Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,9 +1,4 @@
|
|
| 1 |
import os
|
| 2 |
-
os.environ["HF_HOME"] = "/tmp/.cache"
|
| 3 |
-
os.environ["HF_DATASETS_CACHE"] = "/tmp/.cache"
|
| 4 |
-
os.environ["SENTENCE_TRANSFORMERS_HOME"] = "/tmp/.cache"
|
| 5 |
-
os.makedirs("/tmp/.cache", exist_ok=True)
|
| 6 |
-
|
| 7 |
import json
|
| 8 |
from sentence_transformers import SentenceTransformer
|
| 9 |
from sklearn.metrics.pairwise import cosine_similarity
|
|
@@ -12,14 +7,22 @@ from huggingface_hub import upload_file, hf_hub_download, InferenceClient
|
|
| 12 |
from flask import Flask, request, jsonify
|
| 13 |
import time
|
| 14 |
|
| 15 |
-
embedding_model = SentenceTransformer('paraphrase-mpnet-base-v2')
|
| 16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
token = os.getenv("HF_TOKEN") or os.getenv("NEW_PUP_AI_Project")
|
| 18 |
inference_client = InferenceClient(
|
| 19 |
model="mistralai/Mixtral-8x7B-Instruct-v0.1",
|
| 20 |
token=token
|
| 21 |
)
|
| 22 |
|
|
|
|
| 23 |
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
|
| 24 |
DATASET_PATH = os.path.join(BASE_DIR, "dataset.json")
|
| 25 |
with open(DATASET_PATH, "r") as f:
|
|
@@ -29,14 +32,17 @@ questions = [item["question"] for item in dataset]
|
|
| 29 |
answers = [item["answer"] for item in dataset]
|
| 30 |
question_embeddings = embedding_model.encode(questions, convert_to_tensor=True)
|
| 31 |
|
| 32 |
-
|
| 33 |
feedback_data = []
|
| 34 |
feedback_questions = []
|
| 35 |
feedback_embeddings = None
|
| 36 |
-
dev_mode = {"enabled": False}
|
| 37 |
-
|
| 38 |
feedback_path = "/tmp/outputs/feedback.json"
|
| 39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
|
| 41 |
try:
|
| 42 |
hf_token = os.getenv("NEW_PUP_AI_Project")
|
|
@@ -60,28 +66,28 @@ except Exception as e:
|
|
| 60 |
feedback_data = []
|
| 61 |
|
| 62 |
|
| 63 |
-
def
|
|
|
|
| 64 |
hf_token = os.getenv("NEW_PUP_AI_Project")
|
| 65 |
if not hf_token:
|
| 66 |
raise ValueError("Hugging Face token not found in environment variables!")
|
| 67 |
|
| 68 |
try:
|
| 69 |
upload_file(
|
| 70 |
-
path_or_fileobj=
|
| 71 |
-
path_in_repo=
|
| 72 |
repo_id="oceddyyy/University_Inquiries_Feedback",
|
| 73 |
repo_type="dataset",
|
| 74 |
token=hf_token
|
| 75 |
)
|
| 76 |
-
print("
|
| 77 |
except Exception as e:
|
| 78 |
-
print(f"Error uploading
|
| 79 |
|
| 80 |
|
| 81 |
def chatbot_response(query, dev_mode_flag):
|
| 82 |
query_embedding = embedding_model.encode([query], convert_to_tensor=True)
|
| 83 |
|
| 84 |
-
# Feedback check
|
| 85 |
if feedback_embeddings is not None:
|
| 86 |
feedback_scores = cosine_similarity(query_embedding.cpu().numpy(), feedback_embeddings.cpu().numpy())[0]
|
| 87 |
best_idx = int(np.argmax(feedback_scores))
|
|
@@ -97,7 +103,6 @@ def chatbot_response(query, dev_mode_flag):
|
|
| 97 |
if best_score >= dynamic_threshold:
|
| 98 |
return matched_feedback["response"], "Feedback", 0.0
|
| 99 |
|
| 100 |
-
# Handbook retrieval
|
| 101 |
similarity_scores = cosine_similarity(query_embedding.cpu().numpy(), question_embeddings.cpu().numpy())[0]
|
| 102 |
top_k = 3
|
| 103 |
top_k_indices = np.argsort(similarity_scores)[-top_k:][::-1]
|
|
@@ -113,6 +118,7 @@ def chatbot_response(query, dev_mode_flag):
|
|
| 113 |
context = ""
|
| 114 |
for i, item in enumerate(top_k_items):
|
| 115 |
context += f"Relevant info #{i+1} (score: {top_k_scores[i]:.2f}):\n\"{item.get('answer', '')}\"\n\n"
|
|
|
|
| 116 |
prompt = (
|
| 117 |
f"You are an expert university assistant. "
|
| 118 |
f"A student asked: \"{query}\"\n"
|
|
@@ -133,14 +139,13 @@ def chatbot_response(query, dev_mode_flag):
|
|
| 133 |
llm_response = inference_client.chat_completion(
|
| 134 |
messages=conversation,
|
| 135 |
model="mistralai/Mixtral-8x7B-Instruct-v0.1",
|
| 136 |
-
max_tokens=200,
|
| 137 |
temperature=0.7
|
| 138 |
)
|
| 139 |
if isinstance(llm_response, dict) and "choices" in llm_response:
|
| 140 |
response = llm_response["choices"][0]["message"]["content"]
|
| 141 |
elif hasattr(llm_response, "generated_text"):
|
| 142 |
response = llm_response.generated_text
|
| 143 |
-
|
| 144 |
else:
|
| 145 |
llm_response = inference_client.text_generation(
|
| 146 |
prompt,
|
|
@@ -175,7 +180,8 @@ def chatbot_response(query, dev_mode_flag):
|
|
| 175 |
return response.strip(), matched_source, 0.0
|
| 176 |
|
| 177 |
|
| 178 |
-
def record_feedback(feedback, query, response):
|
|
|
|
| 179 |
global feedback_embeddings, feedback_questions
|
| 180 |
matched = False
|
| 181 |
new_embedding = embedding_model.encode([query], convert_to_tensor=True)
|
|
@@ -191,8 +197,8 @@ def record_feedback(feedback, query, response):
|
|
| 191 |
|
| 192 |
if not matched:
|
| 193 |
entry = {
|
| 194 |
-
"question": query,
|
| 195 |
-
"response": response,
|
| 196 |
"feedback": feedback,
|
| 197 |
"upvotes": 1 if feedback == "positive" else 0,
|
| 198 |
"downvotes": 1 if feedback == "negative" else 0
|
|
@@ -206,9 +212,30 @@ def record_feedback(feedback, query, response):
|
|
| 206 |
if feedback_questions:
|
| 207 |
feedback_embeddings = embedding_model.encode(feedback_questions, convert_to_tensor=True)
|
| 208 |
|
| 209 |
-
|
| 210 |
|
| 211 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 212 |
app = Flask(__name__)
|
| 213 |
|
| 214 |
@app.route("/api/chat", methods=["POST"])
|
|
@@ -220,21 +247,19 @@ def chat():
|
|
| 220 |
response, source, elapsed = chatbot_response(query, dev)
|
| 221 |
return jsonify({"response": response, "source": source, "response_time": elapsed})
|
| 222 |
|
| 223 |
-
|
| 224 |
@app.route("/api/feedback", methods=["POST"])
|
| 225 |
def feedback():
|
| 226 |
data = request.json
|
| 227 |
query = data.get("query", "")
|
| 228 |
response = data.get("response", "")
|
| 229 |
feedback_type = data.get("feedback", "")
|
| 230 |
-
|
|
|
|
| 231 |
return jsonify({"status": "success"})
|
| 232 |
|
| 233 |
-
|
| 234 |
@app.route("/", methods=["GET"])
|
| 235 |
def index():
|
| 236 |
-
return "University Inquiries AI Chatbot API. Use POST /chat or /feedback.", 200
|
| 237 |
-
|
| 238 |
|
| 239 |
if __name__ == "__main__":
|
| 240 |
-
app.run(host="0.0.0.0", port=7861)
|
|
|
|
| 1 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
import json
|
| 3 |
from sentence_transformers import SentenceTransformer
|
| 4 |
from sklearn.metrics.pairwise import cosine_similarity
|
|
|
|
| 7 |
from flask import Flask, request, jsonify
|
| 8 |
import time
|
| 9 |
|
|
|
|
| 10 |
|
| 11 |
+
os.environ["HF_HOME"] = "/tmp/.cache"
|
| 12 |
+
os.environ["HF_DATASETS_CACHE"] = "/tmp/.cache"
|
| 13 |
+
os.environ["SENTENCE_TRANSFORMERS_HOME"] = "/tmp/.cache"
|
| 14 |
+
os.makedirs("/tmp/.cache", exist_ok=True)
|
| 15 |
+
os.makedirs("/tmp/outputs", exist_ok=True)
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
embedding_model = SentenceTransformer('paraphrase-mpnet-base-v2')
|
| 19 |
token = os.getenv("HF_TOKEN") or os.getenv("NEW_PUP_AI_Project")
|
| 20 |
inference_client = InferenceClient(
|
| 21 |
model="mistralai/Mixtral-8x7B-Instruct-v0.1",
|
| 22 |
token=token
|
| 23 |
)
|
| 24 |
|
| 25 |
+
|
| 26 |
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
|
| 27 |
DATASET_PATH = os.path.join(BASE_DIR, "dataset.json")
|
| 28 |
with open(DATASET_PATH, "r") as f:
|
|
|
|
| 32 |
answers = [item["answer"] for item in dataset]
|
| 33 |
question_embeddings = embedding_model.encode(questions, convert_to_tensor=True)
|
| 34 |
|
| 35 |
+
|
| 36 |
feedback_data = []
|
| 37 |
feedback_questions = []
|
| 38 |
feedback_embeddings = None
|
| 39 |
+
dev_mode = {"enabled": False}
|
|
|
|
| 40 |
feedback_path = "/tmp/outputs/feedback.json"
|
| 41 |
+
COMMENTS_PATH = "/tmp/outputs/Comments.json"
|
| 42 |
+
|
| 43 |
+
if not os.path.exists(COMMENTS_PATH):
|
| 44 |
+
with open(COMMENTS_PATH, "w") as f:
|
| 45 |
+
json.dump([], f, indent=4)
|
| 46 |
|
| 47 |
try:
|
| 48 |
hf_token = os.getenv("NEW_PUP_AI_Project")
|
|
|
|
| 66 |
feedback_data = []
|
| 67 |
|
| 68 |
|
| 69 |
+
def upload_file_to_hf(local_path, remote_filename):
|
| 70 |
+
"""Helper to upload any file to Hugging Face dataset repo."""
|
| 71 |
hf_token = os.getenv("NEW_PUP_AI_Project")
|
| 72 |
if not hf_token:
|
| 73 |
raise ValueError("Hugging Face token not found in environment variables!")
|
| 74 |
|
| 75 |
try:
|
| 76 |
upload_file(
|
| 77 |
+
path_or_fileobj=local_path,
|
| 78 |
+
path_in_repo=remote_filename,
|
| 79 |
repo_id="oceddyyy/University_Inquiries_Feedback",
|
| 80 |
repo_type="dataset",
|
| 81 |
token=hf_token
|
| 82 |
)
|
| 83 |
+
print(f"{remote_filename} uploaded to Hugging Face successfully.")
|
| 84 |
except Exception as e:
|
| 85 |
+
print(f"Error uploading {remote_filename} to HF: {e}")
|
| 86 |
|
| 87 |
|
| 88 |
def chatbot_response(query, dev_mode_flag):
|
| 89 |
query_embedding = embedding_model.encode([query], convert_to_tensor=True)
|
| 90 |
|
|
|
|
| 91 |
if feedback_embeddings is not None:
|
| 92 |
feedback_scores = cosine_similarity(query_embedding.cpu().numpy(), feedback_embeddings.cpu().numpy())[0]
|
| 93 |
best_idx = int(np.argmax(feedback_scores))
|
|
|
|
| 103 |
if best_score >= dynamic_threshold:
|
| 104 |
return matched_feedback["response"], "Feedback", 0.0
|
| 105 |
|
|
|
|
| 106 |
similarity_scores = cosine_similarity(query_embedding.cpu().numpy(), question_embeddings.cpu().numpy())[0]
|
| 107 |
top_k = 3
|
| 108 |
top_k_indices = np.argsort(similarity_scores)[-top_k:][::-1]
|
|
|
|
| 118 |
context = ""
|
| 119 |
for i, item in enumerate(top_k_items):
|
| 120 |
context += f"Relevant info #{i+1} (score: {top_k_scores[i]:.2f}):\n\"{item.get('answer', '')}\"\n\n"
|
| 121 |
+
|
| 122 |
prompt = (
|
| 123 |
f"You are an expert university assistant. "
|
| 124 |
f"A student asked: \"{query}\"\n"
|
|
|
|
| 139 |
llm_response = inference_client.chat_completion(
|
| 140 |
messages=conversation,
|
| 141 |
model="mistralai/Mixtral-8x7B-Instruct-v0.1",
|
| 142 |
+
max_tokens=200,
|
| 143 |
temperature=0.7
|
| 144 |
)
|
| 145 |
if isinstance(llm_response, dict) and "choices" in llm_response:
|
| 146 |
response = llm_response["choices"][0]["message"]["content"]
|
| 147 |
elif hasattr(llm_response, "generated_text"):
|
| 148 |
response = llm_response.generated_text
|
|
|
|
| 149 |
else:
|
| 150 |
llm_response = inference_client.text_generation(
|
| 151 |
prompt,
|
|
|
|
| 180 |
return response.strip(), matched_source, 0.0
|
| 181 |
|
| 182 |
|
| 183 |
+
def record_feedback(feedback, query, response, comment=None):
|
| 184 |
+
"""Records user feedback and optional comment."""
|
| 185 |
global feedback_embeddings, feedback_questions
|
| 186 |
matched = False
|
| 187 |
new_embedding = embedding_model.encode([query], convert_to_tensor=True)
|
|
|
|
| 197 |
|
| 198 |
if not matched:
|
| 199 |
entry = {
|
| 200 |
+
"question": query,
|
| 201 |
+
"response": response,
|
| 202 |
"feedback": feedback,
|
| 203 |
"upvotes": 1 if feedback == "positive" else 0,
|
| 204 |
"downvotes": 1 if feedback == "negative" else 0
|
|
|
|
| 212 |
if feedback_questions:
|
| 213 |
feedback_embeddings = embedding_model.encode(feedback_questions, convert_to_tensor=True)
|
| 214 |
|
| 215 |
+
upload_file_to_hf(feedback_path, "feedback.json")
|
| 216 |
|
| 217 |
|
| 218 |
+
if comment and comment.strip():
|
| 219 |
+
try:
|
| 220 |
+
with open(COMMENTS_PATH, "r") as f:
|
| 221 |
+
comments_list = json.load(f)
|
| 222 |
+
except json.JSONDecodeError:
|
| 223 |
+
comments_list = []
|
| 224 |
+
|
| 225 |
+
comment_entry = {
|
| 226 |
+
"timestamp": time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()),
|
| 227 |
+
"question": query,
|
| 228 |
+
"response": response,
|
| 229 |
+
"feedback": feedback,
|
| 230 |
+
"comment": comment.strip()
|
| 231 |
+
}
|
| 232 |
+
comments_list.append(comment_entry)
|
| 233 |
+
|
| 234 |
+
with open(COMMENTS_PATH, "w") as f:
|
| 235 |
+
json.dump(comments_list, f, indent=4)
|
| 236 |
+
|
| 237 |
+
upload_file_to_hf(COMMENTS_PATH, "Comments.json")
|
| 238 |
+
|
| 239 |
app = Flask(__name__)
|
| 240 |
|
| 241 |
@app.route("/api/chat", methods=["POST"])
|
|
|
|
| 247 |
response, source, elapsed = chatbot_response(query, dev)
|
| 248 |
return jsonify({"response": response, "source": source, "response_time": elapsed})
|
| 249 |
|
|
|
|
| 250 |
@app.route("/api/feedback", methods=["POST"])
|
| 251 |
def feedback():
|
| 252 |
data = request.json
|
| 253 |
query = data.get("query", "")
|
| 254 |
response = data.get("response", "")
|
| 255 |
feedback_type = data.get("feedback", "")
|
| 256 |
+
comment = data.get("comment", None)
|
| 257 |
+
record_feedback(feedback_type, query, response, comment)
|
| 258 |
return jsonify({"status": "success"})
|
| 259 |
|
|
|
|
| 260 |
@app.route("/", methods=["GET"])
|
| 261 |
def index():
|
| 262 |
+
return "University Inquiries AI Chatbot API. Use POST /api/chat or /api/feedback.", 200
|
|
|
|
| 263 |
|
| 264 |
if __name__ == "__main__":
|
| 265 |
+
app.run(host="0.0.0.0", port=7861)
|