Spaces:
Sleeping
Sleeping
added indexing for 1-2 documents at a time from cranfield and a viewing feature
Browse files
app.py
CHANGED
|
@@ -5,6 +5,7 @@ import numpy as np
|
|
| 5 |
from tqdm.auto import tqdm
|
| 6 |
import os
|
| 7 |
import ir_datasets
|
|
|
|
| 8 |
|
| 9 |
# --- Model Loading (Keep as is) ---
|
| 10 |
tokenizer_splade = None
|
|
@@ -47,49 +48,77 @@ except Exception as e:
|
|
| 47 |
print(f"Please ensure '{splade_doc_model_name}' is accessible (check Hugging Face Hub for potential agreements).")
|
| 48 |
|
| 49 |
|
| 50 |
-
# --- Global Variables for Document Index ---
|
| 51 |
document_representations = {} # Stores {doc_id: sparse_vector}
|
| 52 |
document_texts = {} # Stores {doc_id: doc_text}
|
|
|
|
|
|
|
| 53 |
initial_doc_model_for_indexing = "SPLADE-cocondenser-distil" # Fixed for initial demo index
|
| 54 |
|
| 55 |
|
| 56 |
-
# --- Load Cranfield Corpus using ir_datasets ---
|
| 57 |
-
# Renamed function for clarity, but kept original name for call consistency
|
| 58 |
def load_cranfield_corpus_ir_datasets():
|
| 59 |
-
global document_texts
|
| 60 |
-
print("Loading Cranfield corpus using ir_datasets...")
|
| 61 |
try:
|
| 62 |
-
# --- IMPORTANT CHANGE: Loading 'cranfield' dataset ---
|
| 63 |
dataset = ir_datasets.load("cranfield")
|
|
|
|
|
|
|
| 64 |
for doc in tqdm(dataset.docs_iter(), desc="Loading Cranfield documents"):
|
| 65 |
document_texts[doc.doc_id] = doc.text.strip()
|
| 66 |
print(f"Loaded {len(document_texts)} documents from Cranfield corpus.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
except Exception as e:
|
| 68 |
print(f"Error loading Cranfield corpus with ir_datasets: {e}")
|
| 69 |
print("Please ensure 'ir_datasets' is installed and your internet connection is stable.")
|
| 70 |
|
| 71 |
|
| 72 |
-
# --- Helper function for lexical mask (
|
| 73 |
-
def create_lexical_bow_mask(
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 85 |
|
| 86 |
-
|
| 87 |
-
bow_mask[list(set(meaningful_token_ids))] = 1
|
| 88 |
-
|
| 89 |
-
return bow_mask.unsqueeze(0)
|
| 90 |
|
| 91 |
|
| 92 |
# --- Core Representation Functions (Return Formatted Strings - for Explorer Tab) ---
|
|
|
|
| 93 |
def get_splade_cocondenser_representation(text):
|
| 94 |
if tokenizer_splade is None or model_splade is None:
|
| 95 |
return "SPLADE-cocondenser-distil model is not loaded. Please check the console for loading errors."
|
|
@@ -104,7 +133,7 @@ def get_splade_cocondenser_representation(text):
|
|
| 104 |
splade_vector = torch.max(
|
| 105 |
torch.log(1 + torch.relu(output.logits)) * inputs['attention_mask'].unsqueeze(-1),
|
| 106 |
dim=1
|
| 107 |
-
)[0].squeeze()
|
| 108 |
else:
|
| 109 |
return "Model output structure not as expected for SPLADE-cocondenser-distil. 'logits' not found."
|
| 110 |
|
|
@@ -151,15 +180,16 @@ def get_splade_lexical_representation(text):
|
|
| 151 |
splade_vector = torch.max(
|
| 152 |
torch.log(1 + torch.relu(output.logits)) * inputs['attention_mask'].unsqueeze(-1),
|
| 153 |
dim=1
|
| 154 |
-
)[0].squeeze()
|
| 155 |
else:
|
| 156 |
return "Model output structure not as expected for SPLADE-v3-Lexical. 'logits' not found."
|
| 157 |
|
| 158 |
# Always apply lexical mask for this model's specific behavior
|
| 159 |
vocab_size = tokenizer_splade_lexical.vocab_size
|
|
|
|
| 160 |
bow_mask = create_lexical_bow_mask(
|
| 161 |
inputs['input_ids'], vocab_size, tokenizer_splade_lexical
|
| 162 |
-
).squeeze()
|
| 163 |
splade_vector = splade_vector * bow_mask
|
| 164 |
|
| 165 |
indices = torch.nonzero(splade_vector).squeeze().cpu().tolist()
|
|
@@ -202,12 +232,13 @@ def get_splade_doc_representation(text):
|
|
| 202 |
output = model_splade_doc(**inputs)
|
| 203 |
|
| 204 |
if not hasattr(output, "logits"):
|
| 205 |
-
return "
|
| 206 |
|
| 207 |
vocab_size = tokenizer_splade_doc.vocab_size
|
|
|
|
| 208 |
binary_splade_vector = create_lexical_bow_mask(
|
| 209 |
inputs['input_ids'], vocab_size, tokenizer_splade_doc
|
| 210 |
-
).squeeze()
|
| 211 |
|
| 212 |
indices = torch.nonzero(binary_splade_vector).squeeze().cpu().tolist()
|
| 213 |
if not isinstance(indices, list):
|
|
@@ -253,44 +284,75 @@ def predict_representation_explorer(model_choice, text):
|
|
| 253 |
return "Please select a model."
|
| 254 |
|
| 255 |
|
| 256 |
-
# --- Internal Core Representation Functions (
|
| 257 |
-
def get_splade_cocondenser_representation_internal(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 258 |
if tokenizer is None or model is None: return None
|
| 259 |
-
inputs = tokenizer(
|
| 260 |
inputs = {k: v.to(model.device) for k, v in inputs.items()}
|
| 261 |
-
|
|
|
|
|
|
|
|
|
|
| 262 |
if hasattr(output, 'logits'):
|
| 263 |
-
|
| 264 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 265 |
else:
|
| 266 |
print("Model output structure not as expected for SPLADE-cocondenser-distil. 'logits' not found.")
|
| 267 |
return None
|
| 268 |
|
| 269 |
-
def get_splade_lexical_representation_internal(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 270 |
if tokenizer is None or model is None: return None
|
| 271 |
-
inputs = tokenizer(
|
| 272 |
inputs = {k: v.to(model.device) for k, v in inputs.items()}
|
| 273 |
with torch.no_grad(): output = model(**inputs)
|
| 274 |
if hasattr(output, 'logits'):
|
| 275 |
-
|
| 276 |
vocab_size = tokenizer.vocab_size
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
|
|
|
|
| 280 |
else:
|
| 281 |
print("Model output structure not as expected for SPLADE-v3-Lexical. 'logits' not found.")
|
| 282 |
return None
|
| 283 |
|
| 284 |
-
def get_splade_doc_representation_internal(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 285 |
if tokenizer is None or model is None: return None
|
| 286 |
-
inputs = tokenizer(
|
| 287 |
-
inputs = {k: v.to(model.device) for k, v in inputs.items()}
|
| 288 |
vocab_size = tokenizer.vocab_size
|
| 289 |
-
|
| 290 |
-
|
|
|
|
| 291 |
|
| 292 |
|
| 293 |
-
# --- Document Indexing Function (
|
| 294 |
def index_documents(doc_model_choice):
|
| 295 |
global document_representations
|
| 296 |
if document_representations:
|
|
@@ -328,14 +390,28 @@ def index_documents(doc_model_choice):
|
|
| 328 |
|
| 329 |
print(f"Indexing documents using {doc_model_choice}...")
|
| 330 |
|
| 331 |
-
|
|
|
|
| 332 |
|
| 333 |
-
|
| 334 |
-
|
| 335 |
-
|
| 336 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 337 |
else:
|
| 338 |
-
print(f"Warning: Failed to get representation for doc_id {
|
| 339 |
|
| 340 |
print(f"Finished indexing {len(document_representations)} documents.")
|
| 341 |
return True
|
|
@@ -349,25 +425,27 @@ def retrieve_documents(query_text, query_model_choice, indexed_doc_model_name, t
|
|
| 349 |
query_tokenizer = None
|
| 350 |
query_model = None
|
| 351 |
|
|
|
|
| 352 |
if query_model_choice == "SPLADE-cocondenser-distil (weighting and expansion)":
|
| 353 |
query_tokenizer = tokenizer_splade
|
| 354 |
query_model = model_splade
|
| 355 |
-
query_vector = get_splade_cocondenser_representation_internal(query_text, query_tokenizer, query_model)
|
| 356 |
elif query_model_choice == "SPLADE-v3-Lexical (weighting)":
|
| 357 |
query_tokenizer = tokenizer_splade_lexical
|
| 358 |
query_model = model_splade_lexical
|
| 359 |
-
query_vector = get_splade_lexical_representation_internal(query_text, query_tokenizer, query_model)
|
| 360 |
elif query_model_choice == "SPLADE-v3-Doc (binary)":
|
| 361 |
query_tokenizer = tokenizer_splade_doc
|
| 362 |
query_model = model_splade_doc
|
| 363 |
-
query_vector = get_splade_doc_representation_internal(query_text, query_tokenizer, query_model)
|
| 364 |
else:
|
| 365 |
return "Invalid query model choice.", []
|
| 366 |
|
| 367 |
if query_vector is None:
|
| 368 |
return "Failed to get query representation. Check console for model loading errors.", []
|
| 369 |
|
| 370 |
-
|
|
|
|
| 371 |
|
| 372 |
scores = {}
|
| 373 |
for doc_id, doc_vec in document_representations.items():
|
|
@@ -396,9 +474,64 @@ def predict_retrieval_gradio(query_text, query_model_choice, selected_doc_model_
|
|
| 396 |
formatted_output, _ = retrieve_documents(query_text, query_model_choice, initial_doc_model_for_indexing, top_k=5)
|
| 397 |
return formatted_output
|
| 398 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 399 |
# --- Initial Load and Indexing Calls ---
|
| 400 |
# This part runs once when the app starts.
|
| 401 |
-
# --- IMPORTANT CHANGE: Calling the function that loads Cranfield ---
|
| 402 |
load_cranfield_corpus_ir_datasets()
|
| 403 |
|
| 404 |
if initial_doc_model_for_indexing == "SPLADE-cocondenser-distil" and model_splade is not None:
|
|
@@ -443,7 +576,7 @@ with gr.Blocks(title="SPLADE Demos") as demo:
|
|
| 443 |
)
|
| 444 |
|
| 445 |
with gr.TabItem("Document Retrieval Demo"):
|
| 446 |
-
gr.Markdown("### Retrieve Documents from Cranfield Collection")
|
| 447 |
gr.Interface(
|
| 448 |
fn=predict_retrieval_gradio,
|
| 449 |
inputs=[
|
|
@@ -476,5 +609,15 @@ with gr.Blocks(title="SPLADE Demos") as demo:
|
|
| 476 |
allow_flagging="never",
|
| 477 |
# live=True # retrieval is too heavy for live
|
| 478 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 479 |
|
| 480 |
-
demo.launch()
|
|
|
|
| 5 |
from tqdm.auto import tqdm
|
| 6 |
import os
|
| 7 |
import ir_datasets
|
| 8 |
+
import random # Added for random selection
|
| 9 |
|
| 10 |
# --- Model Loading (Keep as is) ---
|
| 11 |
tokenizer_splade = None
|
|
|
|
| 48 |
print(f"Please ensure '{splade_doc_model_name}' is accessible (check Hugging Face Hub for potential agreements).")
|
| 49 |
|
| 50 |
|
| 51 |
+
# --- Global Variables for Document Index and Qrels ---
|
| 52 |
document_representations = {} # Stores {doc_id: sparse_vector}
|
| 53 |
document_texts = {} # Stores {doc_id: doc_text}
|
| 54 |
+
queries_texts = {} # Stores {query_id: query_text}
|
| 55 |
+
qrels_data = {} # Stores {query_id: [{doc_id: str, relevance: int}, ...]}
|
| 56 |
initial_doc_model_for_indexing = "SPLADE-cocondenser-distil" # Fixed for initial demo index
|
| 57 |
|
| 58 |
|
| 59 |
+
# --- Load Cranfield Corpus, Queries, and Qrels using ir_datasets ---
|
|
|
|
| 60 |
def load_cranfield_corpus_ir_datasets():
|
| 61 |
+
global document_texts, queries_texts, qrels_data
|
| 62 |
+
print("Loading Cranfield corpus, queries, and qrels using ir_datasets...")
|
| 63 |
try:
|
|
|
|
| 64 |
dataset = ir_datasets.load("cranfield")
|
| 65 |
+
|
| 66 |
+
# Load documents
|
| 67 |
for doc in tqdm(dataset.docs_iter(), desc="Loading Cranfield documents"):
|
| 68 |
document_texts[doc.doc_id] = doc.text.strip()
|
| 69 |
print(f"Loaded {len(document_texts)} documents from Cranfield corpus.")
|
| 70 |
+
|
| 71 |
+
# Load queries
|
| 72 |
+
for query in tqdm(dataset.queries_iter(), desc="Loading Cranfield queries"):
|
| 73 |
+
queries_texts[query.query_id] = query.text.strip()
|
| 74 |
+
print(f"Loaded {len(queries_texts)} queries from Cranfield corpus.")
|
| 75 |
+
|
| 76 |
+
# Load qrels
|
| 77 |
+
for qrel in tqdm(dataset.qrels_iter(), desc="Loading Cranfield qrels"):
|
| 78 |
+
if qrel.query_id not in qrels_data:
|
| 79 |
+
qrels_data[qrel.query_id] = []
|
| 80 |
+
qrels_data[qrel.query_id].append({"doc_id": qrel.doc_id, "relevance": qrel.relevance})
|
| 81 |
+
print(f"Loaded qrels for {len(qrels_data)} queries.")
|
| 82 |
+
|
| 83 |
except Exception as e:
|
| 84 |
print(f"Error loading Cranfield corpus with ir_datasets: {e}")
|
| 85 |
print("Please ensure 'ir_datasets' is installed and your internet connection is stable.")
|
| 86 |
|
| 87 |
|
| 88 |
+
# --- Helper function for lexical mask (now handles batches) ---
|
| 89 |
+
def create_lexical_bow_mask(input_ids_batch, vocab_size, tokenizer):
|
| 90 |
+
"""
|
| 91 |
+
Creates a batch of lexical BOW masks.
|
| 92 |
+
input_ids_batch: torch.Tensor of shape (batch_size, sequence_length)
|
| 93 |
+
vocab_size: int, size of the tokenizer vocabulary
|
| 94 |
+
tokenizer: the tokenizer object
|
| 95 |
+
Returns: torch.Tensor of shape (batch_size, vocab_size)
|
| 96 |
+
"""
|
| 97 |
+
batch_size = input_ids_batch.shape[0]
|
| 98 |
+
bow_masks = torch.zeros(batch_size, vocab_size, device=input_ids_batch.device)
|
| 99 |
+
|
| 100 |
+
for i in range(batch_size):
|
| 101 |
+
input_ids = input_ids_batch[i] # Get input_ids for the current item in the batch
|
| 102 |
+
meaningful_token_ids = []
|
| 103 |
+
for token_id in input_ids.tolist():
|
| 104 |
+
if token_id not in [
|
| 105 |
+
tokenizer.pad_token_id,
|
| 106 |
+
tokenizer.cls_token_id,
|
| 107 |
+
tokenizer.sep_token_id,
|
| 108 |
+
tokenizer.mask_token_id,
|
| 109 |
+
tokenizer.unk_token_id
|
| 110 |
+
]:
|
| 111 |
+
meaningful_token_ids.append(token_id)
|
| 112 |
+
|
| 113 |
+
if meaningful_token_ids:
|
| 114 |
+
# Apply mask to the current row in the batch
|
| 115 |
+
bow_masks[i, list(set(meaningful_token_ids))] = 1
|
| 116 |
|
| 117 |
+
return bow_masks
|
|
|
|
|
|
|
|
|
|
| 118 |
|
| 119 |
|
| 120 |
# --- Core Representation Functions (Return Formatted Strings - for Explorer Tab) ---
|
| 121 |
+
# These functions still take single text input for the Explorer tab
|
| 122 |
def get_splade_cocondenser_representation(text):
|
| 123 |
if tokenizer_splade is None or model_splade is None:
|
| 124 |
return "SPLADE-cocondenser-distil model is not loaded. Please check the console for loading errors."
|
|
|
|
| 133 |
splade_vector = torch.max(
|
| 134 |
torch.log(1 + torch.relu(output.logits)) * inputs['attention_mask'].unsqueeze(-1),
|
| 135 |
dim=1
|
| 136 |
+
)[0].squeeze() # Squeeze is fine here as it's a single input
|
| 137 |
else:
|
| 138 |
return "Model output structure not as expected for SPLADE-cocondenser-distil. 'logits' not found."
|
| 139 |
|
|
|
|
| 180 |
splade_vector = torch.max(
|
| 181 |
torch.log(1 + torch.relu(output.logits)) * inputs['attention_mask'].unsqueeze(-1),
|
| 182 |
dim=1
|
| 183 |
+
)[0].squeeze() # Squeeze is fine here
|
| 184 |
else:
|
| 185 |
return "Model output structure not as expected for SPLADE-v3-Lexical. 'logits' not found."
|
| 186 |
|
| 187 |
# Always apply lexical mask for this model's specific behavior
|
| 188 |
vocab_size = tokenizer_splade_lexical.vocab_size
|
| 189 |
+
# Call with unsqueezed input_ids for single sample processing
|
| 190 |
bow_mask = create_lexical_bow_mask(
|
| 191 |
inputs['input_ids'], vocab_size, tokenizer_splade_lexical
|
| 192 |
+
).squeeze() # Squeeze back for single output
|
| 193 |
splade_vector = splade_vector * bow_mask
|
| 194 |
|
| 195 |
indices = torch.nonzero(splade_vector).squeeze().cpu().tolist()
|
|
|
|
| 232 |
output = model_splade_doc(**inputs)
|
| 233 |
|
| 234 |
if not hasattr(output, "logits"):
|
| 235 |
+
return "Model output structure not as expected. 'logits' not found."
|
| 236 |
|
| 237 |
vocab_size = tokenizer_splade_doc.vocab_size
|
| 238 |
+
# Call with unsqueezed input_ids for single sample processing
|
| 239 |
binary_splade_vector = create_lexical_bow_mask(
|
| 240 |
inputs['input_ids'], vocab_size, tokenizer_splade_doc
|
| 241 |
+
).squeeze() # Squeeze back for single output
|
| 242 |
|
| 243 |
indices = torch.nonzero(binary_splade_vector).squeeze().cpu().tolist()
|
| 244 |
if not isinstance(indices, list):
|
|
|
|
| 284 |
return "Please select a model."
|
| 285 |
|
| 286 |
|
| 287 |
+
# --- Internal Core Representation Functions (now handle batches) ---
|
| 288 |
+
def get_splade_cocondenser_representation_internal(texts, tokenizer, model):
|
| 289 |
+
"""
|
| 290 |
+
Generates SPLADE representations for a batch of texts.
|
| 291 |
+
texts: list of strings
|
| 292 |
+
tokenizer: the tokenizer object
|
| 293 |
+
model: the SPLADE model
|
| 294 |
+
Returns: torch.Tensor of shape (batch_size, vocab_size) or None
|
| 295 |
+
"""
|
| 296 |
if tokenizer is None or model is None: return None
|
| 297 |
+
inputs = tokenizer(texts, return_tensors="pt", padding=True, truncation=True)
|
| 298 |
inputs = {k: v.to(model.device) for k, v in inputs.items()}
|
| 299 |
+
|
| 300 |
+
with torch.no_grad():
|
| 301 |
+
output = model(**inputs)
|
| 302 |
+
|
| 303 |
if hasattr(output, 'logits'):
|
| 304 |
+
# torch.max(..., dim=1)[0] reduces along sequence_length dimension,
|
| 305 |
+
# resulting in (batch_size, vocab_size)
|
| 306 |
+
splade_vectors = torch.max(
|
| 307 |
+
torch.log(1 + torch.relu(output.logits)) * inputs['attention_mask'].unsqueeze(-1),
|
| 308 |
+
dim=1
|
| 309 |
+
)[0]
|
| 310 |
+
return splade_vectors
|
| 311 |
else:
|
| 312 |
print("Model output structure not as expected for SPLADE-cocondenser-distil. 'logits' not found.")
|
| 313 |
return None
|
| 314 |
|
| 315 |
+
def get_splade_lexical_representation_internal(texts, tokenizer, model):
|
| 316 |
+
"""
|
| 317 |
+
Generates SPLADE-Lexical representations for a batch of texts.
|
| 318 |
+
texts: list of strings
|
| 319 |
+
tokenizer: the tokenizer object
|
| 320 |
+
model: the SPLADE-Lexical model
|
| 321 |
+
Returns: torch.Tensor of shape (batch_size, vocab_size) or None
|
| 322 |
+
"""
|
| 323 |
if tokenizer is None or model is None: return None
|
| 324 |
+
inputs = tokenizer(texts, return_tensors="pt", padding=True, truncation=True)
|
| 325 |
inputs = {k: v.to(model.device) for k, v in inputs.items()}
|
| 326 |
with torch.no_grad(): output = model(**inputs)
|
| 327 |
if hasattr(output, 'logits'):
|
| 328 |
+
splade_vectors = torch.max(torch.log(1 + torch.relu(output.logits)) * inputs['attention_mask'].unsqueeze(-1), dim=1)[0]
|
| 329 |
vocab_size = tokenizer.vocab_size
|
| 330 |
+
# create_lexical_bow_mask now returns (batch_size, vocab_size)
|
| 331 |
+
bow_masks = create_lexical_bow_mask(inputs['input_ids'], vocab_size, tokenizer)
|
| 332 |
+
splade_vectors = splade_vectors * bow_masks # Element-wise multiplication, shapes (batch_size, vocab_size)
|
| 333 |
+
return splade_vectors
|
| 334 |
else:
|
| 335 |
print("Model output structure not as expected for SPLADE-v3-Lexical. 'logits' not found.")
|
| 336 |
return None
|
| 337 |
|
| 338 |
+
def get_splade_doc_representation_internal(texts, tokenizer, model):
|
| 339 |
+
"""
|
| 340 |
+
Generates SPLADE-Doc (binary) representations for a batch of texts.
|
| 341 |
+
texts: list of strings
|
| 342 |
+
tokenizer: the tokenizer object
|
| 343 |
+
model: the SPLADE-Doc model (not directly used for logits, but for device)
|
| 344 |
+
Returns: torch.Tensor of shape (batch_size, vocab_size) or None
|
| 345 |
+
"""
|
| 346 |
if tokenizer is None or model is None: return None
|
| 347 |
+
inputs = tokenizer(texts, return_tensors="pt", padding=True, truncation=True)
|
| 348 |
+
inputs = {k: v.to(model.device) for k, v in inputs.items()} # Ensure inputs are on the correct device
|
| 349 |
vocab_size = tokenizer.vocab_size
|
| 350 |
+
# create_lexical_bow_mask now returns (batch_size, vocab_size)
|
| 351 |
+
binary_splade_vectors = create_lexical_bow_mask(inputs['input_ids'], vocab_size, tokenizer)
|
| 352 |
+
return binary_splade_vectors
|
| 353 |
|
| 354 |
|
| 355 |
+
# --- Document Indexing Function (now uses batching) ---
|
| 356 |
def index_documents(doc_model_choice):
|
| 357 |
global document_representations
|
| 358 |
if document_representations:
|
|
|
|
| 390 |
|
| 391 |
print(f"Indexing documents using {doc_model_choice}...")
|
| 392 |
|
| 393 |
+
doc_ids_list = list(document_texts.keys())
|
| 394 |
+
doc_texts_list = list(document_texts.values())
|
| 395 |
|
| 396 |
+
# --- BATCH SIZE FOR INDEXING ---
|
| 397 |
+
batch_size = 32 # You can adjust this value based on memory and performance
|
| 398 |
+
|
| 399 |
+
document_representations = {} # Ensure it's clear we're (re)building the index
|
| 400 |
+
|
| 401 |
+
# Iterate through documents in batches
|
| 402 |
+
for i in tqdm(range(0, len(doc_ids_list), batch_size), desc="Indexing Documents in Batches"):
|
| 403 |
+
batch_doc_ids = doc_ids_list[i:i + batch_size]
|
| 404 |
+
batch_doc_texts = doc_texts_list[i:i + batch_size]
|
| 405 |
+
|
| 406 |
+
sparse_vectors_batch = representation_func_to_use(batch_doc_texts, tokenizer_to_use, model_to_use)
|
| 407 |
+
|
| 408 |
+
if sparse_vectors_batch is not None:
|
| 409 |
+
# sparse_vectors_batch will have shape (batch_size, vocab_size)
|
| 410 |
+
for j, doc_id in enumerate(batch_doc_ids):
|
| 411 |
+
# Store each document's vector
|
| 412 |
+
document_representations[doc_id] = sparse_vectors_batch[j].cpu()
|
| 413 |
else:
|
| 414 |
+
print(f"Warning: Failed to get representation for a batch starting with doc_id {batch_doc_ids[0]}")
|
| 415 |
|
| 416 |
print(f"Finished indexing {len(document_representations)} documents.")
|
| 417 |
return True
|
|
|
|
| 425 |
query_tokenizer = None
|
| 426 |
query_model = None
|
| 427 |
|
| 428 |
+
# These internal calls still use single text input for the query
|
| 429 |
if query_model_choice == "SPLADE-cocondenser-distil (weighting and expansion)":
|
| 430 |
query_tokenizer = tokenizer_splade
|
| 431 |
query_model = model_splade
|
| 432 |
+
query_vector = get_splade_cocondenser_representation_internal([query_text], query_tokenizer, query_model)
|
| 433 |
elif query_model_choice == "SPLADE-v3-Lexical (weighting)":
|
| 434 |
query_tokenizer = tokenizer_splade_lexical
|
| 435 |
query_model = model_splade_lexical
|
| 436 |
+
query_vector = get_splade_lexical_representation_internal([query_text], query_tokenizer, query_model)
|
| 437 |
elif query_model_choice == "SPLADE-v3-Doc (binary)":
|
| 438 |
query_tokenizer = tokenizer_splade_doc
|
| 439 |
query_model = model_splade_doc
|
| 440 |
+
query_vector = get_splade_doc_representation_internal([query_text], query_tokenizer, query_model)
|
| 441 |
else:
|
| 442 |
return "Invalid query model choice.", []
|
| 443 |
|
| 444 |
if query_vector is None:
|
| 445 |
return "Failed to get query representation. Check console for model loading errors.", []
|
| 446 |
|
| 447 |
+
# Since internal functions now return batches, take the first (and only) item for single query
|
| 448 |
+
query_vector = query_vector.squeeze(0).cpu()
|
| 449 |
|
| 450 |
scores = {}
|
| 451 |
for doc_id, doc_vec in document_representations.items():
|
|
|
|
| 474 |
formatted_output, _ = retrieve_documents(query_text, query_model_choice, initial_doc_model_for_indexing, top_k=5)
|
| 475 |
return formatted_output
|
| 476 |
|
| 477 |
+
# --- New function to get specific retrieval examples ---
|
| 478 |
+
def get_specific_retrieval_examples():
|
| 479 |
+
if not queries_texts or not qrels_data or not document_texts:
|
| 480 |
+
return "Queries, qrels, or documents not loaded. Please check initial loading."
|
| 481 |
+
|
| 482 |
+
high_qrel_threshold = 3 # Relevance score of 3 or 4 for Cranfield is generally considered high
|
| 483 |
+
low_qrel_threshold = 1 # Relevance score of 0 or 1 for Cranfield is generally considered low
|
| 484 |
+
|
| 485 |
+
eligible_query_ids = []
|
| 486 |
+
for qid, qrels in qrels_data.items():
|
| 487 |
+
has_high_qrel = any(item['relevance'] >= high_qrel_threshold for item in qrels)
|
| 488 |
+
has_low_qrel = any(item['relevance'] <= low_qrel_threshold for item in qrels)
|
| 489 |
+
if has_high_qrel and has_low_qrel:
|
| 490 |
+
eligible_query_ids.append(qid)
|
| 491 |
+
|
| 492 |
+
if not eligible_query_ids:
|
| 493 |
+
return "Could not find a query with both high and low relevance documents in the loaded qrels."
|
| 494 |
+
|
| 495 |
+
# Pick a random eligible query
|
| 496 |
+
random_query_id = random.choice(eligible_query_ids)
|
| 497 |
+
full_query_text = queries_texts.get(random_query_id, "Query text not found.")
|
| 498 |
+
query_snippet = full_query_text[:300] + "..." if len(full_query_text) > 300 else full_query_text
|
| 499 |
+
|
| 500 |
+
qrels_for_query = qrels_data[random_query_id]
|
| 501 |
+
|
| 502 |
+
high_qrel_docs = [item for item in qrels_for_query if item['relevance'] >= high_qrel_threshold]
|
| 503 |
+
low_qrel_docs = [item for item in qrels_for_query if item['relevance'] <= low_qrel_threshold]
|
| 504 |
+
|
| 505 |
+
selected_high_doc_id = random.choice(high_qrel_docs)['doc_id'] if high_qrel_docs else None
|
| 506 |
+
selected_low_doc_id = random.choice(low_qrel_docs)['doc_id'] if low_qrel_docs else None
|
| 507 |
+
|
| 508 |
+
output_str = f"### Random Query Example\n\n"
|
| 509 |
+
output_str += f"**Query ID:** {random_query_id}\n"
|
| 510 |
+
output_str += f"**Query Snippet:** {query_snippet}\n\n" # Changed to snippet
|
| 511 |
+
|
| 512 |
+
if selected_high_doc_id:
|
| 513 |
+
full_doc_text = document_texts.get(selected_high_doc_id, "Document text not available.")
|
| 514 |
+
doc_snippet = full_doc_text[:500] + "..." if len(full_doc_text) > 500 else full_doc_text
|
| 515 |
+
output_str += f"### Highly Relevant Document (Qrel >= {high_qrel_threshold})\n"
|
| 516 |
+
output_str += f"**Document ID:** {selected_high_doc_id}\n"
|
| 517 |
+
output_str += f"**Document Snippet:** {doc_snippet}\n\n" # Changed to snippet
|
| 518 |
+
else:
|
| 519 |
+
output_str += "No highly relevant document found for this query.\n\n"
|
| 520 |
+
|
| 521 |
+
if selected_low_doc_id:
|
| 522 |
+
full_doc_text = document_texts.get(selected_low_doc_id, "Document text not available.")
|
| 523 |
+
doc_snippet = full_doc_text[:500] + "..." if len(full_doc_text) > 500 else full_doc_text
|
| 524 |
+
output_str += f"### Lowly Relevant Document (Qrel <= {low_qrel_threshold})\n"
|
| 525 |
+
output_str += f"**Document ID:** {selected_low_doc_id}\n"
|
| 526 |
+
output_str += f"**Document Snippet:** {doc_snippet}\n\n" # Changed to snippet
|
| 527 |
+
else:
|
| 528 |
+
output_str += "No lowly relevant document found for this query.\n\n"
|
| 529 |
+
|
| 530 |
+
return output_str
|
| 531 |
+
|
| 532 |
+
|
| 533 |
# --- Initial Load and Indexing Calls ---
|
| 534 |
# This part runs once when the app starts.
|
|
|
|
| 535 |
load_cranfield_corpus_ir_datasets()
|
| 536 |
|
| 537 |
if initial_doc_model_for_indexing == "SPLADE-cocondenser-distil" and model_splade is not None:
|
|
|
|
| 576 |
)
|
| 577 |
|
| 578 |
with gr.TabItem("Document Retrieval Demo"):
|
| 579 |
+
gr.Markdown("### Retrieve Documents from Cranfield Collection")
|
| 580 |
gr.Interface(
|
| 581 |
fn=predict_retrieval_gradio,
|
| 582 |
inputs=[
|
|
|
|
| 609 |
allow_flagging="never",
|
| 610 |
# live=True # retrieval is too heavy for live
|
| 611 |
)
|
| 612 |
+
|
| 613 |
+
gr.Markdown("---") # Separator
|
| 614 |
+
gr.Markdown("### Get Specific Retrieval Examples")
|
| 615 |
+
specific_example_output = gr.Markdown()
|
| 616 |
+
specific_example_button = gr.Button("Get Random Query with High/Low Qrel Docs")
|
| 617 |
+
specific_example_button.click(
|
| 618 |
+
fn=get_specific_retrieval_examples,
|
| 619 |
+
inputs=[],
|
| 620 |
+
outputs=specific_example_output
|
| 621 |
+
)
|
| 622 |
|
| 623 |
+
demo.launch()
|