
+
GGML_UNUSED(value);
|
| 44 |
+
GGML_ABORT("fatal error"); // this should never be called, only needed to make the template below compile
|
| 45 |
+
}
|
| 46 |
+
|
| 47 |
+
template <typename Container>
|
| 48 |
+
void llama_model_saver::add_kv(const enum llm_kv key, const Container & value, const bool per_layer) {
|
| 49 |
+
const size_t n_values = per_layer ? size_t(model.hparams.n_layer) : value.size();
|
| 50 |
+
GGML_ASSERT(n_values <= value.size());
|
| 51 |
+
|
| 52 |
+
if (n_values == 0) {
|
| 53 |
+
return;
|
| 54 |
+
}
|
| 55 |
+
|
| 56 |
+
if (per_layer) {
|
| 57 |
+
bool all_values_the_same = true;
|
| 58 |
+
for (size_t i = 1; i < n_values; ++i) {
|
| 59 |
+
if (value[i] != value[0]) {
|
| 60 |
+
all_values_the_same = false;
|
| 61 |
+
break;
|
| 62 |
+
}
|
| 63 |
+
}
|
| 64 |
+
if (all_values_the_same) {
|
| 65 |
+
add_kv(key, value[0]);
|
| 66 |
+
return;
|
| 67 |
+
}
|
| 68 |
+
}
|
| 69 |
+
|
| 70 |
+
if (std::is_same<typename Container::value_type, uint8_t>::value) {
|
| 71 |
+
gguf_set_arr_data(gguf_ctx, llm_kv(key).c_str(), GGUF_TYPE_UINT8, value.data(), n_values);
|
| 72 |
+
} else if (std::is_same<typename Container::value_type, int8_t>::value) {
|
| 73 |
+
gguf_set_arr_data(gguf_ctx, llm_kv(key).c_str(), GGUF_TYPE_INT8, value.data(), n_values);
|
| 74 |
+
} else if (std::is_same<typename Container::value_type, uint32_t>::value) {
|
| 75 |
+
gguf_set_arr_data(gguf_ctx, llm_kv(key).c_str(), GGUF_TYPE_UINT32, value.data(), n_values);
|
| 76 |
+
} else if (std::is_same<typename Container::value_type, int32_t>::value) {
|
| 77 |
+
gguf_set_arr_data(gguf_ctx, llm_kv(key).c_str(), GGUF_TYPE_INT32, value.data(), n_values);
|
| 78 |
+
} else if (std::is_same<typename Container::value_type, float>::value) {
|
| 79 |
+
gguf_set_arr_data(gguf_ctx, llm_kv(key).c_str(), GGUF_TYPE_FLOAT32, value.data(), n_values);
|
| 80 |
+
} else if (std::is_same<Container, std::string>::value) {
|
| 81 |
+
gguf_set_val_str(gguf_ctx, llm_kv(key).c_str(), reinterpret_cast<const char *>(value.data()));
|
| 82 |
+
} else {
|
| 83 |
+
GGML_ABORT("fatal error");
|
| 84 |
+
}
|
| 85 |
+
}
|
| 86 |
+
|
| 87 |
+
void llama_model_saver::add_kv(const enum llm_kv key, const std::vector<std::string> & value) {
|
| 88 |
+
std::vector<const char *> tmp(value.size());
|
| 89 |
+
for (size_t i = 0; i < value.size(); ++i) {
|
| 90 |
+
tmp[i] = value[i].c_str();
|
| 91 |
+
}
|
| 92 |
+
gguf_set_arr_str(gguf_ctx, llm_kv(key).c_str(), tmp.data(), tmp.size());
|
| 93 |
+
}
|
| 94 |
+
|
| 95 |
+
void llama_model_saver::add_tensor(const struct ggml_tensor * tensor) {
|
| 96 |
+
if (!tensor) {
|
| 97 |
+
return;
|
| 98 |
+
}
|
| 99 |
+
if (gguf_find_tensor(gguf_ctx, tensor->name) >= 0) {
|
| 100 |
+
GGML_ASSERT(std::string(tensor->name) == "rope_freqs.weight"); // FIXME
|
| 101 |
+
return;
|
| 102 |
+
}
|
| 103 |
+
gguf_add_tensor(gguf_ctx, tensor);
|
| 104 |
+
}
|
| 105 |
+
|
| 106 |
+
void llama_model_saver::add_kv_from_model() {
|
| 107 |
+
const llama_hparams & hparams = model.hparams;
|
| 108 |
+
const llama_vocab & vocab = model.vocab;
|
| 109 |
+
|
| 110 |
+
const int32_t n_vocab = vocab.n_tokens();
|
| 111 |
+
std::vector<std::string> tokens(n_vocab);
|
| 112 |
+
std::vector<float> scores(n_vocab);
|
| 113 |
+
std::vector<int32_t> token_types(n_vocab);
|
| 114 |
+
|
| 115 |
+
for (int32_t id = 0; id < n_vocab; ++id) {
|
| 116 |
+
const llama_vocab::token_data & token_data = vocab.get_token_data(id);
|
| 117 |
+
|
| 118 |
+
tokens[id] = token_data.text;
|
| 119 |
+
scores[id] = token_data.score;
|
| 120 |
+
|
| 121 |
+
switch(token_data.attr) {
|
| 122 |
+
case LLAMA_TOKEN_ATTR_UNKNOWN: token_types[id] = LLAMA_TOKEN_TYPE_UNKNOWN; break;
|
| 123 |
+
case LLAMA_TOKEN_ATTR_UNUSED: token_types[id] = LLAMA_TOKEN_TYPE_UNUSED; break;
|
| 124 |
+
case LLAMA_TOKEN_ATTR_NORMAL: token_types[id] = LLAMA_TOKEN_TYPE_NORMAL; break;
|
| 125 |
+
case LLAMA_TOKEN_ATTR_CONTROL: token_types[id] = LLAMA_TOKEN_TYPE_CONTROL; break;
|
| 126 |
+
case LLAMA_TOKEN_ATTR_USER_DEFINED: token_types[id] = LLAMA_TOKEN_TYPE_USER_DEFINED; break;
|
| 127 |
+
case LLAMA_TOKEN_ATTR_BYTE: token_types[id] = LLAMA_TOKEN_TYPE_BYTE; break;
|
| 128 |
+
case LLAMA_TOKEN_ATTR_UNDEFINED:
|
| 129 |
+
default: token_types[id] = LLAMA_TOKEN_TYPE_UNDEFINED; break;
|
| 130 |
+
}
|
| 131 |
+
}
|
| 132 |
+
|
| 133 |
+
// add_kv(LLM_KV_GENERAL_TYPE, ???);
|
| 134 |
+
add_kv(LLM_KV_GENERAL_ARCHITECTURE, model.arch_name());
|
| 135 |
+
// add_kv(LLM_KV_GENERAL_QUANTIZATION_VERSION, ???);
|
| 136 |
+
// add_kv(LLM_KV_GENERAL_ALIGNMENT, ???);
|
| 137 |
+
add_kv(LLM_KV_GENERAL_NAME, model.name);
|
| 138 |
+
// add_kv(LLM_KV_GENERAL_AUTHOR, ???);
|
| 139 |
+
// add_kv(LLM_KV_GENERAL_VERSION, ???);
|
| 140 |
+
// add_kv(LLM_KV_GENERAL_URL, ???);
|
| 141 |
+
// add_kv(LLM_KV_GENERAL_DESCRIPTION, ???);
|
| 142 |
+
// add_kv(LLM_KV_GENERAL_LICENSE, ???);
|
| 143 |
+
// add_kv(LLM_KV_GENERAL_SOURCE_URL, ???);
|
| 144 |
+
// add_kv(LLM_KV_GENERAL_SOURCE_HF_REPO, ???);
|
| 145 |
+
|
| 146 |
+
add_kv(LLM_KV_VOCAB_SIZE, vocab.n_tokens());
|
| 147 |
+
add_kv(LLM_KV_CONTEXT_LENGTH, hparams.n_ctx_train);
|
| 148 |
+
add_kv(LLM_KV_EMBEDDING_LENGTH, hparams.n_embd);
|
| 149 |
+
add_kv(LLM_KV_BLOCK_COUNT, hparams.n_layer);
|
| 150 |
+
add_kv(LLM_KV_LEADING_DENSE_BLOCK_COUNT, hparams.n_layer_dense_lead);
|
| 151 |
+
add_kv(LLM_KV_FEED_FORWARD_LENGTH, hparams.n_ff_arr, true);
|
| 152 |
+
add_kv(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
|
| 153 |
+
add_kv(LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
|
| 154 |
+
add_kv(LLM_KV_USE_PARALLEL_RESIDUAL, hparams.use_par_res);
|
| 155 |
+
// add_kv(LLM_KV_TENSOR_DATA_LAYOUT, ???);
|
| 156 |
+
add_kv(LLM_KV_EXPERT_COUNT, hparams.n_expert);
|
| 157 |
+
add_kv(LLM_KV_EXPERT_USED_COUNT, hparams.n_expert_used);
|
| 158 |
+
add_kv(LLM_KV_EXPERT_SHARED_COUNT, hparams.n_expert_shared);
|
| 159 |
+
add_kv(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale);
|
| 160 |
+
add_kv(LLM_KV_POOLING_TYPE, uint32_t(hparams.pooling_type));
|
| 161 |
+
add_kv(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale);
|
| 162 |
+
add_kv(LLM_KV_DECODER_START_TOKEN_ID, hparams.dec_start_token_id);
|
| 163 |
+
add_kv(LLM_KV_ATTN_LOGIT_SOFTCAPPING, hparams.f_attn_logit_softcapping);
|
| 164 |
+
add_kv(LLM_KV_FINAL_LOGIT_SOFTCAPPING, hparams.f_final_logit_softcapping);
|
| 165 |
+
add_kv(LLM_KV_SWIN_NORM, hparams.swin_norm);
|
| 166 |
+
add_kv(LLM_KV_RESCALE_EVERY_N_LAYERS, hparams.rescale_every_n_layers);
|
| 167 |
+
add_kv(LLM_KV_TIME_MIX_EXTRA_DIM, hparams.time_mix_extra_dim);
|
| 168 |
+
add_kv(LLM_KV_TIME_DECAY_EXTRA_DIM, hparams.time_decay_extra_dim);
|
| 169 |
+
add_kv(LLM_KV_RESIDUAL_SCALE, hparams.f_residual_scale);
|
| 170 |
+
add_kv(LLM_KV_EMBEDDING_SCALE, hparams.f_embedding_scale);
|
| 171 |
+
|
| 172 |
+
add_kv(LLM_KV_ATTENTION_HEAD_COUNT, hparams.n_head_arr, true);
|
| 173 |
+
add_kv(LLM_KV_ATTENTION_HEAD_COUNT_KV, hparams.n_head_kv_arr, true);
|
| 174 |
+
add_kv(LLM_KV_ATTENTION_MAX_ALIBI_BIAS, hparams.f_max_alibi_bias);
|
| 175 |
+
add_kv(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv);
|
| 176 |
+
add_kv(LLM_KV_ATTENTION_KEY_LENGTH, hparams.n_embd_head_k);
|
| 177 |
+
add_kv(LLM_KV_ATTENTION_VALUE_LENGTH, hparams.n_embd_head_v);
|
| 178 |
+
add_kv(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
|
| 179 |
+
add_kv(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
| 180 |
+
add_kv(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
|
| 181 |
+
add_kv(LLM_KV_ATTENTION_Q_LORA_RANK, hparams.n_lora_q);
|
| 182 |
+
add_kv(LLM_KV_ATTENTION_KV_LORA_RANK, hparams.n_lora_kv);
|
| 183 |
+
add_kv(LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT, hparams.n_rel_attn_bkts);
|
| 184 |
+
add_kv(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa);
|
| 185 |
+
add_kv(LLM_KV_ATTENTION_SCALE, hparams.f_attention_scale);
|
| 186 |
+
|
| 187 |
+
const float rope_scaling_factor = hparams.rope_freq_scale_train == 1.0f ? 0.0f : 1.0f/hparams.rope_freq_scale_train;
|
| 188 |
+
|
| 189 |
+
add_kv(LLM_KV_ROPE_DIMENSION_COUNT, hparams.n_rot);
|
| 190 |
+
add_kv(LLM_KV_ROPE_FREQ_BASE, hparams.rope_freq_base_train);
|
| 191 |
+
// add_kv(LLM_KV_ROPE_SCALE_LINEAR, rope_scaling_factor); // old name
|
| 192 |
+
add_kv(LLM_KV_ROPE_SCALING_TYPE, llama_rope_scaling_type_name(hparams.rope_scaling_type_train));
|
| 193 |
+
add_kv(LLM_KV_ROPE_SCALING_FACTOR, rope_scaling_factor);
|
| 194 |
+
add_kv(LLM_KV_ROPE_SCALING_ATTN_FACTOR, hparams.rope_attn_factor);
|
| 195 |
+
add_kv(LLM_KV_ROPE_SCALING_ORIG_CTX_LEN, hparams.n_ctx_orig_yarn);
|
| 196 |
+
add_kv(LLM_KV_ROPE_SCALING_FINETUNED, hparams.rope_finetuned);
|
| 197 |
+
add_kv(LLM_KV_ROPE_SCALING_YARN_LOG_MUL, hparams.rope_yarn_log_mul);
|
| 198 |
+
|
| 199 |
+
// TODO: implement split file support
|
| 200 |
+
// add_kv(LLM_KV_SPLIT_NO, ???);
|
| 201 |
+
// add_kv(LLM_KV_SPLIT_COUNT, ???);
|
| 202 |
+
// add_kv(LLM_KV_SPLIT_TENSORS_COUNT, ???);
|
| 203 |
+
|
| 204 |
+
add_kv(LLM_KV_SSM_INNER_SIZE, hparams.ssm_d_inner);
|
| 205 |
+
add_kv(LLM_KV_SSM_CONV_KERNEL, hparams.ssm_d_conv);
|
| 206 |
+
add_kv(LLM_KV_SSM_STATE_SIZE, hparams.ssm_d_state);
|
| 207 |
+
add_kv(LLM_KV_SSM_TIME_STEP_RANK, hparams.ssm_dt_rank);
|
| 208 |
+
add_kv(LLM_KV_SSM_DT_B_C_RMS, hparams.ssm_dt_b_c_rms);
|
| 209 |
+
|
| 210 |
+
add_kv(LLM_KV_WKV_HEAD_SIZE, hparams.wkv_head_size);
|
| 211 |
+
|
| 212 |
+
add_kv(LLM_KV_TOKENIZER_MODEL, vocab.get_tokenizer_model());
|
| 213 |
+
add_kv(LLM_KV_TOKENIZER_PRE, vocab.get_tokenizer_pre());
|
| 214 |
+
add_kv(LLM_KV_TOKENIZER_LIST, tokens);
|
| 215 |
+
add_kv(LLM_KV_TOKENIZER_TOKEN_TYPE, token_types);
|
| 216 |
+
add_kv(LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, vocab.n_token_types());
|
| 217 |
+
add_kv(LLM_KV_TOKENIZER_SCORES, scores);
|
| 218 |
+
add_kv(LLM_KV_TOKENIZER_MERGES, vocab.get_bpe_merges());
|
| 219 |
+
// FIXME llama_token is type i32 but when reading in a GGUF file u32 is expected, not an issue for writing though
|
| 220 |
+
add_kv(LLM_KV_TOKENIZER_BOS_ID, uint32_t(vocab.token_bos()));
|
| 221 |
+
add_kv(LLM_KV_TOKENIZER_EOS_ID, uint32_t(vocab.token_eos()));
|
| 222 |
+
add_kv(LLM_KV_TOKENIZER_EOT_ID, uint32_t(vocab.token_eot()));
|
| 223 |
+
add_kv(LLM_KV_TOKENIZER_EOM_ID, uint32_t(vocab.token_eom()));
|
| 224 |
+
add_kv(LLM_KV_TOKENIZER_UNK_ID, uint32_t(vocab.token_unk()));
|
| 225 |
+
add_kv(LLM_KV_TOKENIZER_SEP_ID, uint32_t(vocab.token_sep()));
|
| 226 |
+
add_kv(LLM_KV_TOKENIZER_PAD_ID, uint32_t(vocab.token_pad()));
|
| 227 |
+
// add_kv(LLM_KV_TOKENIZER_CLS_ID, uint32_t(vocab.token_bos())); // deprecated
|
| 228 |
+
// add_kv(LLM_KV_TOKENIZER_MASK_ID, ???);
|
| 229 |
+
add_kv(LLM_KV_TOKENIZER_ADD_BOS, vocab.get_add_bos());
|
| 230 |
+
add_kv(LLM_KV_TOKENIZER_ADD_EOS, vocab.get_add_eos());
|
| 231 |
+
add_kv(LLM_KV_TOKENIZER_ADD_PREFIX, vocab.get_add_space_prefix());
|
| 232 |
+
add_kv(LLM_KV_TOKENIZER_REMOVE_EXTRA_WS, vocab.get_remove_extra_whitespaces());
|
| 233 |
+
add_kv(LLM_KV_TOKENIZER_PRECOMPILED_CHARSMAP, vocab.get_precompiled_charsmap());
|
| 234 |
+
// add_kv(LLM_KV_TOKENIZER_HF_JSON, ???);
|
| 235 |
+
// add_kv(LLM_KV_TOKENIZER_RWKV, ???);
|
| 236 |
+
add_kv(LLM_KV_TOKENIZER_FIM_PRE_ID, uint32_t(vocab.token_fim_pre()));
|
| 237 |
+
add_kv(LLM_KV_TOKENIZER_FIM_SUF_ID, uint32_t(vocab.token_fim_suf()));
|
| 238 |
+
add_kv(LLM_KV_TOKENIZER_FIM_MID_ID, uint32_t(vocab.token_fim_mid()));
|
| 239 |
+
add_kv(LLM_KV_TOKENIZER_FIM_PAD_ID, uint32_t(vocab.token_fim_pad()));
|
| 240 |
+
add_kv(LLM_KV_TOKENIZER_FIM_REP_ID, uint32_t(vocab.token_fim_rep()));
|
| 241 |
+
add_kv(LLM_KV_TOKENIZER_FIM_SEP_ID, uint32_t(vocab.token_fim_sep()));
|
| 242 |
+
|
| 243 |
+
// TODO: implement LoRA support
|
| 244 |
+
// add_kv(LLM_KV_ADAPTER_TYPE, ???);
|
| 245 |
+
// add_kv(LLM_KV_ADAPTER_LORA_ALPHA, ???);
|
| 246 |
+
|
| 247 |
+
// deprecated
|
| 248 |
+
// add_kv(LLM_KV_TOKENIZER_PREFIX_ID, ???);
|
| 249 |
+
// add_kv(LLM_KV_TOKENIZER_SUFFIX_ID, ???);
|
| 250 |
+
// add_kv(LLM_KV_TOKENIZER_MIDDLE_ID, ???);
|
| 251 |
+
}
|
| 252 |
+
|
| 253 |
+
void llama_model_saver::add_tensors_from_model() {
|
| 254 |
+
if (std::string(model.output->name) != std::string(model.tok_embd->name)) {
|
| 255 |
+
add_tensor(model.tok_embd); // some models use the same tensor for tok_embd and output
|
| 256 |
+
}
|
| 257 |
+
add_tensor(model.type_embd);
|
| 258 |
+
add_tensor(model.pos_embd);
|
| 259 |
+
add_tensor(model.tok_norm);
|
| 260 |
+
add_tensor(model.tok_norm_b);
|
| 261 |
+
add_tensor(model.output_norm);
|
| 262 |
+
add_tensor(model.output_norm_b);
|
| 263 |
+
add_tensor(model.output);
|
| 264 |
+
add_tensor(model.output_b);
|
| 265 |
+
add_tensor(model.output_norm_enc);
|
| 266 |
+
add_tensor(model.cls);
|
| 267 |
+
add_tensor(model.cls_b);
|
| 268 |
+
add_tensor(model.cls_out);
|
| 269 |
+
add_tensor(model.cls_out_b);
|
| 270 |
+
|
| 271 |
+
for (const struct llama_layer & layer : model.layers) {
|
| 272 |
+
for (size_t i = 0; i < sizeof(layer)/sizeof(struct ggml_tensor *); ++i) {
|
| 273 |
+
add_tensor(reinterpret_cast<const struct ggml_tensor * const *>(&layer)[i]);
|
| 274 |
+
}
|
| 275 |
+
}
|
| 276 |
+
}
|
| 277 |
+
|
| 278 |
+
void llama_model_saver::save(const std::string & path_model) {
|
| 279 |
+
gguf_write_to_file(gguf_ctx, path_model.c_str(), false);
|
| 280 |
+
}
|
| 281 |
+
|
examples/talk-llama/llama-model-saver.h
ADDED
|
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#pragma once
|
| 2 |
+
|
| 3 |
+
#include "llama.h"
|
| 4 |
+
#include "llama-arch.h"
|
| 5 |
+
|
| 6 |
+
#include <vector>
|
| 7 |
+
|
| 8 |
+
struct llama_model_saver {
|
| 9 |
+
struct gguf_context * gguf_ctx = nullptr;
|
| 10 |
+
const struct llama_model & model;
|
| 11 |
+
const struct LLM_KV llm_kv;
|
| 12 |
+
|
| 13 |
+
llama_model_saver(const struct llama_model & model);
|
| 14 |
+
~llama_model_saver();
|
| 15 |
+
|
| 16 |
+
void add_kv(enum llm_kv key, uint32_t value);
|
| 17 |
+
void add_kv(enum llm_kv key, int32_t value);
|
| 18 |
+
void add_kv(enum llm_kv key, float value);
|
| 19 |
+
void add_kv(enum llm_kv key, bool value);
|
| 20 |
+
void add_kv(enum llm_kv key, const char * value);
|
| 21 |
+
|
| 22 |
+
[[noreturn]]
|
| 23 |
+
void add_kv(enum llm_kv key, char value); // needed to make the template below compile
|
| 24 |
+
|
| 25 |
+
template <typename Container>
|
| 26 |
+
void add_kv(enum llm_kv key, const Container & value, bool per_layer = false);
|
| 27 |
+
|
| 28 |
+
void add_kv(enum llm_kv key, const std::vector<std::string> & value);
|
| 29 |
+
|
| 30 |
+
void add_tensor(const struct ggml_tensor * tensor);
|
| 31 |
+
|
| 32 |
+
void add_kv_from_model();
|
| 33 |
+
|
| 34 |
+
void add_tensors_from_model();
|
| 35 |
+
|
| 36 |
+
void save(const std::string & path_model);
|
| 37 |
+
};
|
examples/talk-llama/llama-model.cpp
CHANGED
|
@@ -80,6 +80,7 @@ const char * llm_type_name(llm_type type) {
|
|
| 80 |
case LLM_TYPE_236B: return "236B";
|
| 81 |
case LLM_TYPE_290B: return "290B";
|
| 82 |
case LLM_TYPE_314B: return "314B";
|
|
|
|
| 83 |
case LLM_TYPE_671B: return "671B";
|
| 84 |
case LLM_TYPE_SMALL: return "0.1B";
|
| 85 |
case LLM_TYPE_MEDIUM: return "0.4B";
|
|
@@ -116,6 +117,10 @@ static const std::map<llama_rope_scaling_type, const char *> LLAMA_ROPE_SCALING_
|
|
| 116 |
{ LLAMA_ROPE_SCALING_TYPE_LONGROPE, "longrope" },
|
| 117 |
};
|
| 118 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 119 |
static llama_rope_scaling_type llama_rope_scaling_type_from_string(const std::string & name) {
|
| 120 |
for (const auto & kv : LLAMA_ROPE_SCALING_TYPES) {
|
| 121 |
if (kv.second == name) {
|
|
@@ -298,6 +303,10 @@ static buft_list_t make_cpu_buft_list(const std::vector<ggml_backend_dev_t> & de
|
|
| 298 |
// add extra buffer types, only if no GPU device is present
|
| 299 |
// ref: https://github.com/ggml-org/llama.cpp/issues/12481#issuecomment-2743136094
|
| 300 |
auto * cpu_dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
|
|
|
|
|
|
|
|
|
|
|
|
|
| 301 |
auto * cpu_reg = ggml_backend_dev_backend_reg(cpu_dev);
|
| 302 |
auto ggml_backend_dev_get_extra_bufts_fn = (ggml_backend_dev_get_extra_bufts_t)
|
| 303 |
ggml_backend_reg_get_proc_address(cpu_reg, "ggml_backend_dev_get_extra_bufts");
|
|
@@ -582,6 +591,7 @@ void llama_model::load_hparams(llama_model_loader & ml) {
|
|
| 582 |
switch (hparams.n_layer) {
|
| 583 |
case 32: type = LLM_TYPE_7B; break;
|
| 584 |
case 80: type = LLM_TYPE_70B; break;
|
|
|
|
| 585 |
default: type = LLM_TYPE_UNKNOWN;
|
| 586 |
}
|
| 587 |
} break;
|
|
@@ -773,6 +783,7 @@ void llama_model::load_hparams(llama_model_loader & ml) {
|
|
| 773 |
// fall through
|
| 774 |
case LLM_ARCH_QWEN2:
|
| 775 |
{
|
|
|
|
| 776 |
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
| 777 |
switch (hparams.n_layer) {
|
| 778 |
case 24: type = hparams.n_embd == 1024 ? LLM_TYPE_0_5B : LLM_TYPE_1B; break;
|
|
@@ -1481,6 +1492,9 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
|
|
| 1481 |
}
|
| 1482 |
|
| 1483 |
ggml_backend_dev_t cpu_dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
|
|
|
|
|
|
|
|
|
|
| 1484 |
const int i_gpu_start = std::max((int) hparams.n_layer - n_gpu_layers, (int) 0);
|
| 1485 |
const int act_gpu_layers = devices.empty() ? 0 : std::min(n_gpu_layers, (int)n_layer + 1);
|
| 1486 |
auto get_layer_buft_list = [&](int il) -> llama_model::impl::layer_dev {
|
|
@@ -1648,8 +1662,11 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
|
|
| 1648 |
for (const auto * overrides = ml.tensor_buft_overrides; overrides->pattern != nullptr; ++overrides) {
|
| 1649 |
std::regex pattern(overrides->pattern);
|
| 1650 |
if (std::regex_search(tensor_name, pattern)) {
|
| 1651 |
-
LLAMA_LOG_DEBUG("tensor %s buffer type overriden to %s\n", tensor_name.c_str(), ggml_backend_buft_name(overrides->buft));
|
| 1652 |
buft = overrides->buft;
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1653 |
break;
|
| 1654 |
}
|
| 1655 |
}
|
|
@@ -1666,6 +1683,9 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
|
|
| 1666 |
auto * buft_dev = ggml_backend_buft_get_device(buft);
|
| 1667 |
if (ml.use_mmap && buft_dev && buft == ggml_backend_dev_host_buffer_type(buft_dev)) {
|
| 1668 |
auto * cpu_dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
|
|
|
|
|
|
|
|
|
|
| 1669 |
buft = ggml_backend_dev_buffer_type(cpu_dev);
|
| 1670 |
}
|
| 1671 |
|
|
@@ -1847,7 +1867,9 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
|
|
| 1847 |
layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
|
| 1848 |
layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
|
| 1849 |
|
| 1850 |
-
|
|
|
|
|
|
|
| 1851 |
|
| 1852 |
if (hparams.rope_scaling_type_train == LLAMA_ROPE_SCALING_TYPE_LONGROPE) {
|
| 1853 |
layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
|
|
@@ -1857,9 +1879,11 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
|
|
| 1857 |
layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
|
| 1858 |
}
|
| 1859 |
|
| 1860 |
-
|
| 1861 |
-
|
| 1862 |
-
|
|
|
|
|
|
|
| 1863 |
|
| 1864 |
// optional MLP bias
|
| 1865 |
layer.ffn_gate_b = create_tensor(tn(LLM_TENSOR_FFN_GATE, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
|
|
@@ -3503,7 +3527,11 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
|
|
| 3503 |
|
| 3504 |
// output
|
| 3505 |
output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
|
| 3506 |
-
output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab},
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3507 |
|
| 3508 |
for (int i = 0; i < n_layer; ++i) {
|
| 3509 |
auto & layer = layers[i];
|
|
@@ -4108,6 +4136,9 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
|
|
| 4108 |
if (!dev) {
|
| 4109 |
// FIXME: workaround for CPU backend buft having a NULL device
|
| 4110 |
dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
|
|
|
|
|
|
|
|
|
|
| 4111 |
}
|
| 4112 |
ggml_backend_dev_props props;
|
| 4113 |
ggml_backend_dev_get_props(dev, &props);
|
|
@@ -4237,7 +4268,7 @@ uint64_t llama_model::n_elements() const {
|
|
| 4237 |
}
|
| 4238 |
|
| 4239 |
void llama_model::print_info() const {
|
| 4240 |
-
const
|
| 4241 |
|
| 4242 |
auto print_f = [](const std::function<uint32_t(uint32_t)> & f, uint32_t n) {
|
| 4243 |
bool is_var = false;
|
|
@@ -4298,7 +4329,7 @@ void llama_model::print_info() const {
|
|
| 4298 |
LLAMA_LOG_INFO("%s: causal attn = %d\n", __func__, hparams.causal_attn);
|
| 4299 |
LLAMA_LOG_INFO("%s: pooling type = %d\n", __func__, hparams.pooling_type);
|
| 4300 |
LLAMA_LOG_INFO("%s: rope type = %d\n", __func__, hparams.rope_type);
|
| 4301 |
-
LLAMA_LOG_INFO("%s: rope scaling = %s\n", __func__, rope_scaling_type);
|
| 4302 |
LLAMA_LOG_INFO("%s: freq_base_train = %.1f\n", __func__, hparams.rope_freq_base_train);
|
| 4303 |
LLAMA_LOG_INFO("%s: freq_scale_train = %g\n", __func__, hparams.rope_freq_scale_train);
|
| 4304 |
LLAMA_LOG_INFO("%s: n_ctx_orig_yarn = %u\n", __func__, hparams.n_ctx_orig_yarn);
|
|
@@ -4445,6 +4476,19 @@ const ggml_tensor * llama_model::get_tensor(const char * name) const {
|
|
| 4445 |
return it->second;
|
| 4446 |
}
|
| 4447 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4448 |
struct llm_build_llama : public llm_graph_context {
|
| 4449 |
llm_build_llama(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
|
| 4450 |
const int64_t n_embd_head = hparams.n_embd_head_v;
|
|
@@ -4485,7 +4529,7 @@ struct llm_build_llama : public llm_graph_context {
|
|
| 4485 |
// self-attention
|
| 4486 |
{
|
| 4487 |
// rope freq factors for llama3; may return nullptr for llama2 and other models
|
| 4488 |
-
ggml_tensor * rope_factors =
|
| 4489 |
|
| 4490 |
// compute Q and K and RoPE them
|
| 4491 |
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
|
|
@@ -4691,6 +4735,7 @@ struct llm_build_deci : public llm_graph_context {
|
|
| 4691 |
ggml_tensor * inpSA = inpL;
|
| 4692 |
const int64_t n_head_kv = hparams.n_head_kv(il);
|
| 4693 |
const int64_t n_head = hparams.n_head(il);
|
|
|
|
| 4694 |
|
| 4695 |
if (n_head == 0) {
|
| 4696 |
// attention-free layer of Llama-3_1-Nemotron-51B
|
|
@@ -4710,7 +4755,7 @@ struct llm_build_deci : public llm_graph_context {
|
|
| 4710 |
} else if (n_head > 0) {
|
| 4711 |
// self-attention
|
| 4712 |
// rope freq factors for llama3; may return nullptr for llama2 and other models
|
| 4713 |
-
ggml_tensor * rope_factors =
|
| 4714 |
|
| 4715 |
// compute Q and K and RoPE them
|
| 4716 |
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
|
|
@@ -4766,6 +4811,11 @@ struct llm_build_deci : public llm_graph_context {
|
|
| 4766 |
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
|
| 4767 |
}
|
| 4768 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4769 |
// For Granite architecture
|
| 4770 |
if (hparams.f_residual_scale) {
|
| 4771 |
cur = ggml_scale(ctx0, cur, hparams.f_residual_scale);
|
|
@@ -7192,7 +7242,7 @@ struct llm_build_phi3 : public llm_graph_context {
|
|
| 7192 |
// self-attention
|
| 7193 |
{
|
| 7194 |
// rope freq factors for 128k context
|
| 7195 |
-
ggml_tensor * rope_factors =
|
| 7196 |
|
| 7197 |
ggml_tensor* attn_norm_output = build_norm(inpL,
|
| 7198 |
model.layers[il].attn_norm,
|
|
@@ -7944,7 +7994,7 @@ struct llm_build_minicpm3 : public llm_graph_context {
|
|
| 7944 |
for (int il = 0; il < n_layer; ++il) {
|
| 7945 |
ggml_tensor * inpSA = inpL;
|
| 7946 |
|
| 7947 |
-
ggml_tensor * rope_factors =
|
| 7948 |
|
| 7949 |
// norm
|
| 7950 |
cur = build_norm(inpL,
|
|
@@ -8711,7 +8761,7 @@ struct llm_build_mamba : public llm_graph_context {
|
|
| 8711 |
ggml_tensor * state_mask,
|
| 8712 |
const llama_ubatch & ubatch,
|
| 8713 |
int il) const {
|
| 8714 |
-
const
|
| 8715 |
|
| 8716 |
const auto kv_head = kv_self->head;
|
| 8717 |
|
|
@@ -9012,7 +9062,7 @@ struct llm_build_cohere2 : public llm_graph_context {
|
|
| 9012 |
// self-attention
|
| 9013 |
{
|
| 9014 |
// rope freq factors for 128k context
|
| 9015 |
-
ggml_tensor * rope_factors =
|
| 9016 |
|
| 9017 |
// compute Q and K and RoPE them
|
| 9018 |
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
|
|
@@ -9950,7 +10000,7 @@ struct llm_build_deepseek : public llm_graph_context {
|
|
| 9950 |
// self-attention
|
| 9951 |
{
|
| 9952 |
// rope freq factors for llama3; may return nullptr for llama2 and other models
|
| 9953 |
-
ggml_tensor * rope_factors =
|
| 9954 |
|
| 9955 |
// compute Q and K and RoPE them
|
| 9956 |
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
|
|
@@ -11314,7 +11364,7 @@ struct llm_build_exaone : public llm_graph_context {
|
|
| 11314 |
// self-attention
|
| 11315 |
{
|
| 11316 |
// rope freq factors for llama3; may return nullptr for llama2 and other models
|
| 11317 |
-
ggml_tensor * rope_factors =
|
| 11318 |
|
| 11319 |
// compute Q and K and RoPE them
|
| 11320 |
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
|
|
@@ -11459,7 +11509,7 @@ struct llm_build_rwkv6_base : public llm_graph_context {
|
|
| 11459 |
ggml_tensor * state_mask,
|
| 11460 |
const llama_ubatch & ubatch,
|
| 11461 |
int il) const {
|
| 11462 |
-
const
|
| 11463 |
|
| 11464 |
const auto n_tokens = ubatch.n_tokens;
|
| 11465 |
const auto n_seqs = ubatch.n_seqs;
|
|
@@ -11855,7 +11905,7 @@ struct llm_build_rwkv7_base : public llm_graph_context {
|
|
| 11855 |
ggml_tensor *& first_layer_value,
|
| 11856 |
const llama_ubatch & ubatch,
|
| 11857 |
int il) const {
|
| 11858 |
-
const
|
| 11859 |
|
| 11860 |
const auto n_tokens = ubatch.n_tokens;
|
| 11861 |
const auto n_seqs = ubatch.n_seqs;
|
|
@@ -12695,7 +12745,7 @@ struct llm_build_bailingmoe : public llm_graph_context {
|
|
| 12695 |
// self-attention
|
| 12696 |
{
|
| 12697 |
// rope freq factors for llama3; may return nullptr for llama2 and other models
|
| 12698 |
-
ggml_tensor * rope_factors =
|
| 12699 |
|
| 12700 |
// compute Q and K and RoPE them
|
| 12701 |
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
|
|
@@ -12815,36 +12865,46 @@ struct llm_build_bailingmoe : public llm_graph_context {
|
|
| 12815 |
}
|
| 12816 |
};
|
| 12817 |
|
| 12818 |
-
llama_memory_i * llama_model::create_memory() const {
|
| 12819 |
llama_memory_i * res;
|
| 12820 |
|
| 12821 |
switch (arch) {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12822 |
case LLM_ARCH_MAMBA:
|
| 12823 |
case LLM_ARCH_RWKV6:
|
| 12824 |
case LLM_ARCH_RWKV6QWEN2:
|
| 12825 |
case LLM_ARCH_RWKV7:
|
| 12826 |
case LLM_ARCH_ARWKV7:
|
| 12827 |
{
|
| 12828 |
-
res = new
|
| 12829 |
-
|
| 12830 |
-
|
|
|
|
|
|
|
|
|
|
| 12831 |
} break;
|
| 12832 |
default:
|
| 12833 |
{
|
| 12834 |
-
|
| 12835 |
-
/*.get_rope_factors =*/ [this](uint32_t n_ctx_per_seq, int il) {
|
| 12836 |
-
// choose long/short freq factors based on the context size
|
| 12837 |
-
if (layers[il].rope_freqs != nullptr) {
|
| 12838 |
-
return layers[il].rope_freqs;
|
| 12839 |
-
}
|
| 12840 |
|
| 12841 |
-
|
| 12842 |
-
return layers[il].rope_long;
|
| 12843 |
-
}
|
| 12844 |
|
| 12845 |
-
|
| 12846 |
-
|
| 12847 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12848 |
}
|
| 12849 |
}
|
| 12850 |
|
|
@@ -13226,8 +13286,6 @@ llama_rope_type llama_model_rope_type(const llama_model * model) {
|
|
| 13226 |
case LLM_ARCH_DECI:
|
| 13227 |
case LLM_ARCH_BAICHUAN:
|
| 13228 |
case LLM_ARCH_STARCODER:
|
| 13229 |
-
case LLM_ARCH_PLAMO:
|
| 13230 |
-
case LLM_ARCH_ORION:
|
| 13231 |
case LLM_ARCH_INTERNLM2:
|
| 13232 |
case LLM_ARCH_MINICPM:
|
| 13233 |
case LLM_ARCH_XVERSE:
|
|
@@ -13265,6 +13323,7 @@ llama_rope_type llama_model_rope_type(const llama_model * model) {
|
|
| 13265 |
case LLM_ARCH_PHI2:
|
| 13266 |
case LLM_ARCH_PHI3:
|
| 13267 |
case LLM_ARCH_PHIMOE:
|
|
|
|
| 13268 |
case LLM_ARCH_GEMMA:
|
| 13269 |
case LLM_ARCH_GEMMA2:
|
| 13270 |
case LLM_ARCH_GEMMA3:
|
|
@@ -13272,6 +13331,7 @@ llama_rope_type llama_model_rope_type(const llama_model * model) {
|
|
| 13272 |
case LLM_ARCH_OPENELM:
|
| 13273 |
case LLM_ARCH_GPTNEOX:
|
| 13274 |
case LLM_ARCH_CODESHELL:
|
|
|
|
| 13275 |
case LLM_ARCH_NEMOTRON:
|
| 13276 |
case LLM_ARCH_EXAONE:
|
| 13277 |
case LLM_ARCH_MINICPM3:
|
|
@@ -13344,6 +13404,14 @@ const char * llama_model_chat_template(const llama_model * model, const char * n
|
|
| 13344 |
: LLM_KV(model->arch)(LLM_KV_TOKENIZER_CHAT_TEMPLATE);
|
| 13345 |
const auto & it = model->gguf_kv.find(key);
|
| 13346 |
if (it == model->gguf_kv.end()) {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13347 |
return nullptr;
|
| 13348 |
}
|
| 13349 |
|
|
|
|
| 80 |
case LLM_TYPE_236B: return "236B";
|
| 81 |
case LLM_TYPE_290B: return "290B";
|
| 82 |
case LLM_TYPE_314B: return "314B";
|
| 83 |
+
case LLM_TYPE_405B: return "405B";
|
| 84 |
case LLM_TYPE_671B: return "671B";
|
| 85 |
case LLM_TYPE_SMALL: return "0.1B";
|
| 86 |
case LLM_TYPE_MEDIUM: return "0.4B";
|
|
|
|
| 117 |
{ LLAMA_ROPE_SCALING_TYPE_LONGROPE, "longrope" },
|
| 118 |
};
|
| 119 |
|
| 120 |
+
std::string llama_rope_scaling_type_name(llama_rope_scaling_type rope_scaling_type) {
|
| 121 |
+
return LLAMA_ROPE_SCALING_TYPES.at(rope_scaling_type);
|
| 122 |
+
}
|
| 123 |
+
|
| 124 |
static llama_rope_scaling_type llama_rope_scaling_type_from_string(const std::string & name) {
|
| 125 |
for (const auto & kv : LLAMA_ROPE_SCALING_TYPES) {
|
| 126 |
if (kv.second == name) {
|
|
|
|
| 303 |
// add extra buffer types, only if no GPU device is present
|
| 304 |
// ref: https://github.com/ggml-org/llama.cpp/issues/12481#issuecomment-2743136094
|
| 305 |
auto * cpu_dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
|
| 306 |
+
if (cpu_dev == nullptr) {
|
| 307 |
+
throw std::runtime_error(format("%s: no CPU backend found", __func__));
|
| 308 |
+
}
|
| 309 |
+
|
| 310 |
auto * cpu_reg = ggml_backend_dev_backend_reg(cpu_dev);
|
| 311 |
auto ggml_backend_dev_get_extra_bufts_fn = (ggml_backend_dev_get_extra_bufts_t)
|
| 312 |
ggml_backend_reg_get_proc_address(cpu_reg, "ggml_backend_dev_get_extra_bufts");
|
|
|
|
| 591 |
switch (hparams.n_layer) {
|
| 592 |
case 32: type = LLM_TYPE_7B; break;
|
| 593 |
case 80: type = LLM_TYPE_70B; break;
|
| 594 |
+
case 162: type = LLM_TYPE_405B; break;
|
| 595 |
default: type = LLM_TYPE_UNKNOWN;
|
| 596 |
}
|
| 597 |
} break;
|
|
|
|
| 783 |
// fall through
|
| 784 |
case LLM_ARCH_QWEN2:
|
| 785 |
{
|
| 786 |
+
ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type, false);
|
| 787 |
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
| 788 |
switch (hparams.n_layer) {
|
| 789 |
case 24: type = hparams.n_embd == 1024 ? LLM_TYPE_0_5B : LLM_TYPE_1B; break;
|
|
|
|
| 1492 |
}
|
| 1493 |
|
| 1494 |
ggml_backend_dev_t cpu_dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
|
| 1495 |
+
if (cpu_dev == nullptr) {
|
| 1496 |
+
throw std::runtime_error(format("%s: no CPU backend found", __func__));
|
| 1497 |
+
}
|
| 1498 |
const int i_gpu_start = std::max((int) hparams.n_layer - n_gpu_layers, (int) 0);
|
| 1499 |
const int act_gpu_layers = devices.empty() ? 0 : std::min(n_gpu_layers, (int)n_layer + 1);
|
| 1500 |
auto get_layer_buft_list = [&](int il) -> llama_model::impl::layer_dev {
|
|
|
|
| 1662 |
for (const auto * overrides = ml.tensor_buft_overrides; overrides->pattern != nullptr; ++overrides) {
|
| 1663 |
std::regex pattern(overrides->pattern);
|
| 1664 |
if (std::regex_search(tensor_name, pattern)) {
|
|
|
|
| 1665 |
buft = overrides->buft;
|
| 1666 |
+
LLAMA_LOG_DEBUG("tensor %s (%zu MiB %s) buffer type overridden to %s\n",
|
| 1667 |
+
tensor_name.c_str(),
|
| 1668 |
+
ggml_nbytes(t_meta) / 1024 / 1024, ggml_type_name(t_meta->type),
|
| 1669 |
+
ggml_backend_buft_name(buft));
|
| 1670 |
break;
|
| 1671 |
}
|
| 1672 |
}
|
|
|
|
| 1683 |
auto * buft_dev = ggml_backend_buft_get_device(buft);
|
| 1684 |
if (ml.use_mmap && buft_dev && buft == ggml_backend_dev_host_buffer_type(buft_dev)) {
|
| 1685 |
auto * cpu_dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
|
| 1686 |
+
if (!cpu_dev) {
|
| 1687 |
+
throw std::runtime_error("no CPU backend found");
|
| 1688 |
+
}
|
| 1689 |
buft = ggml_backend_dev_buffer_type(cpu_dev);
|
| 1690 |
}
|
| 1691 |
|
|
|
|
| 1867 |
layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
|
| 1868 |
layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
|
| 1869 |
|
| 1870 |
+
if (n_ff > 0) {
|
| 1871 |
+
layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
|
| 1872 |
+
}
|
| 1873 |
|
| 1874 |
if (hparams.rope_scaling_type_train == LLAMA_ROPE_SCALING_TYPE_LONGROPE) {
|
| 1875 |
layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
|
|
|
|
| 1879 |
layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
|
| 1880 |
}
|
| 1881 |
|
| 1882 |
+
if (n_ff > 0) {
|
| 1883 |
+
layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
|
| 1884 |
+
layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
|
| 1885 |
+
layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
|
| 1886 |
+
}
|
| 1887 |
|
| 1888 |
// optional MLP bias
|
| 1889 |
layer.ffn_gate_b = create_tensor(tn(LLM_TENSOR_FFN_GATE, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
|
|
|
|
| 3527 |
|
| 3528 |
// output
|
| 3529 |
output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
|
| 3530 |
+
output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
|
| 3531 |
+
// if output is NULL, init from the input tok embed
|
| 3532 |
+
if (output == NULL) {
|
| 3533 |
+
output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
|
| 3534 |
+
}
|
| 3535 |
|
| 3536 |
for (int i = 0; i < n_layer; ++i) {
|
| 3537 |
auto & layer = layers[i];
|
|
|
|
| 4136 |
if (!dev) {
|
| 4137 |
// FIXME: workaround for CPU backend buft having a NULL device
|
| 4138 |
dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
|
| 4139 |
+
if (!dev) {
|
| 4140 |
+
throw std::runtime_error(format("%s: no CPU backend found", __func__));
|
| 4141 |
+
}
|
| 4142 |
}
|
| 4143 |
ggml_backend_dev_props props;
|
| 4144 |
ggml_backend_dev_get_props(dev, &props);
|
|
|
|
| 4268 |
}
|
| 4269 |
|
| 4270 |
void llama_model::print_info() const {
|
| 4271 |
+
const std::string rope_scaling_type = llama_rope_scaling_type_name(hparams.rope_scaling_type_train);
|
| 4272 |
|
| 4273 |
auto print_f = [](const std::function<uint32_t(uint32_t)> & f, uint32_t n) {
|
| 4274 |
bool is_var = false;
|
|
|
|
| 4329 |
LLAMA_LOG_INFO("%s: causal attn = %d\n", __func__, hparams.causal_attn);
|
| 4330 |
LLAMA_LOG_INFO("%s: pooling type = %d\n", __func__, hparams.pooling_type);
|
| 4331 |
LLAMA_LOG_INFO("%s: rope type = %d\n", __func__, hparams.rope_type);
|
| 4332 |
+
LLAMA_LOG_INFO("%s: rope scaling = %s\n", __func__, rope_scaling_type.c_str());
|
| 4333 |
LLAMA_LOG_INFO("%s: freq_base_train = %.1f\n", __func__, hparams.rope_freq_base_train);
|
| 4334 |
LLAMA_LOG_INFO("%s: freq_scale_train = %g\n", __func__, hparams.rope_freq_scale_train);
|
| 4335 |
LLAMA_LOG_INFO("%s: n_ctx_orig_yarn = %u\n", __func__, hparams.n_ctx_orig_yarn);
|
|
|
|
| 4476 |
return it->second;
|
| 4477 |
}
|
| 4478 |
|
| 4479 |
+
ggml_tensor * llama_model::get_rope_factors(uint32_t n_ctx_per_seq, int il) const {
|
| 4480 |
+
// choose long/short freq factors based on the context size
|
| 4481 |
+
if (layers[il].rope_freqs != nullptr) {
|
| 4482 |
+
return layers[il].rope_freqs;
|
| 4483 |
+
}
|
| 4484 |
+
|
| 4485 |
+
if (n_ctx_per_seq > hparams.n_ctx_orig_yarn) {
|
| 4486 |
+
return layers[il].rope_long;
|
| 4487 |
+
}
|
| 4488 |
+
|
| 4489 |
+
return layers[il].rope_short;
|
| 4490 |
+
}
|
| 4491 |
+
|
| 4492 |
struct llm_build_llama : public llm_graph_context {
|
| 4493 |
llm_build_llama(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
|
| 4494 |
const int64_t n_embd_head = hparams.n_embd_head_v;
|
|
|
|
| 4529 |
// self-attention
|
| 4530 |
{
|
| 4531 |
// rope freq factors for llama3; may return nullptr for llama2 and other models
|
| 4532 |
+
ggml_tensor * rope_factors = model.get_rope_factors(n_ctx_per_seq, il);
|
| 4533 |
|
| 4534 |
// compute Q and K and RoPE them
|
| 4535 |
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
|
|
|
|
| 4735 |
ggml_tensor * inpSA = inpL;
|
| 4736 |
const int64_t n_head_kv = hparams.n_head_kv(il);
|
| 4737 |
const int64_t n_head = hparams.n_head(il);
|
| 4738 |
+
const int64_t n_ff = hparams.n_ff(il);
|
| 4739 |
|
| 4740 |
if (n_head == 0) {
|
| 4741 |
// attention-free layer of Llama-3_1-Nemotron-51B
|
|
|
|
| 4755 |
} else if (n_head > 0) {
|
| 4756 |
// self-attention
|
| 4757 |
// rope freq factors for llama3; may return nullptr for llama2 and other models
|
| 4758 |
+
ggml_tensor * rope_factors = model.get_rope_factors(n_ctx_per_seq, il);
|
| 4759 |
|
| 4760 |
// compute Q and K and RoPE them
|
| 4761 |
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
|
|
|
|
| 4811 |
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
|
| 4812 |
}
|
| 4813 |
|
| 4814 |
+
// FFN-free layer of Llama-3_1-Nemotron-Ultra-253B
|
| 4815 |
+
if (n_ff == 0) {
|
| 4816 |
+
continue;
|
| 4817 |
+
}
|
| 4818 |
+
|
| 4819 |
// For Granite architecture
|
| 4820 |
if (hparams.f_residual_scale) {
|
| 4821 |
cur = ggml_scale(ctx0, cur, hparams.f_residual_scale);
|
|
|
|
| 7242 |
// self-attention
|
| 7243 |
{
|
| 7244 |
// rope freq factors for 128k context
|
| 7245 |
+
ggml_tensor * rope_factors = model.get_rope_factors(n_ctx_per_seq, il);
|
| 7246 |
|
| 7247 |
ggml_tensor* attn_norm_output = build_norm(inpL,
|
| 7248 |
model.layers[il].attn_norm,
|
|
|
|
| 7994 |
for (int il = 0; il < n_layer; ++il) {
|
| 7995 |
ggml_tensor * inpSA = inpL;
|
| 7996 |
|
| 7997 |
+
ggml_tensor * rope_factors = model.get_rope_factors(n_ctx_per_seq, il);
|
| 7998 |
|
| 7999 |
// norm
|
| 8000 |
cur = build_norm(inpL,
|
|
|
|
| 8761 |
ggml_tensor * state_mask,
|
| 8762 |
const llama_ubatch & ubatch,
|
| 8763 |
int il) const {
|
| 8764 |
+
const llama_kv_cache_recurrent * kv_self = static_cast<const llama_kv_cache_recurrent *>(memory);
|
| 8765 |
|
| 8766 |
const auto kv_head = kv_self->head;
|
| 8767 |
|
|
|
|
| 9062 |
// self-attention
|
| 9063 |
{
|
| 9064 |
// rope freq factors for 128k context
|
| 9065 |
+
ggml_tensor * rope_factors = model.get_rope_factors(n_ctx_per_seq, il);
|
| 9066 |
|
| 9067 |
// compute Q and K and RoPE them
|
| 9068 |
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
|
|
|
|
| 10000 |
// self-attention
|
| 10001 |
{
|
| 10002 |
// rope freq factors for llama3; may return nullptr for llama2 and other models
|
| 10003 |
+
ggml_tensor * rope_factors = model.get_rope_factors(n_ctx_per_seq, il);
|
| 10004 |
|
| 10005 |
// compute Q and K and RoPE them
|
| 10006 |
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
|
|
|
|
| 11364 |
// self-attention
|
| 11365 |
{
|
| 11366 |
// rope freq factors for llama3; may return nullptr for llama2 and other models
|
| 11367 |
+
ggml_tensor * rope_factors = model.get_rope_factors(n_ctx_per_seq, il);
|
| 11368 |
|
| 11369 |
// compute Q and K and RoPE them
|
| 11370 |
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
|
|
|
|
| 11509 |
ggml_tensor * state_mask,
|
| 11510 |
const llama_ubatch & ubatch,
|
| 11511 |
int il) const {
|
| 11512 |
+
const llama_kv_cache_recurrent * kv_self = static_cast<const llama_kv_cache_recurrent *>(memory);
|
| 11513 |
|
| 11514 |
const auto n_tokens = ubatch.n_tokens;
|
| 11515 |
const auto n_seqs = ubatch.n_seqs;
|
|
|
|
| 11905 |
ggml_tensor *& first_layer_value,
|
| 11906 |
const llama_ubatch & ubatch,
|
| 11907 |
int il) const {
|
| 11908 |
+
const llama_kv_cache_recurrent * kv_self = static_cast<const llama_kv_cache_recurrent *>(memory);
|
| 11909 |
|
| 11910 |
const auto n_tokens = ubatch.n_tokens;
|
| 11911 |
const auto n_seqs = ubatch.n_seqs;
|
|
|
|
| 12745 |
// self-attention
|
| 12746 |
{
|
| 12747 |
// rope freq factors for llama3; may return nullptr for llama2 and other models
|
| 12748 |
+
ggml_tensor * rope_factors = model.get_rope_factors(n_ctx_per_seq, il);
|
| 12749 |
|
| 12750 |
// compute Q and K and RoPE them
|
| 12751 |
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
|
|
|
|
| 12865 |
}
|
| 12866 |
};
|
| 12867 |
|
| 12868 |
+
llama_memory_i * llama_model::create_memory(const llama_memory_params & params, llama_cparams & cparams) const {
|
| 12869 |
llama_memory_i * res;
|
| 12870 |
|
| 12871 |
switch (arch) {
|
| 12872 |
+
case LLM_ARCH_BERT:
|
| 12873 |
+
case LLM_ARCH_JINA_BERT_V2:
|
| 12874 |
+
case LLM_ARCH_NOMIC_BERT:
|
| 12875 |
+
case LLM_ARCH_NOMIC_BERT_MOE:
|
| 12876 |
+
{
|
| 12877 |
+
res = nullptr;
|
| 12878 |
+
} break;
|
| 12879 |
case LLM_ARCH_MAMBA:
|
| 12880 |
case LLM_ARCH_RWKV6:
|
| 12881 |
case LLM_ARCH_RWKV6QWEN2:
|
| 12882 |
case LLM_ARCH_RWKV7:
|
| 12883 |
case LLM_ARCH_ARWKV7:
|
| 12884 |
{
|
| 12885 |
+
res = new llama_kv_cache_recurrent(
|
| 12886 |
+
*this,
|
| 12887 |
+
GGML_TYPE_F32,
|
| 12888 |
+
GGML_TYPE_F32,
|
| 12889 |
+
cparams.offload_kqv,
|
| 12890 |
+
std::max((uint32_t) 1, cparams.n_seq_max));
|
| 12891 |
} break;
|
| 12892 |
default:
|
| 12893 |
{
|
| 12894 |
+
const auto padding = llama_kv_cache_unified::get_padding(cparams);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12895 |
|
| 12896 |
+
cparams.n_ctx = GGML_PAD(cparams.n_ctx, padding);
|
|
|
|
|
|
|
| 12897 |
|
| 12898 |
+
LLAMA_LOG_DEBUG("%s: n_ctx = %u (padded)\n", __func__, cparams.n_ctx);
|
| 12899 |
+
|
| 12900 |
+
res = new llama_kv_cache_unified(
|
| 12901 |
+
*this,
|
| 12902 |
+
params.type_k,
|
| 12903 |
+
params.type_v,
|
| 12904 |
+
!cparams.flash_attn,
|
| 12905 |
+
cparams.offload_kqv,
|
| 12906 |
+
cparams.n_ctx,
|
| 12907 |
+
padding);
|
| 12908 |
}
|
| 12909 |
}
|
| 12910 |
|
|
|
|
| 13286 |
case LLM_ARCH_DECI:
|
| 13287 |
case LLM_ARCH_BAICHUAN:
|
| 13288 |
case LLM_ARCH_STARCODER:
|
|
|
|
|
|
|
| 13289 |
case LLM_ARCH_INTERNLM2:
|
| 13290 |
case LLM_ARCH_MINICPM:
|
| 13291 |
case LLM_ARCH_XVERSE:
|
|
|
|
| 13323 |
case LLM_ARCH_PHI2:
|
| 13324 |
case LLM_ARCH_PHI3:
|
| 13325 |
case LLM_ARCH_PHIMOE:
|
| 13326 |
+
case LLM_ARCH_PLAMO:
|
| 13327 |
case LLM_ARCH_GEMMA:
|
| 13328 |
case LLM_ARCH_GEMMA2:
|
| 13329 |
case LLM_ARCH_GEMMA3:
|
|
|
|
| 13331 |
case LLM_ARCH_OPENELM:
|
| 13332 |
case LLM_ARCH_GPTNEOX:
|
| 13333 |
case LLM_ARCH_CODESHELL:
|
| 13334 |
+
case LLM_ARCH_ORION:
|
| 13335 |
case LLM_ARCH_NEMOTRON:
|
| 13336 |
case LLM_ARCH_EXAONE:
|
| 13337 |
case LLM_ARCH_MINICPM3:
|
|
|
|
| 13404 |
: LLM_KV(model->arch)(LLM_KV_TOKENIZER_CHAT_TEMPLATE);
|
| 13405 |
const auto & it = model->gguf_kv.find(key);
|
| 13406 |
if (it == model->gguf_kv.end()) {
|
| 13407 |
+
// one-off fix for very popular models (so we are not flooded with issues)
|
| 13408 |
+
// do not extend this list unless absolutely necessary
|
| 13409 |
+
// Mistral-Small-2503 does not have built-in chat template
|
| 13410 |
+
llama_vocab_pre_type pre_type = model->vocab.get_pre_type();
|
| 13411 |
+
if (pre_type == LLAMA_VOCAB_PRE_TYPE_TEKKEN && model->layers.size() == 40) {
|
| 13412 |
+
return "mistral-v7-tekken";
|
| 13413 |
+
}
|
| 13414 |
+
|
| 13415 |
return nullptr;
|
| 13416 |
}
|
| 13417 |
|
examples/talk-llama/llama-model.h
CHANGED
|
@@ -76,6 +76,7 @@ enum llm_type {
|
|
| 76 |
LLM_TYPE_236B,
|
| 77 |
LLM_TYPE_290B,
|
| 78 |
LLM_TYPE_314B,
|
|
|
|
| 79 |
LLM_TYPE_671B,
|
| 80 |
LLM_TYPE_SMALL,
|
| 81 |
LLM_TYPE_MEDIUM,
|
|
@@ -95,6 +96,8 @@ enum llm_type {
|
|
| 95 |
LLM_TYPE_235B_A22B,
|
| 96 |
};
|
| 97 |
|
|
|
|
|
|
|
| 98 |
struct llama_layer_posnet {
|
| 99 |
// resnet
|
| 100 |
struct ggml_tensor * norm1 = nullptr;
|
|
@@ -395,8 +398,11 @@ struct llama_model {
|
|
| 395 |
|
| 396 |
const struct ggml_tensor * get_tensor(const char * name) const;
|
| 397 |
|
|
|
|
|
|
|
|
|
|
| 398 |
// TODO: move this to new llm_arch_model_i interface
|
| 399 |
-
llama_memory_i * create_memory(
|
| 400 |
|
| 401 |
// TODO: move this to new llm_arch_model_i interface
|
| 402 |
llm_graph_result_ptr build_graph(
|
|
|
|
| 76 |
LLM_TYPE_236B,
|
| 77 |
LLM_TYPE_290B,
|
| 78 |
LLM_TYPE_314B,
|
| 79 |
+
LLM_TYPE_405B,
|
| 80 |
LLM_TYPE_671B,
|
| 81 |
LLM_TYPE_SMALL,
|
| 82 |
LLM_TYPE_MEDIUM,
|
|
|
|
| 96 |
LLM_TYPE_235B_A22B,
|
| 97 |
};
|
| 98 |
|
| 99 |
+
std::string llama_rope_scaling_type_name(llama_rope_scaling_type rope_scaling_type);
|
| 100 |
+
|
| 101 |
struct llama_layer_posnet {
|
| 102 |
// resnet
|
| 103 |
struct ggml_tensor * norm1 = nullptr;
|
|
|
|
| 398 |
|
| 399 |
const struct ggml_tensor * get_tensor(const char * name) const;
|
| 400 |
|
| 401 |
+
ggml_tensor * get_rope_factors(uint32_t n_ctx_per_seq, int il) const;
|
| 402 |
+
|
| 403 |
+
// note: can mutate `cparams`
|
| 404 |
// TODO: move this to new llm_arch_model_i interface
|
| 405 |
+
llama_memory_i * create_memory(const llama_memory_params & params, llama_cparams & cparams) const;
|
| 406 |
|
| 407 |
// TODO: move this to new llm_arch_model_i interface
|
| 408 |
llm_graph_result_ptr build_graph(
|
examples/talk-llama/llama-quant.cpp
CHANGED
|
@@ -519,7 +519,7 @@ static void llama_model_quantize_impl(const std::string & fname_inp, const std::
|
|
| 519 |
nthread = std::thread::hardware_concurrency();
|
| 520 |
}
|
| 521 |
|
| 522 |
-
// mmap consistently increases speed Linux, and also increases speed on Windows with
|
| 523 |
// hot cache. It may cause a slowdown on macOS, possibly related to free memory.
|
| 524 |
#if defined(__linux__) || defined(_WIN32)
|
| 525 |
constexpr bool use_mmap = true;
|
|
@@ -529,7 +529,7 @@ static void llama_model_quantize_impl(const std::string & fname_inp, const std::
|
|
| 529 |
|
| 530 |
llama_model_kv_override * kv_overrides = nullptr;
|
| 531 |
if (params->kv_overrides) {
|
| 532 |
-
auto v = (std::vector<llama_model_kv_override>*)params->kv_overrides;
|
| 533 |
kv_overrides = v->data();
|
| 534 |
}
|
| 535 |
|
|
|
|
| 519 |
nthread = std::thread::hardware_concurrency();
|
| 520 |
}
|
| 521 |
|
| 522 |
+
// mmap consistently increases speed on Linux, and also increases speed on Windows with
|
| 523 |
// hot cache. It may cause a slowdown on macOS, possibly related to free memory.
|
| 524 |
#if defined(__linux__) || defined(_WIN32)
|
| 525 |
constexpr bool use_mmap = true;
|
|
|
|
| 529 |
|
| 530 |
llama_model_kv_override * kv_overrides = nullptr;
|
| 531 |
if (params->kv_overrides) {
|
| 532 |
+
auto * v = (std::vector<llama_model_kv_override>*)params->kv_overrides;
|
| 533 |
kv_overrides = v->data();
|
| 534 |
}
|
| 535 |
|
examples/talk-llama/llama-sampling.cpp
CHANGED
|
@@ -1750,23 +1750,35 @@ static const char * llama_sampler_top_n_sigma_name(const struct llama_sampler *
|
|
| 1750 |
static void llama_sampler_top_n_sigma_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
|
| 1751 |
const auto * ctx = (llama_sampler_top_n_sigma *) smpl->ctx;
|
| 1752 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1753 |
// find max logit and calculate mean
|
| 1754 |
float max = cur_p->data[0].logit;
|
| 1755 |
float logits_sum = 0;
|
|
|
|
| 1756 |
for (size_t i = 0; i < cur_p->size; ++i) {
|
| 1757 |
-
|
| 1758 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1759 |
}
|
| 1760 |
-
logits_sum += cur_p->data[i].logit;
|
| 1761 |
}
|
| 1762 |
-
float mean = logits_sum/
|
| 1763 |
|
| 1764 |
// calculate standard deviation
|
| 1765 |
float acc = 0;
|
| 1766 |
for (size_t i = 0; i < cur_p->size; ++i) {
|
| 1767 |
-
|
|
|
|
|
|
|
|
|
|
| 1768 |
}
|
| 1769 |
-
float std = sqrt(acc/
|
| 1770 |
|
| 1771 |
//apply mask
|
| 1772 |
for (size_t i = 0; i < cur_p->size; ++i) {
|
|
|
|
| 1750 |
static void llama_sampler_top_n_sigma_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
|
| 1751 |
const auto * ctx = (llama_sampler_top_n_sigma *) smpl->ctx;
|
| 1752 |
|
| 1753 |
+
if (ctx->n <= 0.0f || cur_p->size <= 1) {
|
| 1754 |
+
return;
|
| 1755 |
+
}
|
| 1756 |
+
|
| 1757 |
// find max logit and calculate mean
|
| 1758 |
float max = cur_p->data[0].logit;
|
| 1759 |
float logits_sum = 0;
|
| 1760 |
+
size_t valid_count = 0;
|
| 1761 |
for (size_t i = 0; i < cur_p->size; ++i) {
|
| 1762 |
+
// Only count non-negative infinity values
|
| 1763 |
+
if (cur_p->data[i].logit != -INFINITY) {
|
| 1764 |
+
if (cur_p->data[i].logit > max) {
|
| 1765 |
+
max = cur_p->data[i].logit;
|
| 1766 |
+
}
|
| 1767 |
+
logits_sum += cur_p->data[i].logit;
|
| 1768 |
+
valid_count++;
|
| 1769 |
}
|
|
|
|
| 1770 |
}
|
| 1771 |
+
float mean = valid_count > 0 ? logits_sum/valid_count : 0;
|
| 1772 |
|
| 1773 |
// calculate standard deviation
|
| 1774 |
float acc = 0;
|
| 1775 |
for (size_t i = 0; i < cur_p->size; ++i) {
|
| 1776 |
+
// Skip -infinity in std calculation
|
| 1777 |
+
if (cur_p->data[i].logit != -INFINITY) {
|
| 1778 |
+
acc += pow(cur_p->data[i].logit - mean, 2);
|
| 1779 |
+
}
|
| 1780 |
}
|
| 1781 |
+
float std = valid_count > 0 ? sqrt(acc/valid_count) : 0;
|
| 1782 |
|
| 1783 |
//apply mask
|
| 1784 |
for (size_t i = 0; i < cur_p->size; ++i) {
|
examples/talk-llama/llama-vocab.cpp
CHANGED
|
@@ -1,5 +1,7 @@
|
|
| 1 |
#include "llama-vocab.h"
|
| 2 |
|
|
|
|
|
|
|
| 3 |
#include "llama-impl.h"
|
| 4 |
#include "llama-model-loader.h"
|
| 5 |
|
|
@@ -415,6 +417,13 @@ struct llm_tokenizer_bpe : llm_tokenizer {
|
|
| 415 |
"'(?:[sSdDmMtT]|[lL][lL]|[vV][eE]|[rR][eE])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]|\\s+(?!\\S)|\\s+",
|
| 416 |
};
|
| 417 |
break;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 418 |
default:
|
| 419 |
// default regex for BPE tokenization pre-processing
|
| 420 |
regex_exprs = {
|
|
@@ -1227,6 +1236,9 @@ struct fragment_buffer_variant {
|
|
| 1227 |
struct llama_vocab::impl {
|
| 1228 |
uint32_t n_token_types = 0; // for BERT-style token types
|
| 1229 |
|
|
|
|
|
|
|
|
|
|
| 1230 |
enum llama_vocab_type type = LLAMA_VOCAB_TYPE_SPM;
|
| 1231 |
enum llama_vocab_pre_type pre_type = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
|
| 1232 |
|
|
@@ -1362,9 +1374,6 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
|
|
| 1362 |
|
| 1363 |
// determine vocab type
|
| 1364 |
{
|
| 1365 |
-
std::string tokenizer_model;
|
| 1366 |
-
std::string tokenizer_pre;
|
| 1367 |
-
|
| 1368 |
ml.get_key(LLM_KV_TOKENIZER_MODEL, tokenizer_model);
|
| 1369 |
ml.get_key(LLM_KV_TOKENIZER_PRE, tokenizer_pre, false);
|
| 1370 |
|
|
@@ -1459,7 +1468,10 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
|
|
| 1459 |
|
| 1460 |
const int precompiled_charsmap_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_PRECOMPILED_CHARSMAP).c_str());
|
| 1461 |
if (precompiled_charsmap_keyidx != -1) {
|
| 1462 |
-
|
|
|
|
|
|
|
|
|
|
| 1463 |
const char * pc = (const char *) gguf_get_arr_data(ctx, precompiled_charsmap_keyidx);
|
| 1464 |
precompiled_charsmap.assign(pc, pc + n_precompiled_charsmap);
|
| 1465 |
#ifdef IS_BIG_ENDIAN
|
|
@@ -1634,6 +1646,10 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
|
|
| 1634 |
tokenizer_pre == "bailingmoe") {
|
| 1635 |
pre_type = LLAMA_VOCAB_PRE_TYPE_BAILINGMOE;
|
| 1636 |
clean_spaces = false;
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1637 |
} else {
|
| 1638 |
throw std::runtime_error(format("unknown pre-tokenizer type: '%s'", tokenizer_pre.c_str()));
|
| 1639 |
}
|
|
@@ -2778,6 +2794,14 @@ void llama_vocab::load(llama_model_loader & ml, const LLM_KV & kv) {
|
|
| 2778 |
pimpl->load(ml, kv);
|
| 2779 |
}
|
| 2780 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2781 |
enum llama_vocab_type llama_vocab::get_type() const {
|
| 2782 |
return pimpl->type;
|
| 2783 |
}
|
|
@@ -3000,6 +3024,20 @@ int llama_vocab::find_bpe_rank(const std::string & token_left, const std::string
|
|
| 3000 |
return it->second;
|
| 3001 |
}
|
| 3002 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3003 |
int32_t llama_vocab::tokenize(
|
| 3004 |
const char * text,
|
| 3005 |
int32_t text_len,
|
|
|
|
| 1 |
#include "llama-vocab.h"
|
| 2 |
|
| 3 |
+
#include "ggml.h"
|
| 4 |
+
#include "gguf.h"
|
| 5 |
#include "llama-impl.h"
|
| 6 |
#include "llama-model-loader.h"
|
| 7 |
|
|
|
|
| 417 |
"'(?:[sSdDmMtT]|[lL][lL]|[vV][eE]|[rR][eE])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]|\\s+(?!\\S)|\\s+",
|
| 418 |
};
|
| 419 |
break;
|
| 420 |
+
case LLAMA_VOCAB_PRE_TYPE_SEED_CODER:
|
| 421 |
+
regex_exprs = {
|
| 422 |
+
// original regex from tokenizer.json
|
| 423 |
+
// "(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1}| ?[^\\s\\p{L}\\p{N}\r\n]+|\\s*[\r\n]+|\\s+(?!\\S)|\\s+"
|
| 424 |
+
"(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1}| ?[^\\s\\p{L}\\p{N}\\r\\n]+|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
|
| 425 |
+
};
|
| 426 |
+
break;
|
| 427 |
default:
|
| 428 |
// default regex for BPE tokenization pre-processing
|
| 429 |
regex_exprs = {
|
|
|
|
| 1236 |
struct llama_vocab::impl {
|
| 1237 |
uint32_t n_token_types = 0; // for BERT-style token types
|
| 1238 |
|
| 1239 |
+
std::string tokenizer_model;
|
| 1240 |
+
std::string tokenizer_pre;
|
| 1241 |
+
|
| 1242 |
enum llama_vocab_type type = LLAMA_VOCAB_TYPE_SPM;
|
| 1243 |
enum llama_vocab_pre_type pre_type = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
|
| 1244 |
|
|
|
|
| 1374 |
|
| 1375 |
// determine vocab type
|
| 1376 |
{
|
|
|
|
|
|
|
|
|
|
| 1377 |
ml.get_key(LLM_KV_TOKENIZER_MODEL, tokenizer_model);
|
| 1378 |
ml.get_key(LLM_KV_TOKENIZER_PRE, tokenizer_pre, false);
|
| 1379 |
|
|
|
|
| 1468 |
|
| 1469 |
const int precompiled_charsmap_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_PRECOMPILED_CHARSMAP).c_str());
|
| 1470 |
if (precompiled_charsmap_keyidx != -1) {
|
| 1471 |
+
const gguf_type pc_type = gguf_get_arr_type(ctx, precompiled_charsmap_keyidx);
|
| 1472 |
+
GGML_ASSERT(pc_type == GGUF_TYPE_INT8 || pc_type == GGUF_TYPE_UINT8);
|
| 1473 |
+
|
| 1474 |
+
const size_t n_precompiled_charsmap = gguf_get_arr_n(ctx, precompiled_charsmap_keyidx);
|
| 1475 |
const char * pc = (const char *) gguf_get_arr_data(ctx, precompiled_charsmap_keyidx);
|
| 1476 |
precompiled_charsmap.assign(pc, pc + n_precompiled_charsmap);
|
| 1477 |
#ifdef IS_BIG_ENDIAN
|
|
|
|
| 1646 |
tokenizer_pre == "bailingmoe") {
|
| 1647 |
pre_type = LLAMA_VOCAB_PRE_TYPE_BAILINGMOE;
|
| 1648 |
clean_spaces = false;
|
| 1649 |
+
} else if (
|
| 1650 |
+
tokenizer_pre == "seed-coder") {
|
| 1651 |
+
pre_type = LLAMA_VOCAB_PRE_TYPE_SEED_CODER;
|
| 1652 |
+
clean_spaces = false;
|
| 1653 |
} else {
|
| 1654 |
throw std::runtime_error(format("unknown pre-tokenizer type: '%s'", tokenizer_pre.c_str()));
|
| 1655 |
}
|
|
|
|
| 2794 |
pimpl->load(ml, kv);
|
| 2795 |
}
|
| 2796 |
|
| 2797 |
+
std::string llama_vocab::get_tokenizer_model() const {
|
| 2798 |
+
return pimpl->tokenizer_model;
|
| 2799 |
+
}
|
| 2800 |
+
|
| 2801 |
+
std::string llama_vocab::get_tokenizer_pre() const {
|
| 2802 |
+
return pimpl->tokenizer_pre;
|
| 2803 |
+
}
|
| 2804 |
+
|
| 2805 |
enum llama_vocab_type llama_vocab::get_type() const {
|
| 2806 |
return pimpl->type;
|
| 2807 |
}
|
|
|
|
| 3024 |
return it->second;
|
| 3025 |
}
|
| 3026 |
|
| 3027 |
+
std::vector<std::string> llama_vocab::get_bpe_merges() const {
|
| 3028 |
+
std::vector<std::string> result(pimpl->bpe_ranks.size());
|
| 3029 |
+
|
| 3030 |
+
for (const auto & pair : pimpl->bpe_ranks) {
|
| 3031 |
+
result[pair.second] = pair.first.first + " " + pair.first.second;
|
| 3032 |
+
}
|
| 3033 |
+
|
| 3034 |
+
return result;
|
| 3035 |
+
}
|
| 3036 |
+
|
| 3037 |
+
std::vector<char> llama_vocab::get_precompiled_charsmap() const {
|
| 3038 |
+
return pimpl->precompiled_charsmap;
|
| 3039 |
+
}
|
| 3040 |
+
|
| 3041 |
int32_t llama_vocab::tokenize(
|
| 3042 |
const char * text,
|
| 3043 |
int32_t text_len,
|
examples/talk-llama/llama-vocab.h
CHANGED
|
@@ -21,6 +21,9 @@ struct llama_vocab {
|
|
| 21 |
|
| 22 |
void load(llama_model_loader & ml, const LLM_KV & kv);
|
| 23 |
|
|
|
|
|
|
|
|
|
|
| 24 |
enum llama_vocab_type get_type() const;
|
| 25 |
enum llama_vocab_pre_type get_pre_type() const;
|
| 26 |
|
|
@@ -80,6 +83,9 @@ struct llama_vocab {
|
|
| 80 |
int max_token_len() const;
|
| 81 |
|
| 82 |
int find_bpe_rank(const std::string & token_left, const std::string & token_right) const;
|
|
|
|
|
|
|
|
|
|
| 83 |
|
| 84 |
int32_t tokenize(
|
| 85 |
const char * text,
|
|
|
|
| 21 |
|
| 22 |
void load(llama_model_loader & ml, const LLM_KV & kv);
|
| 23 |
|
| 24 |
+
std::string get_tokenizer_model() const;
|
| 25 |
+
std::string get_tokenizer_pre() const;
|
| 26 |
+
|
| 27 |
enum llama_vocab_type get_type() const;
|
| 28 |
enum llama_vocab_pre_type get_pre_type() const;
|
| 29 |
|
|
|
|
| 83 |
int max_token_len() const;
|
| 84 |
|
| 85 |
int find_bpe_rank(const std::string & token_left, const std::string & token_right) const;
|
| 86 |
+
std::vector<std::string> get_bpe_merges() const;
|
| 87 |
+
|
| 88 |
+
std::vector<char> get_precompiled_charsmap() const;
|
| 89 |
|
| 90 |
int32_t tokenize(
|
| 91 |
const char * text,
|
examples/talk-llama/llama.cpp
CHANGED
|
@@ -4,6 +4,7 @@
|
|
| 4 |
#include "llama-mmap.h"
|
| 5 |
#include "llama-vocab.h"
|
| 6 |
#include "llama-model-loader.h"
|
|
|
|
| 7 |
#include "llama-model.h"
|
| 8 |
|
| 9 |
#include "ggml.h"
|
|
@@ -16,6 +17,10 @@
|
|
| 16 |
#include <cstring>
|
| 17 |
#include <ctime>
|
| 18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
//
|
| 20 |
// interface implementation
|
| 21 |
//
|
|
@@ -249,6 +254,13 @@ struct llama_model * llama_model_load_from_splits(
|
|
| 249 |
return llama_model_load_from_file_impl(splits.front(), splits, params);
|
| 250 |
}
|
| 251 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 252 |
//
|
| 253 |
// chat templates
|
| 254 |
//
|
|
@@ -334,3 +346,4 @@ const char * llama_print_system_info(void) {
|
|
| 334 |
|
| 335 |
return s.c_str();
|
| 336 |
}
|
|
|
|
|
|
| 4 |
#include "llama-mmap.h"
|
| 5 |
#include "llama-vocab.h"
|
| 6 |
#include "llama-model-loader.h"
|
| 7 |
+
#include "llama-model-saver.h"
|
| 8 |
#include "llama-model.h"
|
| 9 |
|
| 10 |
#include "ggml.h"
|
|
|
|
| 17 |
#include <cstring>
|
| 18 |
#include <ctime>
|
| 19 |
|
| 20 |
+
#if defined(_MSC_VER)
|
| 21 |
+
#pragma warning(disable: 4244 4267) // possible loss of data
|
| 22 |
+
#endif
|
| 23 |
+
|
| 24 |
//
|
| 25 |
// interface implementation
|
| 26 |
//
|
|
|
|
| 254 |
return llama_model_load_from_file_impl(splits.front(), splits, params);
|
| 255 |
}
|
| 256 |
|
| 257 |
+
void llama_model_save_to_file(const struct llama_model * model, const char * path_model) {
|
| 258 |
+
llama_model_saver ms(*model);
|
| 259 |
+
ms.add_kv_from_model();
|
| 260 |
+
ms.add_tensors_from_model();
|
| 261 |
+
ms.save(path_model);
|
| 262 |
+
}
|
| 263 |
+
|
| 264 |
//
|
| 265 |
// chat templates
|
| 266 |
//
|
|
|
|
| 346 |
|
| 347 |
return s.c_str();
|
| 348 |
}
|
| 349 |
+
|
examples/talk-llama/llama.h
CHANGED
|
@@ -4,6 +4,7 @@
|
|
| 4 |
#include "ggml.h"
|
| 5 |
#include "ggml-cpu.h"
|
| 6 |
#include "ggml-backend.h"
|
|
|
|
| 7 |
|
| 8 |
#include <stddef.h>
|
| 9 |
#include <stdint.h>
|
|
@@ -112,6 +113,7 @@ extern "C" {
|
|
| 112 |
LLAMA_VOCAB_PRE_TYPE_BAILINGMOE = 32,
|
| 113 |
LLAMA_VOCAB_PRE_TYPE_LLAMA4 = 33,
|
| 114 |
LLAMA_VOCAB_PRE_TYPE_PIXTRAL = 34,
|
|
|
|
| 115 |
};
|
| 116 |
|
| 117 |
enum llama_rope_type {
|
|
@@ -343,7 +345,7 @@ extern "C" {
|
|
| 343 |
float yarn_beta_fast; // YaRN low correction dim
|
| 344 |
float yarn_beta_slow; // YaRN high correction dim
|
| 345 |
uint32_t yarn_orig_ctx; // YaRN original context size
|
| 346 |
-
float defrag_thold; // defragment the KV cache if holes/size > thold,
|
| 347 |
|
| 348 |
ggml_backend_sched_eval_callback cb_eval;
|
| 349 |
void * cb_eval_user_data;
|
|
@@ -351,19 +353,18 @@ extern "C" {
|
|
| 351 |
enum ggml_type type_k; // data type for K cache [EXPERIMENTAL]
|
| 352 |
enum ggml_type type_v; // data type for V cache [EXPERIMENTAL]
|
| 353 |
|
| 354 |
-
// Keep the booleans together and at the end of the struct to avoid misalignment during copy-by-value.
|
| 355 |
-
// TODO: move at the end of the struct
|
| 356 |
-
bool logits_all; // the llama_decode() call computes all logits, not just the last one (DEPRECATED - set llama_batch.logits instead)
|
| 357 |
-
bool embeddings; // if true, extract embeddings (together with logits)
|
| 358 |
-
bool offload_kqv; // whether to offload the KQV ops (including the KV cache) to GPU
|
| 359 |
-
bool flash_attn; // whether to use flash attention [EXPERIMENTAL]
|
| 360 |
-
bool no_perf; // whether to measure performance timings
|
| 361 |
-
|
| 362 |
// Abort callback
|
| 363 |
// if it returns true, execution of llama_decode() will be aborted
|
| 364 |
// currently works only with CPU execution
|
| 365 |
ggml_abort_callback abort_callback;
|
| 366 |
void * abort_callback_data;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 367 |
};
|
| 368 |
|
| 369 |
// model quantization parameters
|
|
@@ -445,6 +446,10 @@ extern "C" {
|
|
| 445 |
size_t n_paths,
|
| 446 |
struct llama_model_params params);
|
| 447 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 448 |
DEPRECATED(LLAMA_API void llama_free_model(struct llama_model * model),
|
| 449 |
"use llama_model_free instead");
|
| 450 |
|
|
@@ -924,14 +929,19 @@ extern "C" {
|
|
| 924 |
// Frees a batch of tokens allocated with llama_batch_init()
|
| 925 |
LLAMA_API void llama_batch_free(struct llama_batch batch);
|
| 926 |
|
| 927 |
-
//
|
| 928 |
-
//
|
|
|
|
|
|
|
| 929 |
// 0 - success
|
| 930 |
// < 0 - error. the KV cache state is restored to the state before this call
|
| 931 |
LLAMA_API int32_t llama_encode(
|
| 932 |
struct llama_context * ctx,
|
| 933 |
struct llama_batch batch);
|
| 934 |
|
|
|
|
|
|
|
|
|
|
| 935 |
// Positive return values does not mean a fatal error, but rather a warning.
|
| 936 |
// 0 - success
|
| 937 |
// 1 - could not find a KV slot for the batch (try reducing the size of the batch or increase the context)
|
|
@@ -1428,6 +1438,37 @@ extern "C" {
|
|
| 1428 |
LLAMA_API void llama_perf_sampler_print(const struct llama_sampler * chain);
|
| 1429 |
LLAMA_API void llama_perf_sampler_reset( struct llama_sampler * chain);
|
| 1430 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1431 |
#ifdef __cplusplus
|
| 1432 |
}
|
| 1433 |
#endif
|
|
|
|
| 4 |
#include "ggml.h"
|
| 5 |
#include "ggml-cpu.h"
|
| 6 |
#include "ggml-backend.h"
|
| 7 |
+
#include "ggml-opt.h"
|
| 8 |
|
| 9 |
#include <stddef.h>
|
| 10 |
#include <stdint.h>
|
|
|
|
| 113 |
LLAMA_VOCAB_PRE_TYPE_BAILINGMOE = 32,
|
| 114 |
LLAMA_VOCAB_PRE_TYPE_LLAMA4 = 33,
|
| 115 |
LLAMA_VOCAB_PRE_TYPE_PIXTRAL = 34,
|
| 116 |
+
LLAMA_VOCAB_PRE_TYPE_SEED_CODER = 35,
|
| 117 |
};
|
| 118 |
|
| 119 |
enum llama_rope_type {
|
|
|
|
| 345 |
float yarn_beta_fast; // YaRN low correction dim
|
| 346 |
float yarn_beta_slow; // YaRN high correction dim
|
| 347 |
uint32_t yarn_orig_ctx; // YaRN original context size
|
| 348 |
+
float defrag_thold; // defragment the KV cache if holes/size > thold, <= 0 disabled (default)
|
| 349 |
|
| 350 |
ggml_backend_sched_eval_callback cb_eval;
|
| 351 |
void * cb_eval_user_data;
|
|
|
|
| 353 |
enum ggml_type type_k; // data type for K cache [EXPERIMENTAL]
|
| 354 |
enum ggml_type type_v; // data type for V cache [EXPERIMENTAL]
|
| 355 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 356 |
// Abort callback
|
| 357 |
// if it returns true, execution of llama_decode() will be aborted
|
| 358 |
// currently works only with CPU execution
|
| 359 |
ggml_abort_callback abort_callback;
|
| 360 |
void * abort_callback_data;
|
| 361 |
+
|
| 362 |
+
// Keep the booleans together and at the end of the struct to avoid misalignment during copy-by-value.
|
| 363 |
+
bool embeddings; // if true, extract embeddings (together with logits)
|
| 364 |
+
bool offload_kqv; // whether to offload the KQV ops (including the KV cache) to GPU
|
| 365 |
+
bool flash_attn; // whether to use flash attention [EXPERIMENTAL]
|
| 366 |
+
bool no_perf; // whether to measure performance timings
|
| 367 |
+
bool op_offload; // whether to offload host tensor operations to device
|
| 368 |
};
|
| 369 |
|
| 370 |
// model quantization parameters
|
|
|
|
| 446 |
size_t n_paths,
|
| 447 |
struct llama_model_params params);
|
| 448 |
|
| 449 |
+
LLAMA_API void llama_model_save_to_file(
|
| 450 |
+
const struct llama_model * model,
|
| 451 |
+
const char * path_model);
|
| 452 |
+
|
| 453 |
DEPRECATED(LLAMA_API void llama_free_model(struct llama_model * model),
|
| 454 |
"use llama_model_free instead");
|
| 455 |
|
|
|
|
| 929 |
// Frees a batch of tokens allocated with llama_batch_init()
|
| 930 |
LLAMA_API void llama_batch_free(struct llama_batch batch);
|
| 931 |
|
| 932 |
+
// Process a batch of tokens.
|
| 933 |
+
// In contrast to llama_decode() - this call does not use KV cache.
|
| 934 |
+
// For encode-decoder contexts, processes the batch using the encoder.
|
| 935 |
+
// Can store the encoder output internally for later use by the decoder's cross-attention layers.
|
| 936 |
// 0 - success
|
| 937 |
// < 0 - error. the KV cache state is restored to the state before this call
|
| 938 |
LLAMA_API int32_t llama_encode(
|
| 939 |
struct llama_context * ctx,
|
| 940 |
struct llama_batch batch);
|
| 941 |
|
| 942 |
+
// Process a batch of tokens.
|
| 943 |
+
// Requires KV cache.
|
| 944 |
+
// For encode-decoder contexts, processes the batch using the decoder.
|
| 945 |
// Positive return values does not mean a fatal error, but rather a warning.
|
| 946 |
// 0 - success
|
| 947 |
// 1 - could not find a KV slot for the batch (try reducing the size of the batch or increase the context)
|
|
|
|
| 1438 |
LLAMA_API void llama_perf_sampler_print(const struct llama_sampler * chain);
|
| 1439 |
LLAMA_API void llama_perf_sampler_reset( struct llama_sampler * chain);
|
| 1440 |
|
| 1441 |
+
//
|
| 1442 |
+
// training
|
| 1443 |
+
//
|
| 1444 |
+
|
| 1445 |
+
// function that returns whether or not a given tensor contains trainable parameters
|
| 1446 |
+
typedef bool (*llama_opt_param_filter)(const struct ggml_tensor * tensor, void * userdata);
|
| 1447 |
+
|
| 1448 |
+
// always returns true
|
| 1449 |
+
LLAMA_API bool llama_opt_param_filter_all(const struct ggml_tensor * tensor, void * userdata);
|
| 1450 |
+
|
| 1451 |
+
struct llama_opt_params {
|
| 1452 |
+
uint32_t n_ctx_train; // assumed context size post training, use context size specified in llama_context if 0
|
| 1453 |
+
|
| 1454 |
+
llama_opt_param_filter param_filter; // callback for determining which tensors contain trainable parameters
|
| 1455 |
+
void * param_filter_ud; // userdata for determining which tensors contain trainable parameters
|
| 1456 |
+
|
| 1457 |
+
ggml_opt_get_optimizer_params get_opt_pars; // callback for calculating optimizer parameters
|
| 1458 |
+
void * get_opt_pars_ud; // userdata for calculating optimizer parameters
|
| 1459 |
+
};
|
| 1460 |
+
|
| 1461 |
+
LLAMA_API void llama_opt_init(struct llama_context * lctx, struct llama_model * model, struct llama_opt_params lopt_params);
|
| 1462 |
+
|
| 1463 |
+
LLAMA_API void llama_opt_epoch(
|
| 1464 |
+
struct llama_context * lctx,
|
| 1465 |
+
ggml_opt_dataset_t dataset,
|
| 1466 |
+
ggml_opt_result_t result_train,
|
| 1467 |
+
ggml_opt_result_t result_eval,
|
| 1468 |
+
int64_t idata_split,
|
| 1469 |
+
ggml_opt_epoch_callback callback_train,
|
| 1470 |
+
ggml_opt_epoch_callback callback_eval);
|
| 1471 |
+
|
| 1472 |
#ifdef __cplusplus
|
| 1473 |
}
|
| 1474 |
#endif
|