File size: 19,750 Bytes
bf6ccee
5de15cd
 
bf6ccee
5de15cd
 
 
 
 
bf6ccee
 
5de15cd
 
 
 
 
bf6ccee
5de15cd
 
 
 
 
 
 
bf6ccee
 
 
5de15cd
bf6ccee
 
 
 
 
 
5de15cd
 
 
 
 
 
bf6ccee
 
 
5de15cd
bf6ccee
 
5de15cd
bf6ccee
 
 
 
 
 
 
 
 
5de15cd
bf6ccee
 
 
 
 
 
 
 
 
 
050e6ce
bf6ccee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5de15cd
 
 
 
 
 
 
 
 
 
bf6ccee
5de15cd
 
bf6ccee
5de15cd
 
 
 
 
 
 
 
bf6ccee
 
 
5de15cd
bf6ccee
 
 
 
 
 
5de15cd
 
 
 
 
bf6ccee
5de15cd
bf6ccee
5de15cd
bf6ccee
 
 
5de15cd
bf6ccee
 
 
 
 
 
 
 
5de15cd
bf6ccee
 
 
727de7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5de15cd
 
 
 
 
bf6ccee
 
 
2e59a96
 
 
 
 
 
 
bf6ccee
 
 
9cfb13b
bf6ccee
 
 
 
 
 
2e59a96
bf6ccee
5de15cd
2e59a96
 
 
 
 
 
bf6ccee
 
 
 
d003891
bf6ccee
 
 
2e59a96
bf6ccee
2e59a96
 
 
 
 
 
bf6ccee
 
 
9cfb13b
bf6ccee
 
 
 
 
 
 
2e59a96
bf6ccee
 
 
 
 
2e59a96
 
 
 
 
 
bf6ccee
 
 
5de15cd
 
bf6ccee
 
5de15cd
 
bf6ccee
 
2e59a96
 
 
 
 
 
 
bf6ccee
 
 
9cfb13b
bf6ccee
 
 
 
 
 
2e59a96
bf6ccee
 
2e59a96
 
 
 
 
 
bf6ccee
 
 
727de7e
 
 
 
 
 
 
2e59a96
 
 
 
 
 
727de7e
 
 
 
 
 
 
 
 
 
2e59a96
727de7e
 
2e59a96
 
 
 
 
 
727de7e
 
 
0a9c73a
5de15cd
bf6ccee
0a9c73a
bf6ccee
 
5de15cd
0a9c73a
 
 
 
bf6ccee
 
 
5de15cd
 
 
 
 
 
 
 
bf6ccee
 
0a9c73a
bf6ccee
0a9c73a
bf6ccee
 
 
0a9c73a
 
 
 
 
d003891
 
 
 
0a9c73a
 
bf6ccee
 
0a9c73a
bf6ccee
5de15cd
0a9c73a
bf6ccee
 
0a9c73a
 
 
 
 
bf6ccee
 
 
 
5de15cd
 
 
 
 
 
 
bf6ccee
727de7e
0a9c73a
727de7e
0a9c73a
727de7e
 
0a9c73a
 
 
 
 
 
 
727de7e
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
#include "norm.hpp"
#include "ggml-sycl/common.hpp"
#include "ggml-sycl/presets.hpp"

static void norm_f32(const float* x, float* dst, const int ncols, const int64_t stride_row, const int64_t stride_channel,
        const int64_t stride_sample, const float eps, const sycl::nd_item<3>& item_ct1, sycl::float2* s_sum, int block_size) {

    const int nrows = item_ct1.get_group_range(2);
    const int nchannels = item_ct1.get_group_range(1);

    const int nthreads = item_ct1.get_local_range(2);
    const int sample  = item_ct1.get_group(0);
    const int channel = item_ct1.get_group(1);
    const int row     = item_ct1.get_group(2);

    const int tid = item_ct1.get_local_id(2);
    const int nwarps = nthreads / WARP_SIZE;

    const auto strided_offset = calculate_offset<3>({stride_sample, stride_channel, stride_row}, {sample, channel, row});
    const auto packed_offset = calculate_offset<3>({nchannels * nrows * ncols, nrows * ncols, ncols}, {sample, channel, row});

    x += strided_offset;
    dst += packed_offset;

    sycl::float2 mean_var = sycl::float2(0.f, 0.f);

    for (int col = tid; col < ncols; col += block_size) {
        const float xi = x[col];
        mean_var.x() += xi;
        mean_var.y() += xi * xi;
    }

    // sum up partial sums
    mean_var = warp_reduce_sum(mean_var, item_ct1);
    if  (block_size > WARP_SIZE) {
        const auto sub_group = item_ct1.get_sub_group();
        const auto sg_id = sub_group.get_group_linear_id();
        const auto wi_in_sg = sub_group.get_local_linear_id();
        if (wi_in_sg == 0) {
            s_sum[sg_id] = mean_var;
        }
        item_ct1.barrier(sycl::access::fence_space::local_space);
        mean_var = 0.f;
        const size_t nreduce = ceil_div(nwarps, WARP_SIZE);
        for (size_t i = 0; i < nreduce; i += 1)
        {
            mean_var += s_sum[wi_in_sg + i * WARP_SIZE];
        }
        mean_var = warp_reduce_sum(mean_var, item_ct1);
    }

    const float mean = mean_var.x() / ncols;
    const float var = mean_var.y() / ncols - mean * mean;
    const float inv_std = sycl::rsqrt(var + eps);

    for (int col = tid; col < ncols; col += block_size) {
        dst[col] = (x[col] - mean) * inv_std;
    }
}

static void group_norm_f32(const float* x, float* dst, const int group_size, const int ne_elements, const float eps,
    const sycl::nd_item<3>& item_ct1, float* s_sum, int block_size) {
    int start = item_ct1.get_group(2) * group_size;
    int end = start + group_size;
    const int nthreads = item_ct1.get_local_range(2);
    const int nwarps = nthreads / WARP_SIZE;
    start += item_ct1.get_local_id(2);
    size_t nreduce = nwarps / WARP_SIZE;

    if (end >= ne_elements) {
        end = ne_elements;
    }

    float tmp = 0.0f; // partial sum for thread in warp

    for (int j = start; j < end; j += block_size) {
        tmp += x[j];
    }

    tmp = warp_reduce_sum(tmp, item_ct1);
    if (block_size > WARP_SIZE) {

        int warp_id = item_ct1.get_local_id(2) / WARP_SIZE;
        int lane_id = item_ct1.get_local_id(2) % WARP_SIZE;
        if (lane_id == 0) {
            s_sum[warp_id] = tmp;
        }
        /*
        DPCT1118:1: SYCL group functions and algorithms must be encountered in
        converged control flow. You may need to adjust the code.
        */
        /*
        DPCT1065:54: Consider replacing sycl::nd_item::barrier() with
        sycl::nd_item::barrier(sycl::access::fence_space::local_space) for
        better performance if there is no access to global memory.
        */
        item_ct1.barrier();
        tmp = 0.f;
        for (size_t i = 0; i < nreduce; i += 1)
        {
            tmp += s_sum[lane_id + i * WARP_SIZE];
        }
        tmp = warp_reduce_sum(tmp, item_ct1);
    }

    float mean = tmp / group_size;
    tmp = 0.0f;

    for (int j = start; j < end; j += block_size) {
        float xi = x[j] - mean;
        dst[j] = xi;
        tmp += xi * xi;
    }

    tmp = warp_reduce_sum(tmp, item_ct1);
    if (block_size > WARP_SIZE) {

        int warp_id = item_ct1.get_local_id(2) / WARP_SIZE;
        int lane_id = item_ct1.get_local_id(2) % WARP_SIZE;
        if (lane_id == 0) {
            s_sum[warp_id] = tmp;
        }
        /*
        DPCT1118:2: SYCL group functions and algorithms must be encountered in
        converged control flow. You may need to adjust the code.
        */
        /*
        DPCT1065:55: Consider replacing sycl::nd_item::barrier() with
        sycl::nd_item::barrier(sycl::access::fence_space::local_space) for
        better performance if there is no access to global memory.
        */
        item_ct1.barrier();
        tmp = 0.f;
        for (size_t i = 0; i < nreduce; i += 1)
        {
            tmp += s_sum[lane_id + i * WARP_SIZE];
        }
        tmp = warp_reduce_sum(tmp, item_ct1);
    }

    float variance = tmp / group_size;
    float scale = sycl::rsqrt(variance + eps);
    for (int j = start; j < end; j += block_size) {
        dst[j] *= scale;
    }
}

static void rms_norm_f32(const float* x, float* dst, const int ncols, const int64_t stride_row, const int64_t stride_channel,
        const int64_t stride_sample, const float eps, const sycl::nd_item<3>& item_ct1, float* s_sum, int block_size) {

    const int nrows = item_ct1.get_group_range(2);
    const int nchannels = item_ct1.get_group_range(1);

    const int sample  = item_ct1.get_group(0);
    const int channel = item_ct1.get_group(1);
    const int row     = item_ct1.get_group(2);

    const int nthreads = item_ct1.get_local_range(2);

    const int tid = item_ct1.get_local_id(2);
    const int nwarps = nthreads / WARP_SIZE;

    const auto strided_offset = calculate_offset<3>({stride_sample, stride_channel, stride_row}, {sample, channel, row});
    const auto packed_offset = calculate_offset<3>({nchannels * nrows * ncols, nrows * ncols, ncols}, {sample, channel, row});

    x   += strided_offset;
    dst += packed_offset;


    float tmp = 0.0f; // partial sum for thread in warp

    for (int col = tid; col < ncols; col += block_size) {
        const float xi = x[col];
        tmp += xi * xi;
    }

    // sum up partial sums
    tmp = warp_reduce_sum(tmp, item_ct1);
    if (block_size > WARP_SIZE) {
        const auto sub_group = item_ct1.get_sub_group();
        const auto sg_id = sub_group.get_group_linear_id();
        const auto wi_in_sg = sub_group.get_local_linear_id();
        if (wi_in_sg == 0) {
            s_sum[sg_id] = tmp;
        }

        item_ct1.barrier(sycl::access::fence_space::local_space);
        const size_t nreduce = ceil_div(nwarps, WARP_SIZE);
        tmp = 0.f;
        for (size_t i = 0; i < nreduce; i += 1)
        {
            tmp += s_sum[wi_in_sg + i * WARP_SIZE];
        }
        tmp = warp_reduce_sum(tmp, item_ct1);
    }

    const float mean = tmp / ncols;
    const float scale = sycl::rsqrt(mean + eps);

    for (int col = tid; col < ncols; col += block_size) {
        dst[col] = scale * x[col];
    }
}

static void l2_norm_f32(const float* x, float* dst, const int ncols, const float eps,
    const sycl::nd_item<3>& item_ct1, float* s_sum, int block_size) {
    const int row = item_ct1.get_group(2) * item_ct1.get_local_range(1) +
        item_ct1.get_local_id(1);
    const int tid = item_ct1.get_local_id(2);
    const int nthreads = item_ct1.get_local_range(2);
    const int nwarps = nthreads / WARP_SIZE;
    float tmp = 0.0f; // partial sum for thread in warp

    for (int col = tid; col < ncols; col += block_size) {
        const float xi = x[row * ncols + col];
        tmp += xi * xi;
    }

    // sum up partial sums
    tmp = warp_reduce_sum(tmp, item_ct1);
    if (block_size > WARP_SIZE) {

        int warp_id = item_ct1.get_local_id(2) / WARP_SIZE;
        int lane_id = item_ct1.get_local_id(2) % WARP_SIZE;
        if (lane_id == 0) {
            s_sum[warp_id] = tmp;
        }
        /*
        DPCT1118:3: SYCL group functions and algorithms must be encountered in
        converged control flow. You may need to adjust the code.
        */
        item_ct1.barrier(sycl::access::fence_space::local_space);
        size_t nreduce = nwarps / WARP_SIZE;
        tmp = 0.f;
        for (size_t i = 0; i < nreduce; i += 1)
        {
            tmp += s_sum[lane_id + i * WARP_SIZE];
        }
        tmp = warp_reduce_sum(tmp, item_ct1);
    }

    const float scale = sycl::rsqrt(sycl::max(tmp, eps * eps));

    for (int col = tid; col < ncols; col += block_size) {
        dst[row * ncols + col] = scale * x[row * ncols + col];
    }
}

static void norm_f32_sycl(const float * x, float * dst, const int ncols, const int nrows, const int nchannels, const int nsamples,
        const int64_t stride_row, const int64_t stride_channel, const int64_t stride_sample,
        const float eps, queue_ptr stream, int device) {

    const sycl::range<3> global_dims(nsamples, nchannels, nrows);
    GGML_ASSERT(ncols % WARP_SIZE == 0);
    if (ncols < 1024) {
        const sycl::range<3> block_dims(1, 1, WARP_SIZE);
        sycl_launch(stream, [&](sycl::handler & cgh) {
            sycl_parallel_for(cgh, sycl::nd_range<3>(global_dims * block_dims, block_dims),
                              [=](sycl::nd_item<3> item_ct1) [[sycl::reqd_sub_group_size(WARP_SIZE)]] {
                                  norm_f32(x, dst, ncols, stride_row, stride_channel, stride_sample, eps, item_ct1,
                                           nullptr, WARP_SIZE);
                              });
        });
    }
    else {
        const int work_group_size = ggml_sycl_info().max_work_group_sizes[device];
        assert(work_group_size % (WARP_SIZE * WARP_SIZE) == 0);
        const sycl::range<3> block_dims(1, 1, work_group_size);
        /*
        DPCT1049:17: The work-group size passed to the SYCL kernel may exceed
        the limit. To get the device limit, query
        info::device::max_work_group_size. Adjust the work-group size if needed.
        */
        sycl_launch(stream, [&](sycl::handler & cgh) {
            sycl::local_accessor<sycl::float2, 1> s_sum_acc_ct1(
                            sycl::range<1>(work_group_size / WARP_SIZE), cgh);
            sycl_parallel_for(cgh, sycl::nd_range<3>(global_dims * block_dims, block_dims),
                              [=](sycl::nd_item<3> item_ct1) [[sycl::reqd_sub_group_size(WARP_SIZE)]] {
                                  norm_f32(x, dst, ncols, stride_row, stride_channel, stride_sample, eps, item_ct1,
                                           get_pointer(s_sum_acc_ct1), work_group_size);
                              });
        });
    }
}

static void group_norm_f32_sycl(const float* x, float* dst,
    const int num_groups, const float eps, const int group_size,
    const int ne_elements, queue_ptr stream, int device) {
    if (group_size < 1024) {
        const sycl::range<3> block_dims(1, 1, WARP_SIZE);
        sycl_launch(stream, [&](sycl::handler & cgh) {
            const float eps_ct4 = eps;
            sycl_parallel_for(cgh, sycl::nd_range<3>(sycl::range<3>(1, 1, num_groups) * block_dims, block_dims),
                              [=](sycl::nd_item<3> item_ct1) [[sycl::reqd_sub_group_size(WARP_SIZE)]] {
                                  group_norm_f32(x, dst, group_size, ne_elements, eps_ct4, item_ct1, nullptr,
                                                 WARP_SIZE);
                              });
        });
    }
    else {
        const int work_group_size = ggml_sycl_info().max_work_group_sizes[device];
        assert(work_group_size % (WARP_SIZE * WARP_SIZE) == 0);
        const sycl::range<3> block_dims(1, 1, work_group_size);
        /*
        DPCT1049:18: The work-group size passed to the SYCL kernel may exceed
        the limit. To get the device limit, query
        info::device::max_work_group_size. Adjust the work-group size if needed.
        */

        sycl_launch(stream, [&](sycl::handler & cgh) {
            sycl::local_accessor<float, 1> s_sum_acc_ct1(sycl::range<1>(work_group_size / WARP_SIZE),
                cgh);

            const float eps_ct4 = eps;

            sycl_parallel_for(cgh, sycl::nd_range<3>(sycl::range<3>(1, 1, num_groups) * block_dims, block_dims),
                              [=](sycl::nd_item<3> item_ct1) [[sycl::reqd_sub_group_size(WARP_SIZE)]] {
                                  group_norm_f32(x, dst, group_size, ne_elements, eps_ct4, item_ct1,
                                                 get_pointer(s_sum_acc_ct1), work_group_size);
                              });
        });
    }
}

static void rms_norm_f32_sycl(const float* x, float* dst, const int ncols, const int nrows, const int nchannels, const int nsamples,
        const int64_t stride_row, const int64_t stride_channel, const int64_t stride_sample, const float eps, queue_ptr stream, int device) {
    GGML_ASSERT(ncols % WARP_SIZE == 0);
    // printf("%s ncols=%d, nrows=%d, WARP_SIZE=%d\n", __func__, ncols, nrows, WARP_SIZE);

    const sycl::range<3> global_dims(nsamples, nchannels, nrows);
    if (ncols < 1024) {
        const sycl::range<3> block_dims(1, 1, WARP_SIZE);
        sycl_launch(stream, [&](sycl::handler & cgh) {
            sycl_parallel_for(cgh, sycl::nd_range<3>(global_dims * block_dims, block_dims),
                              [=](sycl::nd_item<3> item_ct1) [[sycl::reqd_sub_group_size(WARP_SIZE)]] {
                                  rms_norm_f32(x, dst, ncols, stride_row, stride_channel, stride_sample, eps, item_ct1,
                                               nullptr, WARP_SIZE);
                              });
        });
    }
    else {
        const int work_group_size = ggml_sycl_info().max_work_group_sizes[device];
        assert(work_group_size % (WARP_SIZE * WARP_SIZE) == 0);
        const sycl::range<3> block_dims(1, 1, work_group_size);
        /*
        DPCT1049:19: The work-group size passed to the SYCL kernel may exceed
        the limit. To get the device limit, query
        info::device::max_work_group_size. Adjust the work-group size if needed.
        */
        sycl_launch(stream, [&](sycl::handler & cgh) {
            sycl::local_accessor<float, 1> s_sum_acc_ct1(sycl::range<1>(work_group_size / WARP_SIZE),
                cgh);
            sycl_parallel_for(cgh, sycl::nd_range<3>(global_dims * block_dims, block_dims),
                              [=](sycl::nd_item<3> item_ct1) [[sycl::reqd_sub_group_size(WARP_SIZE)]] {
                                  rms_norm_f32(x, dst, ncols, stride_row, stride_channel, stride_sample, eps, item_ct1,
                                               get_pointer(s_sum_acc_ct1), work_group_size);
                              });
        });
    }
}

static void l2_norm_f32_sycl(const float* x, float* dst, const int ncols,
    const int nrows, const float eps,
    queue_ptr stream, int device) {
    GGML_ASSERT(ncols % WARP_SIZE == 0);
    // printf("%s ncols=%d, nrows=%d, WARP_SIZE=%d\n", __func__, ncols, nrows, WARP_SIZE);
    if (ncols < 1024) {
        const sycl::range<3> block_dims(1, 1, WARP_SIZE);
        sycl_launch(stream, [&](sycl::handler & cgh) {
            sycl_parallel_for(cgh, sycl::nd_range<3>(sycl::range<3>(1, 1, nrows) * block_dims, block_dims),
                              [=](sycl::nd_item<3> item_ct1) [[sycl::reqd_sub_group_size(WARP_SIZE)]] {
                                  l2_norm_f32(x, dst, ncols, eps, item_ct1, nullptr, WARP_SIZE);
                              });
        });
    }
    else {
        const int work_group_size = ggml_sycl_info().max_work_group_sizes[device];
        assert(work_group_size % (WARP_SIZE * WARP_SIZE) == 0);
        const sycl::range<3> block_dims(1, 1, work_group_size);
        /*
        DPCT1049:19: The work-group size passed to the SYCL kernel may exceed
        the limit. To get the device limit, query
        info::device::max_work_group_size. Adjust the work-group size if needed.
        */
        sycl_launch(stream, [&](sycl::handler & cgh) {
            sycl::local_accessor<float, 1> s_sum_acc_ct1(sycl::range<1>(work_group_size / WARP_SIZE),
                cgh);
            sycl_parallel_for(cgh, sycl::nd_range<3>(sycl::range<3>(1, 1, nrows) * block_dims, block_dims),
                              [=](sycl::nd_item<3> item_ct1) [[sycl::reqd_sub_group_size(WARP_SIZE)]] {
                                  l2_norm_f32(x, dst, ncols, eps, item_ct1, get_pointer(s_sum_acc_ct1),
                                              work_group_size);
                              });
        });
    }
}

void ggml_sycl_op_norm(ggml_backend_sycl_context& ctx, ggml_tensor* dst) {
    const ggml_tensor * src0 = dst->src[0];

    GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
    GGML_ASSERT(dst->type == GGML_TYPE_F32);

    GGML_TENSOR_UNARY_OP_LOCALS
    dpct::queue_ptr main_stream = ctx.stream();
    SYCL_CHECK(ggml_sycl_set_device(ctx.device));
    const float * src0_dd = static_cast<const float *>(dst->src[0]->data);
    float *       dst_dd  = static_cast<float *>(dst->data);

    float eps;
    memcpy(&eps, dst->op_params, sizeof(float));
    GGML_ASSERT(eps >= 0.0f);
    const size_t ts0 = ggml_type_size(src0->type);
    GGML_ASSERT(nb00 == ts0);
    const int64_t s01 = nb01 / ts0;
    const int64_t s02 = nb02 / ts0;
    const int64_t s03 = nb03 / ts0;

    norm_f32_sycl(src0_dd, dst_dd, ne00, ne01, ne02, ne03, s01, s02, s03, eps, main_stream, ctx.device);
}

void ggml_sycl_op_group_norm(ggml_backend_sycl_context& ctx, ggml_tensor* dst) {

    GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
    GGML_ASSERT(dst->type == GGML_TYPE_F32);

    int num_groups = dst->op_params[0];
    dpct::queue_ptr main_stream = ctx.stream();
    SYCL_CHECK(ggml_sycl_set_device(ctx.device));

    const float * src0_dd = static_cast<const float *>(dst->src[0]->data);
    float *       dst_dd  = static_cast<float *>(dst->data);

    float eps;
    memcpy(&eps, dst->op_params + 1, sizeof(float));

    int group_size = dst->src[0]->ne[0] * dst->src[0]->ne[1] * ((dst->src[0]->ne[2] + num_groups - 1) / num_groups);
    group_norm_f32_sycl(src0_dd, dst_dd, num_groups, eps, group_size, dst->src[0]->ne[0] * dst->src[0]->ne[1] * dst->src[0]->ne[2], main_stream, ctx.device);
}

void ggml_sycl_op_rms_norm(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {

    const ggml_tensor * src0 = dst->src[0];
    GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
    GGML_ASSERT(dst->type == GGML_TYPE_F32);

    dpct::queue_ptr main_stream = ctx.stream();
    SYCL_CHECK(ggml_sycl_set_device(ctx.device));

    const float * src0_dd = static_cast<const float *>(dst->src[0]->data);
    float *       dst_dd  = static_cast<float *>(dst->data);

    float eps;
    memcpy(&eps, dst->op_params, sizeof(float));

    GGML_TENSOR_UNARY_OP_LOCALS
    const size_t ts0 = ggml_type_size(src0->type);
    GGML_ASSERT(nb00 == ts0);
    const int64_t s01 = nb01 / ts0;
    const int64_t s02 = nb02 / ts0;
    const int64_t s03 = nb03 / ts0;
    rms_norm_f32_sycl(src0_dd, dst_dd, ne00, ne01, ne02, ne03, s01, s02, s03, eps, main_stream, ctx.device);
}

void ggml_sycl_op_l2_norm(ggml_backend_sycl_context& ctx, ggml_tensor* dst) {

    GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
    GGML_ASSERT(dst->type == GGML_TYPE_F32);

    dpct::queue_ptr main_stream = ctx.stream();
    SYCL_CHECK(ggml_sycl_set_device(ctx.device));

    const int64_t ne00 = dst->src[0]->ne[0];
    const int64_t nrows = ggml_nrows(dst->src[0]);
    const float * src0_dd = static_cast<const float *>(dst->src[0]->data);
    float * dst_dd = static_cast<float *>(dst->data);

    float eps;
    memcpy(&eps, dst->op_params, sizeof(float));

    l2_norm_f32_sycl(src0_dd, dst_dd, ne00, nrows, eps, main_stream, ctx.device);

}