Spaces:
Running
Running
| // SPDX-FileCopyrightText: Copyright 2025 Arm Limited and/or its affiliates <[email protected]> | |
| // SPDX-License-Identifier: MIT | |
| // | |
| struct ggml_kleidiai_context { | |
| ggml_kleidiai_kernels * kernels; | |
| } static ctx = { NULL }; | |
| static void init_kleidiai_context(void) { | |
| ggml_critical_section_start(); | |
| static bool initialized = false; | |
| if (!initialized) { | |
| initialized = true; | |
| const char *env_var = getenv("GGML_KLEIDIAI_SME"); | |
| int sme_enabled = 0; | |
| cpu_feature features = (ggml_cpu_has_dotprod() ? CPU_FEATURE_DOTPROD : CPU_FEATURE_NONE) | | |
| (ggml_cpu_has_matmul_int8() ? CPU_FEATURE_I8MM : CPU_FEATURE_NONE) | | |
| (ggml_cpu_has_sve() ? CPU_FEATURE_SVE : CPU_FEATURE_NONE); | |
| if (env_var) { | |
| sme_enabled = atoi(env_var); | |
| } | |
| if (sme_enabled != 0) { | |
| features |= ggml_cpu_has_sme() ? CPU_FEATURE_SME : CPU_FEATURE_NONE; | |
| } | |
| ctx.kernels = ggml_kleidiai_select_kernels(features); | |
| } | |
| ggml_critical_section_end(); | |
| } | |
| static inline int64_t ggml_ne(const ggml_tensor * tensor, int dim) { | |
| GGML_ASSERT(dim >= 0 && dim < GGML_MAX_DIMS); | |
| return tensor->ne[dim]; | |
| } | |
| namespace ggml::cpu::kleidiai { | |
| class tensor_traits : public ggml::cpu::tensor_traits { | |
| bool work_size(int /* n_threads */, const struct ggml_tensor * op, size_t & size) override { | |
| GGML_ASSERT(ctx.kernels); | |
| kernel_info * kernel = op->src[1]->ne[1] == 1 ? &ctx.kernels->gemv : &ctx.kernels->gemm; | |
| size_t k = op->src[0]->ne[0]; | |
| size_t m = op->src[1]->ne[1]; | |
| size_t mr = kernel->get_mr(); | |
| size_t kr = kernel->get_kr(); | |
| size_t sr = kernel->get_sr(); | |
| size = ctx.kernels->lhs_info.packed_size(m, k, QK4_0, mr, kr, sr); | |
| return true; | |
| } | |
| bool compute_forward(struct ggml_compute_params * params, struct ggml_tensor * dst) override { | |
| if (dst->op == GGML_OP_MUL_MAT) { | |
| const ggml_tensor * src0 = dst->src[0]; | |
| const ggml_tensor * src1 = dst->src[1]; | |
| GGML_TENSOR_BINARY_OP_LOCALS | |
| GGML_ASSERT(ctx.kernels); | |
| kernel_info * kernel = src1->ne[1] == 1 ? &ctx.kernels->gemv : &ctx.kernels->gemm; | |
| lhs_packing_info * lhs_info = &ctx.kernels->lhs_info; | |
| GGML_ASSERT(kernel); | |
| const int ith = params->ith; | |
| const int nth = params->nth; | |
| const size_t k = ne00; | |
| const size_t m = ne11; | |
| const size_t n = ne01; | |
| const size_t n_step = kernel->get_n_step(); | |
| const size_t num_n_per_thread = kai_roundup(kai_roundup(n, nth) / nth, n_step); | |
| const size_t n_start = ith * num_n_per_thread; | |
| size_t n_to_process = num_n_per_thread; | |
| if ((n_start + n_to_process) > n) { | |
| n_to_process = n - n_start; | |
| } | |
| const uint8_t * lhs = static_cast<const uint8_t *>(src1->data); | |
| uint8_t * lhs_packed = (uint8_t*)params->wdata; | |
| const uint8_t * rhs_packed = static_cast<const uint8_t *>(src0->data); | |
| size_t mr = kernel->get_mr(); | |
| size_t kr = kernel->get_kr(); | |
| size_t sr = kernel->get_sr(); | |
| // Calculate number of columns to be processed per thread | |
| const size_t num_m_per_thread = kai_roundup(m, mr * nth) / nth; | |
| const size_t m_start = ith * num_m_per_thread; | |
| size_t m_to_process = num_m_per_thread; | |
| if ((m_start + m_to_process) > m) { | |
| m_to_process = m - m_start; | |
| } | |
| if(m_start < m) { | |
| // Transform LHS | |
| const size_t src_stride = src1->nb[1]; | |
| const float * src_ptr = reinterpret_cast<const float *>(lhs + lhs_info->get_offset(m_start, dst->src[1]->nb[1])); | |
| const size_t lhs_packed_offset = lhs_info->get_packed_offset(m_start, k, QK4_0, mr, kr, sr); | |
| void * lhs_packed_ptr = static_cast<void *>(lhs_packed + lhs_packed_offset); | |
| lhs_info->pack_func(m_to_process, k, QK4_0, mr, kr, sr, 0, src_ptr, src_stride, lhs_packed_ptr); | |
| } | |
| ggml_barrier(params->threadpool); | |
| // Perform the operation | |
| const size_t dst_stride = dst->nb[1]; | |
| const size_t lhs_packed_offset = lhs_info->get_packed_offset(0, k, QK4_0, mr, kr, sr); | |
| const size_t rhs_packed_offset = kernel->get_rhs_packed_offset(n_start, k, QK4_0); | |
| const size_t dst_offset = kernel->get_dst_offset(0, n_start, dst_stride); | |
| const void * rhs_ptr = static_cast<const void *>(rhs_packed + rhs_packed_offset); | |
| const void* lhs_ptr = (const void*)((const char *)lhs_packed + lhs_packed_offset); | |
| float *dst_ptr = reinterpret_cast<float *>(static_cast<uint8_t *>(dst->data) + dst_offset); | |
| kernel->run_kernel(m, n_to_process, k, QK4_0, lhs_ptr, rhs_ptr, dst_ptr, | |
| dst_stride, sizeof(float), -FLT_MAX, FLT_MAX); | |
| return true; | |
| } | |
| return false; | |
| } | |
| public: | |
| int repack(struct ggml_tensor * tensor, const void * data, size_t data_size) { | |
| GGML_ASSERT(ctx.kernels); | |
| const size_t n = tensor->ne[1]; | |
| const size_t k = tensor->ne[0]; | |
| size_t nr = ctx.kernels->gemm.get_nr(); | |
| size_t kr = ctx.kernels->gemm.get_kr(); | |
| size_t sr = ctx.kernels->gemm.get_sr(); | |
| const size_t repacked_size = ctx.kernels->rhs_info.packed_size(n, k, nr, kr, QK4_0); | |
| GGML_ASSERT(repacked_size <= data_size && "repacked size larger than the packed size!"); | |
| struct kai_rhs_pack_qs4cxs1s0_param params; | |
| params.lhs_zero_point = 1; | |
| params.rhs_zero_point = 8; | |
| ctx.kernels->rhs_info.pack_func(1, n, k, nr, kr, sr, QK4_0, (const uint8_t *)data, NULL, tensor->data, 0, ¶ms); | |
| return 0; | |
| GGML_UNUSED(data_size); | |
| } | |
| }; | |
| static ggml::cpu::tensor_traits * get_tensor_traits(ggml_backend_buffer_t, struct ggml_tensor *) { | |
| static tensor_traits traits; | |
| return &traits; | |
| } | |
| } // namespace ggml::cpu::kleidiai | |
| GGML_API enum ggml_status ggml_backend_cpu_kleidiai_buffer_init_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) { | |
| tensor->extra = (void *) ggml::cpu::kleidiai::get_tensor_traits(buffer, tensor); | |
| GGML_UNUSED(buffer); | |
| return GGML_STATUS_SUCCESS; | |
| } | |
| static void ggml_backend_cpu_kleidiai_buffer_set_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, | |
| const void * data, size_t offset, size_t size) { | |
| GGML_ASSERT(offset == 0); | |
| GGML_ASSERT(size == ggml_nbytes(tensor)); | |
| auto tensor_traits = (ggml::cpu::kleidiai::tensor_traits *) tensor->extra; | |
| auto OK = tensor_traits->repack(tensor, data, size); | |
| GGML_ASSERT(OK == 0); | |
| GGML_UNUSED(buffer); | |
| } | |
| static const char * ggml_backend_cpu_kleidiai_buffer_type_get_name(ggml_backend_buffer_type_t buft) { | |
| return "CPU_KLEIDIAI"; | |
| GGML_UNUSED(buft); | |
| } | |
| static ggml_backend_buffer_t ggml_backend_cpu_kleidiai_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) { | |
| ggml_backend_buffer_t buffer = ggml_backend_buft_alloc_buffer(ggml_backend_cpu_buffer_type(), size); | |
| if (buffer == nullptr) { | |
| return nullptr; | |
| } | |
| buffer->buft = buft; | |
| buffer->iface.init_tensor = ggml_backend_cpu_kleidiai_buffer_init_tensor; | |
| buffer->iface.set_tensor = ggml_backend_cpu_kleidiai_buffer_set_tensor; | |
| buffer->iface.get_tensor = nullptr; | |
| buffer->iface.cpy_tensor = nullptr; | |
| return buffer; | |
| } | |
| static size_t ggml_backend_cpu_kleidiai_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) { | |
| return TENSOR_ALIGNMENT; | |
| GGML_UNUSED(buft); | |
| } | |
| namespace ggml::cpu::kleidiai { | |
| class extra_buffer_type : ggml::cpu::extra_buffer_type { | |
| bool supports_op(ggml_backend_dev_t, const struct ggml_tensor * op) override { | |
| if ( op->op == GGML_OP_MUL_MAT && | |
| op->src[0]->type == GGML_TYPE_Q4_0 && | |
| op->src[0]->buffer && | |
| (ggml_n_dims(op->src[0]) == 2) && | |
| op->src[0]->buffer->buft == ggml_backend_cpu_kleidiai_buffer_type() && ctx.kernels | |
| ) { | |
| if (op->src[1]->buffer && !ggml_backend_buft_is_host(op->src[1]->buffer->buft)) { | |
| return false; | |
| } | |
| if (op->src[1]->type == GGML_TYPE_F32 && | |
| ggml_ne(op->src[1], 2) == 1 && ggml_ne(op->src[1], 3) == 1) { | |
| return true; | |
| } | |
| } | |
| return false; | |
| } | |
| ggml::cpu::tensor_traits * get_tensor_traits(const struct ggml_tensor * op) override { | |
| if (op->op == GGML_OP_MUL_MAT) { | |
| if (op->src[0]->buffer && op->src[0]->buffer->buft == ggml_backend_cpu_kleidiai_buffer_type()) { | |
| return (ggml::cpu::tensor_traits *) op->src[0]->extra; | |
| } | |
| } | |
| return nullptr; | |
| } | |
| }; | |
| } // namespace ggml::cpu::kleidiai | |
| ggml_backend_buffer_type_t ggml_backend_cpu_kleidiai_buffer_type(void) { | |
| static ggml::cpu::kleidiai::extra_buffer_type ctx; | |
| static struct ggml_backend_buffer_type ggml_backend_cpu_buffer_type_kleidiai = { | |
| /* .iface = */ { | |
| /* .get_name = */ ggml_backend_cpu_kleidiai_buffer_type_get_name, | |
| /* .alloc_buffer = */ ggml_backend_cpu_kleidiai_buffer_type_alloc_buffer, | |
| /* .get_alignment = */ ggml_backend_cpu_kleidiai_buffer_type_get_alignment, | |
| /* .get_max_size = */ nullptr, // defaults to SIZE_MAX | |
| /* .get_alloc_size = */ nullptr, // defaults to ggml_nbytes | |
| /* .is_host = */ nullptr, | |
| }, | |
| /* .device = */ ggml_backend_reg_dev_get(ggml_backend_cpu_reg(), 0), | |
| /* .context = */ &ctx, | |
| }; | |
| init_kleidiai_context(); | |
| return &ggml_backend_cpu_buffer_type_kleidiai; | |
| } | |