Spaces:
Running
Running
| llama_model_saver::llama_model_saver(const struct llama_model & model) : model(model), llm_kv(model.arch) { | |
| gguf_ctx = gguf_init_empty(); | |
| } | |
| llama_model_saver::~llama_model_saver() { | |
| gguf_free(gguf_ctx); | |
| } | |
| void llama_model_saver::add_kv(const enum llm_kv key, const uint32_t value) { | |
| gguf_set_val_u32(gguf_ctx, llm_kv(key).c_str(), value); | |
| } | |
| void llama_model_saver::add_kv(const enum llm_kv key, const int32_t value) { | |
| gguf_set_val_i32(gguf_ctx, llm_kv(key).c_str(), value); | |
| } | |
| void llama_model_saver::add_kv(const enum llm_kv key, const float value) { | |
| gguf_set_val_f32(gguf_ctx, llm_kv(key).c_str(), value); | |
| } | |
| void llama_model_saver::add_kv(const enum llm_kv key, const bool value) { | |
| gguf_set_val_bool(gguf_ctx, llm_kv(key).c_str(), value); | |
| } | |
| void llama_model_saver::add_kv(const enum llm_kv key, const char * value) { | |
| gguf_set_val_str(gguf_ctx, llm_kv(key).c_str(), value); | |
| } | |
| [[noreturn]] | |
| void llama_model_saver::add_kv(const enum llm_kv key, const char value) { | |
| GGML_UNUSED(key); | |
| GGML_UNUSED(value); | |
| GGML_ABORT("fatal error"); // this should never be called, only needed to make the template below compile | |
| } | |
| template <typename Container> | |
| void llama_model_saver::add_kv(const enum llm_kv key, const Container & value, const bool per_layer) { | |
| const size_t n_values = per_layer ? size_t(model.hparams.n_layer) : value.size(); | |
| GGML_ASSERT(n_values <= value.size()); | |
| if (n_values == 0) { | |
| return; | |
| } | |
| if (per_layer) { | |
| bool all_values_the_same = true; | |
| for (size_t i = 1; i < n_values; ++i) { | |
| if (value[i] != value[0]) { | |
| all_values_the_same = false; | |
| break; | |
| } | |
| } | |
| if (all_values_the_same) { | |
| add_kv(key, value[0]); | |
| return; | |
| } | |
| } | |
| if (std::is_same<typename Container::value_type, uint8_t>::value) { | |
| gguf_set_arr_data(gguf_ctx, llm_kv(key).c_str(), GGUF_TYPE_UINT8, value.data(), n_values); | |
| } else if (std::is_same<typename Container::value_type, int8_t>::value) { | |
| gguf_set_arr_data(gguf_ctx, llm_kv(key).c_str(), GGUF_TYPE_INT8, value.data(), n_values); | |
| } else if (std::is_same<typename Container::value_type, uint32_t>::value) { | |
| gguf_set_arr_data(gguf_ctx, llm_kv(key).c_str(), GGUF_TYPE_UINT32, value.data(), n_values); | |
| } else if (std::is_same<typename Container::value_type, int32_t>::value) { | |
| gguf_set_arr_data(gguf_ctx, llm_kv(key).c_str(), GGUF_TYPE_INT32, value.data(), n_values); | |
| } else if (std::is_same<typename Container::value_type, float>::value) { | |
| gguf_set_arr_data(gguf_ctx, llm_kv(key).c_str(), GGUF_TYPE_FLOAT32, value.data(), n_values); | |
| } else if (std::is_same<Container, std::string>::value) { | |
| gguf_set_val_str(gguf_ctx, llm_kv(key).c_str(), reinterpret_cast<const char *>(value.data())); | |
| } else { | |
| GGML_ABORT("fatal error"); | |
| } | |
| } | |
| void llama_model_saver::add_kv(const enum llm_kv key, const std::vector<std::string> & value) { | |
| std::vector<const char *> tmp(value.size()); | |
| for (size_t i = 0; i < value.size(); ++i) { | |
| tmp[i] = value[i].c_str(); | |
| } | |
| gguf_set_arr_str(gguf_ctx, llm_kv(key).c_str(), tmp.data(), tmp.size()); | |
| } | |
| void llama_model_saver::add_tensor(const struct ggml_tensor * tensor) { | |
| if (!tensor) { | |
| return; | |
| } | |
| if (gguf_find_tensor(gguf_ctx, tensor->name) >= 0) { | |
| GGML_ASSERT(std::string(tensor->name) == "rope_freqs.weight"); // FIXME | |
| return; | |
| } | |
| gguf_add_tensor(gguf_ctx, tensor); | |
| } | |
| void llama_model_saver::add_kv_from_model() { | |
| const llama_hparams & hparams = model.hparams; | |
| const llama_vocab & vocab = model.vocab; | |
| const int32_t n_vocab = vocab.n_tokens(); | |
| std::vector<std::string> tokens(n_vocab); | |
| std::vector<float> scores(n_vocab); | |
| std::vector<int32_t> token_types(n_vocab); | |
| for (int32_t id = 0; id < n_vocab; ++id) { | |
| const llama_vocab::token_data & token_data = vocab.get_token_data(id); | |
| tokens[id] = token_data.text; | |
| scores[id] = token_data.score; | |
| switch(token_data.attr) { | |
| case LLAMA_TOKEN_ATTR_UNKNOWN: token_types[id] = LLAMA_TOKEN_TYPE_UNKNOWN; break; | |
| case LLAMA_TOKEN_ATTR_UNUSED: token_types[id] = LLAMA_TOKEN_TYPE_UNUSED; break; | |
| case LLAMA_TOKEN_ATTR_NORMAL: token_types[id] = LLAMA_TOKEN_TYPE_NORMAL; break; | |
| case LLAMA_TOKEN_ATTR_CONTROL: token_types[id] = LLAMA_TOKEN_TYPE_CONTROL; break; | |
| case LLAMA_TOKEN_ATTR_USER_DEFINED: token_types[id] = LLAMA_TOKEN_TYPE_USER_DEFINED; break; | |
| case LLAMA_TOKEN_ATTR_BYTE: token_types[id] = LLAMA_TOKEN_TYPE_BYTE; break; | |
| case LLAMA_TOKEN_ATTR_UNDEFINED: | |
| default: token_types[id] = LLAMA_TOKEN_TYPE_UNDEFINED; break; | |
| } | |
| } | |
| // add_kv(LLM_KV_GENERAL_TYPE, ???); | |
| add_kv(LLM_KV_GENERAL_ARCHITECTURE, model.arch_name()); | |
| // add_kv(LLM_KV_GENERAL_QUANTIZATION_VERSION, ???); | |
| // add_kv(LLM_KV_GENERAL_ALIGNMENT, ???); | |
| add_kv(LLM_KV_GENERAL_NAME, model.name); | |
| // add_kv(LLM_KV_GENERAL_AUTHOR, ???); | |
| // add_kv(LLM_KV_GENERAL_VERSION, ???); | |
| // add_kv(LLM_KV_GENERAL_URL, ???); | |
| // add_kv(LLM_KV_GENERAL_DESCRIPTION, ???); | |
| // add_kv(LLM_KV_GENERAL_LICENSE, ???); | |
| // add_kv(LLM_KV_GENERAL_SOURCE_URL, ???); | |
| // add_kv(LLM_KV_GENERAL_SOURCE_HF_REPO, ???); | |
| add_kv(LLM_KV_VOCAB_SIZE, vocab.n_tokens()); | |
| add_kv(LLM_KV_CONTEXT_LENGTH, hparams.n_ctx_train); | |
| add_kv(LLM_KV_EMBEDDING_LENGTH, hparams.n_embd); | |
| add_kv(LLM_KV_BLOCK_COUNT, hparams.n_layer); | |
| add_kv(LLM_KV_LEADING_DENSE_BLOCK_COUNT, hparams.n_layer_dense_lead); | |
| add_kv(LLM_KV_FEED_FORWARD_LENGTH, hparams.n_ff_arr, true); | |
| add_kv(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp); | |
| add_kv(LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, hparams.n_ff_exp); | |
| add_kv(LLM_KV_USE_PARALLEL_RESIDUAL, hparams.use_par_res); | |
| // add_kv(LLM_KV_TENSOR_DATA_LAYOUT, ???); | |
| add_kv(LLM_KV_EXPERT_COUNT, hparams.n_expert); | |
| add_kv(LLM_KV_EXPERT_USED_COUNT, hparams.n_expert_used); | |
| add_kv(LLM_KV_EXPERT_SHARED_COUNT, hparams.n_expert_shared); | |
| add_kv(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale); | |
| add_kv(LLM_KV_POOLING_TYPE, uint32_t(hparams.pooling_type)); | |
| add_kv(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale); | |
| add_kv(LLM_KV_DECODER_START_TOKEN_ID, hparams.dec_start_token_id); | |
| add_kv(LLM_KV_ATTN_LOGIT_SOFTCAPPING, hparams.f_attn_logit_softcapping); | |
| add_kv(LLM_KV_FINAL_LOGIT_SOFTCAPPING, hparams.f_final_logit_softcapping); | |
| add_kv(LLM_KV_SWIN_NORM, hparams.swin_norm); | |
| add_kv(LLM_KV_RESCALE_EVERY_N_LAYERS, hparams.rescale_every_n_layers); | |
| add_kv(LLM_KV_TIME_MIX_EXTRA_DIM, hparams.time_mix_extra_dim); | |
| add_kv(LLM_KV_TIME_DECAY_EXTRA_DIM, hparams.time_decay_extra_dim); | |
| add_kv(LLM_KV_RESIDUAL_SCALE, hparams.f_residual_scale); | |
| add_kv(LLM_KV_EMBEDDING_SCALE, hparams.f_embedding_scale); | |
| add_kv(LLM_KV_ATTENTION_HEAD_COUNT, hparams.n_head_arr, true); | |
| add_kv(LLM_KV_ATTENTION_HEAD_COUNT_KV, hparams.n_head_kv_arr, true); | |
| add_kv(LLM_KV_ATTENTION_MAX_ALIBI_BIAS, hparams.f_max_alibi_bias); | |
| add_kv(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv); | |
| add_kv(LLM_KV_ATTENTION_KEY_LENGTH, hparams.n_embd_head_k); | |
| add_kv(LLM_KV_ATTENTION_VALUE_LENGTH, hparams.n_embd_head_v); | |
| add_kv(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); | |
| add_kv(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); | |
| add_kv(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn); | |
| add_kv(LLM_KV_ATTENTION_Q_LORA_RANK, hparams.n_lora_q); | |
| add_kv(LLM_KV_ATTENTION_KV_LORA_RANK, hparams.n_lora_kv); | |
| add_kv(LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT, hparams.n_rel_attn_bkts); | |
| add_kv(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa); | |
| add_kv(LLM_KV_ATTENTION_SCALE, hparams.f_attention_scale); | |
| const float rope_scaling_factor = hparams.rope_freq_scale_train == 1.0f ? 0.0f : 1.0f/hparams.rope_freq_scale_train; | |
| add_kv(LLM_KV_ROPE_DIMENSION_COUNT, hparams.n_rot); | |
| add_kv(LLM_KV_ROPE_FREQ_BASE, hparams.rope_freq_base_train); | |
| // add_kv(LLM_KV_ROPE_SCALE_LINEAR, rope_scaling_factor); // old name | |
| add_kv(LLM_KV_ROPE_SCALING_TYPE, llama_rope_scaling_type_name(hparams.rope_scaling_type_train)); | |
| add_kv(LLM_KV_ROPE_SCALING_FACTOR, rope_scaling_factor); | |
| add_kv(LLM_KV_ROPE_SCALING_ATTN_FACTOR, hparams.rope_attn_factor); | |
| add_kv(LLM_KV_ROPE_SCALING_ORIG_CTX_LEN, hparams.n_ctx_orig_yarn); | |
| add_kv(LLM_KV_ROPE_SCALING_FINETUNED, hparams.rope_finetuned); | |
| add_kv(LLM_KV_ROPE_SCALING_YARN_LOG_MUL, hparams.rope_yarn_log_mul); | |
| // TODO: implement split file support | |
| // add_kv(LLM_KV_SPLIT_NO, ???); | |
| // add_kv(LLM_KV_SPLIT_COUNT, ???); | |
| // add_kv(LLM_KV_SPLIT_TENSORS_COUNT, ???); | |
| add_kv(LLM_KV_SSM_INNER_SIZE, hparams.ssm_d_inner); | |
| add_kv(LLM_KV_SSM_CONV_KERNEL, hparams.ssm_d_conv); | |
| add_kv(LLM_KV_SSM_STATE_SIZE, hparams.ssm_d_state); | |
| add_kv(LLM_KV_SSM_TIME_STEP_RANK, hparams.ssm_dt_rank); | |
| add_kv(LLM_KV_SSM_DT_B_C_RMS, hparams.ssm_dt_b_c_rms); | |
| add_kv(LLM_KV_WKV_HEAD_SIZE, hparams.wkv_head_size); | |
| add_kv(LLM_KV_TOKENIZER_MODEL, vocab.get_tokenizer_model()); | |
| add_kv(LLM_KV_TOKENIZER_PRE, vocab.get_tokenizer_pre()); | |
| add_kv(LLM_KV_TOKENIZER_LIST, tokens); | |
| add_kv(LLM_KV_TOKENIZER_TOKEN_TYPE, token_types); | |
| add_kv(LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, vocab.n_token_types()); | |
| add_kv(LLM_KV_TOKENIZER_SCORES, scores); | |
| add_kv(LLM_KV_TOKENIZER_MERGES, vocab.get_bpe_merges()); | |
| // FIXME llama_token is type i32 but when reading in a GGUF file u32 is expected, not an issue for writing though | |
| add_kv(LLM_KV_TOKENIZER_BOS_ID, uint32_t(vocab.token_bos())); | |
| add_kv(LLM_KV_TOKENIZER_EOS_ID, uint32_t(vocab.token_eos())); | |
| add_kv(LLM_KV_TOKENIZER_EOT_ID, uint32_t(vocab.token_eot())); | |
| add_kv(LLM_KV_TOKENIZER_EOM_ID, uint32_t(vocab.token_eom())); | |
| add_kv(LLM_KV_TOKENIZER_UNK_ID, uint32_t(vocab.token_unk())); | |
| add_kv(LLM_KV_TOKENIZER_SEP_ID, uint32_t(vocab.token_sep())); | |
| add_kv(LLM_KV_TOKENIZER_PAD_ID, uint32_t(vocab.token_pad())); | |
| // add_kv(LLM_KV_TOKENIZER_CLS_ID, uint32_t(vocab.token_bos())); // deprecated | |
| // add_kv(LLM_KV_TOKENIZER_MASK_ID, ???); | |
| add_kv(LLM_KV_TOKENIZER_ADD_BOS, vocab.get_add_bos()); | |
| add_kv(LLM_KV_TOKENIZER_ADD_EOS, vocab.get_add_eos()); | |
| add_kv(LLM_KV_TOKENIZER_ADD_SEP, vocab.get_add_sep()); | |
| add_kv(LLM_KV_TOKENIZER_ADD_PREFIX, vocab.get_add_space_prefix()); | |
| add_kv(LLM_KV_TOKENIZER_REMOVE_EXTRA_WS, vocab.get_remove_extra_whitespaces()); | |
| add_kv(LLM_KV_TOKENIZER_PRECOMPILED_CHARSMAP, vocab.get_precompiled_charsmap()); | |
| // add_kv(LLM_KV_TOKENIZER_HF_JSON, ???); | |
| // add_kv(LLM_KV_TOKENIZER_RWKV, ???); | |
| add_kv(LLM_KV_TOKENIZER_FIM_PRE_ID, uint32_t(vocab.token_fim_pre())); | |
| add_kv(LLM_KV_TOKENIZER_FIM_SUF_ID, uint32_t(vocab.token_fim_suf())); | |
| add_kv(LLM_KV_TOKENIZER_FIM_MID_ID, uint32_t(vocab.token_fim_mid())); | |
| add_kv(LLM_KV_TOKENIZER_FIM_PAD_ID, uint32_t(vocab.token_fim_pad())); | |
| add_kv(LLM_KV_TOKENIZER_FIM_REP_ID, uint32_t(vocab.token_fim_rep())); | |
| add_kv(LLM_KV_TOKENIZER_FIM_SEP_ID, uint32_t(vocab.token_fim_sep())); | |
| // TODO: implement LoRA support | |
| // add_kv(LLM_KV_ADAPTER_TYPE, ???); | |
| // add_kv(LLM_KV_ADAPTER_LORA_ALPHA, ???); | |
| // deprecated | |
| // add_kv(LLM_KV_TOKENIZER_PREFIX_ID, ???); | |
| // add_kv(LLM_KV_TOKENIZER_SUFFIX_ID, ???); | |
| // add_kv(LLM_KV_TOKENIZER_MIDDLE_ID, ???); | |
| } | |
| void llama_model_saver::add_tensors_from_model() { | |
| if (std::string(model.output->name) != std::string(model.tok_embd->name)) { | |
| add_tensor(model.tok_embd); // some models use the same tensor for tok_embd and output | |
| } | |
| add_tensor(model.type_embd); | |
| add_tensor(model.pos_embd); | |
| add_tensor(model.tok_norm); | |
| add_tensor(model.tok_norm_b); | |
| add_tensor(model.output_norm); | |
| add_tensor(model.output_norm_b); | |
| add_tensor(model.output); | |
| add_tensor(model.output_b); | |
| add_tensor(model.output_norm_enc); | |
| add_tensor(model.cls); | |
| add_tensor(model.cls_b); | |
| add_tensor(model.cls_out); | |
| add_tensor(model.cls_out_b); | |
| for (const struct llama_layer & layer : model.layers) { | |
| for (size_t i = 0; i < sizeof(layer)/sizeof(struct ggml_tensor *); ++i) { | |
| add_tensor(reinterpret_cast<const struct ggml_tensor * const *>(&layer)[i]); | |
| } | |
| } | |
| } | |
| void llama_model_saver::save(const std::string & path_model) { | |
| gguf_write_to_file(gguf_ctx, path_model.c_str(), false); | |
| } | |