Spaces:
Running
Running
| struct llama_cparams; | |
| struct llama_hparams; | |
| struct llama_model; | |
| struct llama_context; | |
| // | |
| // llama_kv_cache_unified | |
| // | |
| class llama_kv_cache_unified : public llama_memory_i { | |
| public: | |
| static uint32_t get_padding(const llama_cparams & cparams); | |
| // this callback is used to filter out layers that should not be included in the cache | |
| using layer_filter_cb = std::function<bool(int32_t il)>; | |
| struct defrag_info { | |
| bool empty() const { | |
| return ids.empty(); | |
| } | |
| // contains information about which cell moves where: | |
| // - cell i moves to ids[i] | |
| // - if ids[i] == i || ids[i] == ids.size(), then cell i is not moved | |
| std::vector<uint32_t> ids; | |
| }; | |
| struct stream_copy_info { | |
| bool empty() const { | |
| assert(ssrc.size() == sdst.size()); | |
| return ssrc.empty(); | |
| } | |
| std::vector<uint32_t> ssrc; | |
| std::vector<uint32_t> sdst; | |
| }; | |
| // for each ubatch, create a slot_info that contains information about where the ubatch should be inserted in the | |
| // KV cells. for example, cell indices for each token, such that: token[i] -> goes to cells[idxs[i]] | |
| struct slot_info { | |
| // data for ggml_set_rows | |
| using idx_vec_t = std::vector<uint32_t>; | |
| // number of streams: ns = s1 - s0 + 1 | |
| llama_seq_id s0; | |
| llama_seq_id s1; | |
| std::vector<llama_seq_id> strm; // [ns] | |
| std::vector<idx_vec_t> idxs; // [ns] | |
| uint32_t head() const { | |
| GGML_ASSERT(idxs.size() == 1); | |
| GGML_ASSERT(!idxs[0].empty()); | |
| return idxs[0][0]; | |
| } | |
| void resize(size_t n) { | |
| strm.resize(n); | |
| idxs.resize(n); | |
| } | |
| size_t size() const { | |
| GGML_ASSERT(idxs.size() == strm.size()); | |
| GGML_ASSERT(!idxs.empty()); | |
| return idxs[0].size(); | |
| } | |
| size_t n_stream() const { | |
| return strm.size(); | |
| } | |
| bool empty() const { | |
| return idxs.empty(); | |
| } | |
| void clear() { | |
| idxs.clear(); | |
| } | |
| }; | |
| using slot_info_vec_t = std::vector<slot_info>; | |
| llama_kv_cache_unified( | |
| const llama_model & model, | |
| layer_filter_cb && filter, | |
| ggml_type type_k, | |
| ggml_type type_v, | |
| bool v_trans, | |
| bool offload, | |
| bool unified, | |
| uint32_t kv_size, | |
| uint32_t n_seq_max, | |
| uint32_t n_pad, | |
| uint32_t n_swa, | |
| llama_swa_type swa_type); | |
| ~llama_kv_cache_unified() = default; | |
| // | |
| // llama_memory_i | |
| // | |
| llama_memory_context_ptr init_batch( | |
| llama_batch_allocr & balloc, | |
| uint32_t n_ubatch, | |
| bool embd_all) override; | |
| llama_memory_context_ptr init_full() override; | |
| llama_memory_context_ptr init_update(llama_context * lctx, bool optimize) override; | |
| bool get_can_shift() const override; | |
| void clear(bool data) override; | |
| bool seq_rm (llama_seq_id seq_id, llama_pos p0, llama_pos p1) override; | |
| void seq_cp (llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) override; | |
| void seq_keep(llama_seq_id seq_id) override; | |
| void seq_add (llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos shift) override; | |
| void seq_div (llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) override; | |
| llama_pos seq_pos_min(llama_seq_id seq_id) const override; | |
| llama_pos seq_pos_max(llama_seq_id seq_id) const override; | |
| // state write/load | |
| void state_write(llama_io_write_i & io, llama_seq_id seq_id = -1, llama_state_seq_flags flags = 0) const override; | |
| void state_read (llama_io_read_i & io, llama_seq_id seq_id = -1, llama_state_seq_flags flags = 0) override; | |
| // | |
| // llama_kv_cache_unified specific API | |
| // | |
| uint32_t get_size() const; | |
| uint32_t get_n_stream() const; | |
| bool get_has_shift() const; | |
| // | |
| // graph_build API | |
| // | |
| uint32_t get_n_kv() const; | |
| // TODO: temporary | |
| bool get_supports_set_rows() const; | |
| // get views of the current state of the cache | |
| ggml_tensor * get_k(ggml_context * ctx, int32_t il, uint32_t n_kv, const slot_info & sinfo) const; | |
| ggml_tensor * get_v(ggml_context * ctx, int32_t il, uint32_t n_kv, const slot_info & sinfo) const; | |
| // store k_cur and v_cur in the cache based on the provided head location | |
| ggml_tensor * cpy_k(ggml_context * ctx, ggml_tensor * k_cur, ggml_tensor * k_idxs, int32_t il, const slot_info & sinfo) const; | |
| ggml_tensor * cpy_v(ggml_context * ctx, ggml_tensor * v_cur, ggml_tensor * v_idxs, int32_t il, const slot_info & sinfo) const; | |
| // | |
| // preparation API | |
| // | |
| // find places for the provided ubatches in the cache, returns the slot infos | |
| // return empty vector on failure | |
| slot_info_vec_t prepare(const std::vector<llama_ubatch> & ubatches); | |
| bool update(llama_context * lctx, bool do_shift, const defrag_info & dinfo, const stream_copy_info & sc_info); | |
| // find a slot of kv cells that can hold the ubatch | |
| // if cont == true, then the slot must be continuous | |
| // return empty slot_info on failure | |
| slot_info find_slot(const llama_ubatch & ubatch, bool cont) const; | |
| // emplace the ubatch context into slot: [sinfo.idxs[0...ubatch.n_tokens - 1]] | |
| void apply_ubatch(const slot_info & sinfo, const llama_ubatch & ubatch); | |
| // | |
| // input API | |
| // | |
| ggml_tensor * build_input_k_idxs(ggml_context * ctx, const llama_ubatch & ubatch) const; | |
| ggml_tensor * build_input_v_idxs(ggml_context * ctx, const llama_ubatch & ubatch) const; | |
| void set_input_k_idxs(ggml_tensor * dst, const llama_ubatch * ubatch, const slot_info & sinfo) const; | |
| void set_input_v_idxs(ggml_tensor * dst, const llama_ubatch * ubatch, const slot_info & sinfo) const; | |
| void set_input_k_shift(ggml_tensor * dst) const; | |
| void set_input_kq_mask (ggml_tensor * dst, const llama_ubatch * ubatch, bool causal_attn) const; | |
| void set_input_pos_bucket(ggml_tensor * dst, const llama_ubatch * ubatch) const; | |
| private: | |
| const llama_model & model; | |
| const llama_hparams & hparams; | |
| struct kv_layer { | |
| // layer index in the model | |
| // note: can be different from the layer index in the KV cache | |
| uint32_t il; | |
| ggml_tensor * k; | |
| ggml_tensor * v; | |
| std::vector<ggml_tensor *> k_stream; | |
| std::vector<ggml_tensor *> v_stream; | |
| }; | |
| bool v_trans = true; // the value tensor is transposed | |
| const uint32_t n_seq_max = 1; | |
| const uint32_t n_stream = 1; | |
| // required padding | |
| const uint32_t n_pad = 1; | |
| // SWA | |
| const uint32_t n_swa = 0; | |
| // env: LLAMA_KV_CACHE_DEBUG | |
| int debug = 0; | |
| // env: LLAMA_SET_ROWS (temporary) | |
| // ref: https://github.com/ggml-org/llama.cpp/pull/14285 | |
| bool supports_set_rows = true; | |
| const llama_swa_type swa_type = LLAMA_SWA_TYPE_NONE; | |
| std::vector<ggml_context_ptr> ctxs; | |
| std::vector<ggml_backend_buffer_ptr> bufs; | |
| // the current index from where we start searching for a free slot in the ring buffer of KV cells (see find_slot()) | |
| // note: this is not part of the KV state and it's only used to speed-up the find_slot() method | |
| std::vector<uint32_t> v_heads; | |
| std::vector<llama_kv_cells_unified> v_cells; | |
| // maps from a sequence id to a stream id | |
| std::vector<uint32_t> seq_to_stream; | |
| // pending stream copies that will be applied during the next update | |
| stream_copy_info sc_info; | |
| std::vector<kv_layer> layers; | |
| // model layer id -> KV cache layer id | |
| std::unordered_map<int32_t, int32_t> map_layer_ids; | |
| // return non-empty vector if cells have been moved | |
| defrag_info defrag_prepare(int32_t n_max_nodes) const; | |
| size_t total_size() const; | |
| size_t size_k_bytes() const; | |
| size_t size_v_bytes() const; | |
| bool is_masked_swa(llama_pos p0, llama_pos p1) const; | |
| ggml_tensor * build_rope_shift( | |
| const llama_cparams & cparams, | |
| ggml_context * ctx, | |
| ggml_tensor * cur, | |
| ggml_tensor * shift, | |
| ggml_tensor * factors, | |
| float freq_base, | |
| float freq_scale) const; | |
| ggml_cgraph * build_graph_shift( | |
| llm_graph_result * res, | |
| llama_context * lctx) const; | |
| ggml_cgraph * build_graph_defrag( | |
| llm_graph_result * res, | |
| llama_context * lctx, | |
| const defrag_info & dinfo) const; | |
| struct cell_ranges_t { | |
| uint32_t strm; | |
| std::vector<std::pair<uint32_t, uint32_t>> data; // ranges, from inclusive, to exclusive | |
| }; | |
| void state_write_meta(llama_io_write_i & io, const cell_ranges_t & cr, llama_seq_id seq_id = -1) const; | |
| void state_write_data(llama_io_write_i & io, const cell_ranges_t & cr) const; | |
| bool state_read_meta(llama_io_read_i & io, uint32_t strm, uint32_t cell_count, llama_seq_id dest_seq_id = -1); | |
| bool state_read_data(llama_io_read_i & io, uint32_t strm, uint32_t cell_count); | |
| }; | |
| class llama_kv_cache_unified_context : public llama_memory_context_i { | |
| public: | |
| // some shorthands | |
| using slot_info_vec_t = llama_kv_cache_unified::slot_info_vec_t; | |
| using defrag_info = llama_kv_cache_unified::defrag_info; | |
| using stream_copy_info = llama_kv_cache_unified::stream_copy_info; | |
| // used for errors | |
| llama_kv_cache_unified_context(llama_memory_status status); | |
| // used to create a full-cache context | |
| llama_kv_cache_unified_context( | |
| llama_kv_cache_unified * kv); | |
| // used to create an update context | |
| llama_kv_cache_unified_context( | |
| llama_kv_cache_unified * kv, | |
| llama_context * lctx, | |
| bool do_shift, | |
| defrag_info dinfo, | |
| stream_copy_info sc_info); | |
| // used to create a batch procesing context from a batch | |
| llama_kv_cache_unified_context( | |
| llama_kv_cache_unified * kv, | |
| slot_info_vec_t sinfos, | |
| std::vector<llama_ubatch> ubatches); | |
| virtual ~llama_kv_cache_unified_context(); | |
| // | |
| // llama_memory_context_i | |
| // | |
| bool next() override; | |
| bool apply() override; | |
| llama_memory_status get_status() const override; | |
| const llama_ubatch & get_ubatch() const override; | |
| // | |
| // llama_kv_cache_unified_context specific API | |
| // | |
| uint32_t get_n_kv() const; | |
| // TODO: temporary | |
| bool get_supports_set_rows() const; | |
| // get views of the current state of the cache | |
| ggml_tensor * get_k(ggml_context * ctx, int32_t il) const; | |
| ggml_tensor * get_v(ggml_context * ctx, int32_t il) const; | |
| // store k_cur and v_cur in the cache based on the provided head location | |
| ggml_tensor * cpy_k(ggml_context * ctx, ggml_tensor * k_cur, ggml_tensor * k_idxs, int32_t il) const; | |
| ggml_tensor * cpy_v(ggml_context * ctx, ggml_tensor * v_cur, ggml_tensor * v_idxs, int32_t il) const; | |
| ggml_tensor * build_input_k_idxs(ggml_context * ctx, const llama_ubatch & ubatch) const; | |
| ggml_tensor * build_input_v_idxs(ggml_context * ctx, const llama_ubatch & ubatch) const; | |
| void set_input_k_idxs(ggml_tensor * dst, const llama_ubatch * ubatch) const; | |
| void set_input_v_idxs(ggml_tensor * dst, const llama_ubatch * ubatch) const; | |
| void set_input_k_shift (ggml_tensor * dst) const; | |
| void set_input_kq_mask (ggml_tensor * dst, const llama_ubatch * ubatch, bool causal_attn) const; | |
| void set_input_pos_bucket(ggml_tensor * dst, const llama_ubatch * ubatch) const; | |
| private: | |
| llama_memory_status status; | |
| llama_kv_cache_unified * kv; | |
| llama_context * lctx; | |
| // | |
| // update context | |
| // | |
| bool do_shift = false; | |
| defrag_info dinfo; | |
| stream_copy_info sc_info; | |
| // | |
| // batch processing context | |
| // | |
| // the index of the cur ubatch to process | |
| size_t i_cur = 0; | |
| slot_info_vec_t sinfos; | |
| std::vector<llama_ubatch> ubatches; | |
| // | |
| // data needed for building the compute graph for the current ubatch: | |
| // | |
| // a heuristic, to avoid attending the full cache if it is not yet utilized | |
| // as the cache gets filled, the benefit from this heuristic disappears | |
| int32_t n_kv; | |
| }; | |