Spaces:
Running
Running
| static __global__ void quantize_q8_1(const float * __restrict__ x, void * __restrict__ vy, const int64_t kx, const int64_t kx0_padded) { | |
| const int64_t ix0 = (int64_t)blockDim.x*blockIdx.x + threadIdx.x; | |
| if (ix0 >= kx0_padded) { | |
| return; | |
| } | |
| const int64_t ix1 = blockIdx.y; | |
| const int64_t i_padded = ix1*kx0_padded + ix0; | |
| block_q8_1 * y = (block_q8_1 *) vy; | |
| const int64_t ib = i_padded / QK8_1; // block index | |
| const int64_t iqs = i_padded % QK8_1; // quant index | |
| const float xi = ix0 < kx ? x[ix1*kx + ix0] : 0.0f; | |
| float amax = fabsf(xi); | |
| float sum = xi; | |
| amax = warp_reduce_max(amax); | |
| sum = warp_reduce_sum(sum); | |
| const float d = amax / 127; | |
| const int8_t q = amax == 0.0f ? 0 : roundf(xi / d); | |
| y[ib].qs[iqs] = q; | |
| if (iqs > 0) { | |
| return; | |
| } | |
| reinterpret_cast<half&>(y[ib].ds.x) = d; | |
| reinterpret_cast<half&>(y[ib].ds.y) = sum; | |
| } | |
| template <bool need_sum> | |
| static __global__ void quantize_mmq_q8_1( | |
| const float * __restrict__ x, void * __restrict__ vy, const int64_t kx0, const int64_t kx1, const int64_t kx0_padded) { | |
| const int64_t ix0 = (int64_t)blockDim.x*blockIdx.x + threadIdx.x; | |
| if (ix0 >= kx0_padded) { | |
| return; | |
| } | |
| const int64_t ix1 = kx1*blockIdx.z + blockIdx.y; | |
| block_q8_1_mmq * y = (block_q8_1_mmq *) vy; | |
| const int64_t ib0 = blockIdx.z*(gridDim.y*gridDim.x*blockDim.x/(4*QK8_1)); // first block of channel | |
| const int64_t ib = ib0 + (ix0 / (4*QK8_1))*kx1 + blockIdx.y; // block index in channel | |
| const int64_t iqs = ix0 % (4*QK8_1); // quant index in block | |
| const float xi = ix0 < kx0 ? x[ix1*kx0 + ix0] : 0.0f; | |
| float amax = fabsf(xi); | |
| amax = warp_reduce_max(amax); | |
| float sum; | |
| if (need_sum) { | |
| sum = warp_reduce_sum(xi); | |
| } | |
| const float d = amax / 127; | |
| const int8_t q = amax == 0.0f ? 0 : roundf(xi / d); | |
| y[ib].qs[iqs] = q; | |
| if (iqs % QK8_1 != 0) { | |
| return; | |
| } | |
| if (need_sum) { | |
| y[ib].ds[iqs/QK8_1] = make_half2(d, sum); | |
| } else { | |
| ((float *) y[ib].ds)[iqs/QK8_1] = d; | |
| } | |
| } | |
| void quantize_row_q8_1_cuda( | |
| const float * x, void * vy, const int64_t kx0, const int64_t kx1, const int64_t channels, | |
| const int64_t kx0_padded, const ggml_type type_x, cudaStream_t stream) { | |
| GGML_ASSERT(kx0_padded % QK8_1 == 0); | |
| const int64_t block_num_x = (kx0_padded + CUDA_QUANTIZE_BLOCK_SIZE - 1) / CUDA_QUANTIZE_BLOCK_SIZE; | |
| const dim3 num_blocks(block_num_x, kx1*channels, 1); | |
| const dim3 block_size(CUDA_QUANTIZE_BLOCK_SIZE, 1, 1); | |
| quantize_q8_1<<<num_blocks, block_size, 0, stream>>>(x, vy, kx0, kx0_padded); | |
| GGML_UNUSED(type_x); | |
| } | |
| void quantize_mmq_q8_1_cuda( | |
| const float * x, void * vy, const int64_t kx0, const int64_t kx1, const int64_t channels, | |
| const int64_t kx0_padded, const ggml_type type_x, cudaStream_t stream) { | |
| GGML_ASSERT(kx0_padded % (4*QK8_1) == 0); | |
| const int64_t block_num_x = (kx0_padded + CUDA_QUANTIZE_BLOCK_SIZE - 1) / CUDA_QUANTIZE_BLOCK_SIZE; | |
| const dim3 num_blocks(block_num_x, kx1, channels); | |
| const dim3 block_size(CUDA_QUANTIZE_BLOCK_SIZE, 1, 1); | |
| if (mmq_need_sum(type_x)) { | |
| quantize_mmq_q8_1<true><<<num_blocks, block_size, 0, stream>>>(x, vy, kx0, kx1, kx0_padded); | |
| } else { | |
| quantize_mmq_q8_1<false><<<num_blocks, block_size, 0, stream>>>(x, vy, kx0, kx1, kx0_padded); | |
| } | |
| } | |