Spaces:
Runtime error
Runtime error
Update
Browse files- app.py +13 -3
- app_inference.py +4 -2
- app_training.py +2 -7
- app_upload.py +2 -2
app.py
CHANGED
|
@@ -9,6 +9,7 @@ import gradio as gr
|
|
| 9 |
import torch
|
| 10 |
|
| 11 |
from app_inference import create_inference_demo
|
|
|
|
| 12 |
from app_training import create_training_demo
|
| 13 |
from app_upload import create_upload_demo
|
| 14 |
from inference import InferencePipeline
|
|
@@ -68,14 +69,23 @@ with gr.Blocks(css='style.css') as demo:
|
|
| 68 |
gr.Markdown(TITLE)
|
| 69 |
with gr.Tabs():
|
| 70 |
with gr.TabItem('Train'):
|
| 71 |
-
create_training_demo(trainer,
|
|
|
|
|
|
|
| 72 |
with gr.TabItem('Run'):
|
| 73 |
-
create_inference_demo(pipe,
|
|
|
|
|
|
|
| 74 |
with gr.TabItem('Upload'):
|
| 75 |
gr.Markdown('''
|
| 76 |
- You can use this tab to upload models later if you choose not to upload models in training time or if upload in training time failed.
|
| 77 |
''')
|
| 78 |
-
create_upload_demo()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 79 |
|
| 80 |
if not HF_TOKEN:
|
| 81 |
show_warning(HF_TOKEN_NOT_SPECIFIED_WARNING)
|
|
|
|
| 9 |
import torch
|
| 10 |
|
| 11 |
from app_inference import create_inference_demo
|
| 12 |
+
from app_system_monitor import create_monitor_demo
|
| 13 |
from app_training import create_training_demo
|
| 14 |
from app_upload import create_upload_demo
|
| 15 |
from inference import InferencePipeline
|
|
|
|
| 69 |
gr.Markdown(TITLE)
|
| 70 |
with gr.Tabs():
|
| 71 |
with gr.TabItem('Train'):
|
| 72 |
+
create_training_demo(trainer,
|
| 73 |
+
pipe,
|
| 74 |
+
disable_run_button=IS_SHARED_UI)
|
| 75 |
with gr.TabItem('Run'):
|
| 76 |
+
create_inference_demo(pipe,
|
| 77 |
+
HF_TOKEN,
|
| 78 |
+
disable_run_button=IS_SHARED_UI)
|
| 79 |
with gr.TabItem('Upload'):
|
| 80 |
gr.Markdown('''
|
| 81 |
- You can use this tab to upload models later if you choose not to upload models in training time or if upload in training time failed.
|
| 82 |
''')
|
| 83 |
+
create_upload_demo(disable_run_button=IS_SHARED_UI)
|
| 84 |
+
|
| 85 |
+
with gr.Row():
|
| 86 |
+
if not IS_SHARED_UI and not os.getenv('DISABLE_SYSTEM_MONITOR'):
|
| 87 |
+
with gr.Accordion(label='System info', open=False):
|
| 88 |
+
create_monitor_demo()
|
| 89 |
|
| 90 |
if not HF_TOKEN:
|
| 91 |
show_warning(HF_TOKEN_NOT_SPECIFIED_WARNING)
|
app_inference.py
CHANGED
|
@@ -62,7 +62,8 @@ class InferenceUtil:
|
|
| 62 |
|
| 63 |
|
| 64 |
def create_inference_demo(pipe: InferencePipeline,
|
| 65 |
-
hf_token: str | None = None
|
|
|
|
| 66 |
app = InferenceUtil(hf_token)
|
| 67 |
|
| 68 |
with gr.Blocks() as demo:
|
|
@@ -117,7 +118,8 @@ def create_inference_demo(pipe: InferencePipeline,
|
|
| 117 |
step=0.1,
|
| 118 |
value=7.5)
|
| 119 |
|
| 120 |
-
run_button = gr.Button('Generate'
|
|
|
|
| 121 |
|
| 122 |
gr.Markdown('''
|
| 123 |
- After training, you can press "Reload Model List" button to load your trained model names.
|
|
|
|
| 62 |
|
| 63 |
|
| 64 |
def create_inference_demo(pipe: InferencePipeline,
|
| 65 |
+
hf_token: str | None = None,
|
| 66 |
+
disable_run_button: bool = False) -> gr.Blocks:
|
| 67 |
app = InferenceUtil(hf_token)
|
| 68 |
|
| 69 |
with gr.Blocks() as demo:
|
|
|
|
| 118 |
step=0.1,
|
| 119 |
value=7.5)
|
| 120 |
|
| 121 |
+
run_button = gr.Button('Generate',
|
| 122 |
+
interactive=not disable_run_button)
|
| 123 |
|
| 124 |
gr.Markdown('''
|
| 125 |
- After training, you can press "Reload Model List" button to load your trained model names.
|
app_training.py
CHANGED
|
@@ -6,7 +6,6 @@ import os
|
|
| 6 |
|
| 7 |
import gradio as gr
|
| 8 |
|
| 9 |
-
from app_system_monitor import create_monitor_demo
|
| 10 |
from constants import UploadTarget
|
| 11 |
from inference import InferencePipeline
|
| 12 |
from trainer import Trainer
|
|
@@ -14,7 +13,7 @@ from trainer import Trainer
|
|
| 14 |
|
| 15 |
def create_training_demo(trainer: Trainer,
|
| 16 |
pipe: InferencePipeline | None = None,
|
| 17 |
-
|
| 18 |
def read_log() -> str:
|
| 19 |
with open(trainer.log_file) as f:
|
| 20 |
lines = f.readlines()
|
|
@@ -112,7 +111,7 @@ def create_training_demo(trainer: Trainer,
|
|
| 112 |
interactive=bool(os.getenv('SPACE_ID')),
|
| 113 |
visible=False)
|
| 114 |
run_button = gr.Button('Start Training',
|
| 115 |
-
interactive=not
|
| 116 |
|
| 117 |
with gr.Box():
|
| 118 |
gr.Text(label='Log',
|
|
@@ -120,10 +119,6 @@ def create_training_demo(trainer: Trainer,
|
|
| 120 |
lines=10,
|
| 121 |
max_lines=10,
|
| 122 |
every=1)
|
| 123 |
-
if not disable_training and not os.getenv(
|
| 124 |
-
'DISABLE_SYSTEM_MONITOR'):
|
| 125 |
-
with gr.Accordion(label='System info', open=False):
|
| 126 |
-
create_monitor_demo()
|
| 127 |
|
| 128 |
if pipe is not None:
|
| 129 |
run_button.click(fn=pipe.clear)
|
|
|
|
| 6 |
|
| 7 |
import gradio as gr
|
| 8 |
|
|
|
|
| 9 |
from constants import UploadTarget
|
| 10 |
from inference import InferencePipeline
|
| 11 |
from trainer import Trainer
|
|
|
|
| 13 |
|
| 14 |
def create_training_demo(trainer: Trainer,
|
| 15 |
pipe: InferencePipeline | None = None,
|
| 16 |
+
disable_run_button: bool = False) -> gr.Blocks:
|
| 17 |
def read_log() -> str:
|
| 18 |
with open(trainer.log_file) as f:
|
| 19 |
lines = f.readlines()
|
|
|
|
| 111 |
interactive=bool(os.getenv('SPACE_ID')),
|
| 112 |
visible=False)
|
| 113 |
run_button = gr.Button('Start Training',
|
| 114 |
+
interactive=not disable_run_button)
|
| 115 |
|
| 116 |
with gr.Box():
|
| 117 |
gr.Text(label='Log',
|
|
|
|
| 119 |
lines=10,
|
| 120 |
max_lines=10,
|
| 121 |
every=1)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 122 |
|
| 123 |
if pipe is not None:
|
| 124 |
run_button.click(fn=pipe.clear)
|
app_upload.py
CHANGED
|
@@ -16,7 +16,7 @@ def load_local_model_list() -> dict:
|
|
| 16 |
return gr.update(choices=choices, value=choices[0] if choices else None)
|
| 17 |
|
| 18 |
|
| 19 |
-
def create_upload_demo() -> gr.Blocks:
|
| 20 |
model_dirs = find_exp_dirs()
|
| 21 |
|
| 22 |
with gr.Blocks() as demo:
|
|
@@ -39,7 +39,7 @@ def create_upload_demo() -> gr.Blocks:
|
|
| 39 |
model_name = gr.Textbox(label='Model Name')
|
| 40 |
hf_token = gr.Text(label='Hugging Face Write Token',
|
| 41 |
visible=os.getenv('HF_TOKEN') is None)
|
| 42 |
-
upload_button = gr.Button('Upload')
|
| 43 |
gr.Markdown(f'''
|
| 44 |
- You can upload your trained model to your personal profile (i.e. https://huggingface.co/{{your_username}}/{{model_name}}) or to the public [Tune-A-Video Library](https://huggingface.co/{MODEL_LIBRARY_ORG_NAME}) (i.e. https://huggingface.co/{MODEL_LIBRARY_ORG_NAME}/{{model_name}}).
|
| 45 |
''')
|
|
|
|
| 16 |
return gr.update(choices=choices, value=choices[0] if choices else None)
|
| 17 |
|
| 18 |
|
| 19 |
+
def create_upload_demo(disable_run_button: bool = False) -> gr.Blocks:
|
| 20 |
model_dirs = find_exp_dirs()
|
| 21 |
|
| 22 |
with gr.Blocks() as demo:
|
|
|
|
| 39 |
model_name = gr.Textbox(label='Model Name')
|
| 40 |
hf_token = gr.Text(label='Hugging Face Write Token',
|
| 41 |
visible=os.getenv('HF_TOKEN') is None)
|
| 42 |
+
upload_button = gr.Button('Upload', interactive=not disable_run_button)
|
| 43 |
gr.Markdown(f'''
|
| 44 |
- You can upload your trained model to your personal profile (i.e. https://huggingface.co/{{your_username}}/{{model_name}}) or to the public [Tune-A-Video Library](https://huggingface.co/{MODEL_LIBRARY_ORG_NAME}) (i.e. https://huggingface.co/{MODEL_LIBRARY_ORG_NAME}/{{model_name}}).
|
| 45 |
''')
|