File size: 8,928 Bytes
5d12635 25c3a8b 4d87419 25c3a8b 7fab6d4 1922dbd 4e2ccbf 2f8ae1f 25c3a8b f5747b1 da82e7e 25c3a8b 4d87419 7fab6d4 25c3a8b b2929fc 6ea5a8b 25c3a8b 7fab6d4 25c3a8b 36983ae 72b2667 36983ae 25c3a8b 2f8ae1f 36983ae 25c3a8b 7fab6d4 25c3a8b 7fab6d4 6ea5a8b 7fab6d4 da82e7e 6ea5a8b 4d87419 25c3a8b 6ea5a8b 7fab6d4 25c3a8b 1922dbd d1f91a4 25c3a8b 7fab6d4 25c3a8b 1922dbd 4d87419 25c3a8b b2929fc 6ea5a8b 25c3a8b 4d87419 7fab6d4 506a9c0 6ea5a8b 1922dbd b2929fc 6ea5a8b 1922dbd b2929fc 6ea5a8b 1922dbd 6ea5a8b 7fab6d4 4d87419 7fab6d4 4d87419 25c3a8b 506a9c0 25c3a8b 7fab6d4 4d87419 7fab6d4 25c3a8b b16e7a5 25c3a8b 10e234c 25c3a8b 10e234c 25c3a8b b16e7a5 fcc601a 5d12635 fcc601a 5d12635 fcc601a 5d12635 fcc601a b16e7a5 fcc601a b16e7a5 fcc601a b2929fc fcc601a 87feaa7 fcc601a 6ea5a8b fcc601a 6ea5a8b fcc601a 25c3a8b b16e7a5 25c3a8b 10e234c b16e7a5 25c3a8b da82e7e 25c3a8b 1812a2a 420d8ba 25c3a8b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 |
"""Gradio UI for DeepBoner agent with MCP server support."""
import os
from collections.abc import AsyncGenerator
from typing import Any
import gradio as gr
from pydantic_ai.models.anthropic import AnthropicModel
from pydantic_ai.models.openai import OpenAIModel
from pydantic_ai.providers.anthropic import AnthropicProvider
from pydantic_ai.providers.openai import OpenAIProvider
from src.agent_factory.judges import HFInferenceJudgeHandler, JudgeHandler, MockJudgeHandler
from src.orchestrator_factory import create_orchestrator
from src.tools.clinicaltrials import ClinicalTrialsTool
from src.tools.europepmc import EuropePMCTool
from src.tools.pubmed import PubMedTool
from src.tools.search_handler import SearchHandler
from src.utils.config import settings
from src.utils.exceptions import ConfigurationError
from src.utils.models import OrchestratorConfig
def configure_orchestrator(
use_mock: bool = False,
mode: str = "simple",
user_api_key: str | None = None,
) -> tuple[Any, str]:
"""
Create an orchestrator instance.
Args:
use_mock: If True, use MockJudgeHandler (no API key needed)
mode: Orchestrator mode ("simple" or "advanced")
user_api_key: Optional user-provided API key (BYOK) - auto-detects provider
Returns:
Tuple of (Orchestrator instance, backend_name)
"""
# Create orchestrator config
config = OrchestratorConfig(
max_iterations=10,
max_results_per_tool=10,
)
# Create search tools
search_handler = SearchHandler(
tools=[PubMedTool(), ClinicalTrialsTool(), EuropePMCTool()],
timeout=config.search_timeout,
)
# Create judge (mock, real, or free tier)
judge_handler: JudgeHandler | MockJudgeHandler | HFInferenceJudgeHandler
backend_info = "Unknown"
# 1. Forced Mock (Unit Testing)
if use_mock:
judge_handler = MockJudgeHandler()
backend_info = "Mock (Testing)"
# 2. Paid API Key (User provided or Env)
elif user_api_key and user_api_key.strip():
# Auto-detect provider from key prefix
model: AnthropicModel | OpenAIModel
if user_api_key.startswith("sk-ant-"):
# Anthropic key
anthropic_provider = AnthropicProvider(api_key=user_api_key)
model = AnthropicModel(settings.anthropic_model, provider=anthropic_provider)
backend_info = "Paid API (Anthropic)"
elif user_api_key.startswith("sk-"):
# OpenAI key
openai_provider = OpenAIProvider(api_key=user_api_key)
model = OpenAIModel(settings.openai_model, provider=openai_provider)
backend_info = "Paid API (OpenAI)"
else:
raise ConfigurationError(
"Invalid API key format. Expected sk-... (OpenAI) or sk-ant-... (Anthropic)"
)
judge_handler = JudgeHandler(model=model)
# 3. Environment API Keys (fallback)
elif os.getenv("OPENAI_API_KEY"):
judge_handler = JudgeHandler(model=None) # Uses env key
backend_info = "Paid API (OpenAI from env)"
elif os.getenv("ANTHROPIC_API_KEY"):
judge_handler = JudgeHandler(model=None) # Uses env key
backend_info = "Paid API (Anthropic from env)"
# 4. Free Tier (HuggingFace Inference)
else:
judge_handler = HFInferenceJudgeHandler()
backend_info = "Free Tier (Llama 3.1 / Mistral)"
orchestrator = create_orchestrator(
search_handler=search_handler,
judge_handler=judge_handler,
config=config,
mode=mode, # type: ignore
api_key=user_api_key,
)
return orchestrator, backend_info
async def research_agent(
message: str,
history: list[dict[str, Any]],
mode: str = "simple",
api_key: str = "",
) -> AsyncGenerator[str, None]:
"""
Gradio chat function that runs the research agent.
Args:
message: User's research question
history: Chat history (Gradio format)
mode: Orchestrator mode ("simple" or "advanced")
api_key: Optional user-provided API key (BYOK - auto-detects provider)
Yields:
Markdown-formatted responses for streaming
"""
if not message.strip():
yield "Please enter a research question."
return
# Clean user-provided API key
user_api_key = api_key.strip() if api_key else None
# Check available keys
has_openai = bool(os.getenv("OPENAI_API_KEY"))
has_anthropic = bool(os.getenv("ANTHROPIC_API_KEY"))
# Check for OpenAI user key
is_openai_user_key = (
user_api_key and user_api_key.startswith("sk-") and not user_api_key.startswith("sk-ant-")
)
has_paid_key = has_openai or has_anthropic or bool(user_api_key)
# Advanced mode requires OpenAI specifically (due to agent-framework binding)
if mode == "advanced" and not (has_openai or is_openai_user_key):
yield (
"β οΈ **Warning**: Advanced mode currently requires OpenAI API key. "
"Anthropic keys only work in Simple mode. Falling back to Simple.\n\n"
)
mode = "simple"
# Inform user about fallback if no keys
if not has_paid_key:
# No paid keys - will use FREE HuggingFace Inference
yield (
"π€ **Free Tier**: Using HuggingFace Inference (Llama 3.1 / Mistral) for AI analysis.\n"
"For premium models, enter an OpenAI or Anthropic API key below.\n\n"
)
# Run the agent and stream events
response_parts: list[str] = []
try:
# use_mock=False - let configure_orchestrator decide based on available keys
# It will use: Paid API > HF Inference (free tier)
orchestrator, backend_name = configure_orchestrator(
use_mock=False, # Never use mock in production - HF Inference is the free fallback
mode=mode,
user_api_key=user_api_key,
)
yield f"π§ **Backend**: {backend_name}\n\n"
async for event in orchestrator.run(message):
# Format event as markdown
event_md = event.to_markdown()
response_parts.append(event_md)
# If complete, show full response
if event.type == "complete":
yield event.message
else:
# Show progress
yield "\n\n".join(response_parts)
except Exception as e:
yield f"β **Error**: {e!s}"
def create_demo() -> tuple[gr.ChatInterface, gr.Accordion]:
"""
Create the Gradio demo interface with MCP support.
Returns:
Configured Gradio Blocks interface with MCP server enabled
"""
additional_inputs_accordion = gr.Accordion(
label="βοΈ Mode & API Key (Free tier works!)", open=False
)
# 1. Unwrapped ChatInterface (Fixes Accordion Bug)
demo = gr.ChatInterface(
fn=research_agent,
title="π DeepBoner",
description=(
"*AI-Powered Sexual Health Research Agent β searches PubMed, "
"ClinicalTrials.gov & Europe PMC*\n\n"
"Deep research for sexual wellness, ED treatments, hormone therapy, "
"libido, and reproductive health - for all genders.\n\n"
"---\n"
"*Research tool only β not for medical advice.* \n"
"**MCP Server Active**: Connect Claude Desktop to `/gradio_api/mcp/`"
),
examples=[
[
"What drugs improve female libido post-menopause?",
"simple",
],
[
"Clinical trials for erectile dysfunction alternatives to PDE5 inhibitors?",
"advanced",
],
[
"Evidence for testosterone therapy in women with HSDD?",
"simple",
],
],
additional_inputs_accordion=additional_inputs_accordion,
additional_inputs=[
gr.Radio(
choices=["simple", "advanced"],
value="simple",
label="Orchestrator Mode",
info="β‘ Simple: Free/OpenAI/Anthropic | π¬ Advanced: OpenAI only",
),
gr.Textbox(
label="π API Key (Optional)",
placeholder="sk-... (OpenAI) or sk-ant-... (Anthropic)",
type="password",
info="Leave empty for free tier. Auto-detects provider from key prefix.",
),
],
)
return demo, additional_inputs_accordion
def main() -> None:
"""Run the Gradio app with MCP server enabled."""
demo, _ = create_demo()
demo.launch(
server_name=os.getenv("GRADIO_SERVER_NAME", "0.0.0.0"), # nosec B104
server_port=7860,
share=False,
mcp_server=True,
ssr_mode=False, # Fix for intermittent loading/hydration issues in HF Spaces
)
if __name__ == "__main__":
main()
|