Spaces:
Sleeping
Sleeping
added retrieval feature
Browse files
app.py
CHANGED
|
@@ -1,8 +1,12 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from transformers import AutoTokenizer, AutoModelForMaskedLM
|
| 3 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
-
# --- Model Loading ---
|
| 6 |
tokenizer_splade = None
|
| 7 |
model_splade = None
|
| 8 |
tokenizer_splade_lexical = None
|
|
@@ -14,7 +18,7 @@ model_splade_doc = None
|
|
| 14 |
try:
|
| 15 |
tokenizer_splade = AutoTokenizer.from_pretrained("naver/splade-cocondenser-selfdistil")
|
| 16 |
model_splade = AutoModelForMaskedLM.from_pretrained("naver/splade-cocondenser-selfdistil")
|
| 17 |
-
model_splade.eval()
|
| 18 |
print("SPLADE-cocondenser-distil model loaded successfully!")
|
| 19 |
except Exception as e:
|
| 20 |
print(f"Error loading SPLADE-cocondenser-distil model: {e}")
|
|
@@ -25,7 +29,7 @@ try:
|
|
| 25 |
splade_lexical_model_name = "naver/splade-v3-lexical"
|
| 26 |
tokenizer_splade_lexical = AutoTokenizer.from_pretrained(splade_lexical_model_name)
|
| 27 |
model_splade_lexical = AutoModelForMaskedLM.from_pretrained(splade_lexical_model_name)
|
| 28 |
-
model_splade_lexical.eval()
|
| 29 |
print(f"SPLADE-v3-Lexical model '{splade_lexical_model_name}' loaded successfully!")
|
| 30 |
except Exception as e:
|
| 31 |
print(f"Error loading SPLADE-v3-Lexical model: {e}")
|
|
@@ -36,19 +40,35 @@ try:
|
|
| 36 |
splade_doc_model_name = "naver/splade-v3-doc"
|
| 37 |
tokenizer_splade_doc = AutoTokenizer.from_pretrained(splade_doc_model_name)
|
| 38 |
model_splade_doc = AutoModelForMaskedLM.from_pretrained(splade_doc_model_name)
|
| 39 |
-
model_splade_doc.eval()
|
| 40 |
print(f"SPLADE-v3-Doc model '{splade_doc_model_name}' loaded successfully!")
|
| 41 |
except Exception as e:
|
| 42 |
print(f"Error loading SPLADE-v3-Doc model: {e}")
|
| 43 |
print(f"Please ensure '{splade_doc_model_name}' is accessible (check Hugging Face Hub for potential agreements).")
|
| 44 |
|
| 45 |
|
| 46 |
-
# ---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
def create_lexical_bow_mask(input_ids, vocab_size, tokenizer):
|
| 48 |
-
"""
|
| 49 |
-
Creates a binary bag-of-words mask from input_ids,
|
| 50 |
-
zeroing out special tokens and padding.
|
| 51 |
-
"""
|
| 52 |
bow_mask = torch.zeros(vocab_size, device=input_ids.device)
|
| 53 |
meaningful_token_ids = []
|
| 54 |
for token_id in input_ids.squeeze().tolist():
|
|
@@ -60,14 +80,15 @@ def create_lexical_bow_mask(input_ids, vocab_size, tokenizer):
|
|
| 60 |
tokenizer.unk_token_id
|
| 61 |
]:
|
| 62 |
meaningful_token_ids.append(token_id)
|
| 63 |
-
|
| 64 |
if meaningful_token_ids:
|
| 65 |
bow_mask[list(set(meaningful_token_ids))] = 1
|
| 66 |
|
| 67 |
return bow_mask.unsqueeze(0)
|
| 68 |
|
| 69 |
|
| 70 |
-
# --- Core Representation Functions ---
|
|
|
|
| 71 |
|
| 72 |
def get_splade_cocondenser_representation(text):
|
| 73 |
if tokenizer_splade is None or model_splade is None:
|
|
@@ -80,7 +101,6 @@ def get_splade_cocondenser_representation(text):
|
|
| 80 |
output = model_splade(**inputs)
|
| 81 |
|
| 82 |
if hasattr(output, 'logits'):
|
| 83 |
-
# Standard SPLADE calculation for learned weighting and expansion
|
| 84 |
splade_vector = torch.max(
|
| 85 |
torch.log(1 + torch.relu(output.logits)) * inputs['attention_mask'].unsqueeze(-1),
|
| 86 |
dim=1
|
|
@@ -90,7 +110,7 @@ def get_splade_cocondenser_representation(text):
|
|
| 90 |
|
| 91 |
indices = torch.nonzero(splade_vector).squeeze().cpu().tolist()
|
| 92 |
if not isinstance(indices, list):
|
| 93 |
-
indices = [indices]
|
| 94 |
|
| 95 |
values = splade_vector[indices].cpu().tolist()
|
| 96 |
token_weights = dict(zip(indices, values))
|
|
@@ -139,12 +159,12 @@ def get_splade_lexical_representation(text):
|
|
| 139 |
vocab_size = tokenizer_splade_lexical.vocab_size
|
| 140 |
bow_mask = create_lexical_bow_mask(
|
| 141 |
inputs['input_ids'], vocab_size, tokenizer_splade_lexical
|
| 142 |
-
).squeeze()
|
| 143 |
splade_vector = splade_vector * bow_mask
|
| 144 |
|
| 145 |
indices = torch.nonzero(splade_vector).squeeze().cpu().tolist()
|
| 146 |
if not isinstance(indices, list):
|
| 147 |
-
indices = [indices]
|
| 148 |
|
| 149 |
values = splade_vector[indices].cpu().tolist()
|
| 150 |
token_weights = dict(zip(indices, values))
|
|
@@ -171,7 +191,6 @@ def get_splade_lexical_representation(text):
|
|
| 171 |
return formatted_output
|
| 172 |
|
| 173 |
|
| 174 |
-
# Function for SPLADE-v3-Doc representation (Binary Sparse - Lexical Only)
|
| 175 |
def get_splade_doc_representation(text):
|
| 176 |
if tokenizer_splade_doc is None or model_splade_doc is None:
|
| 177 |
return "SPLADE-v3-Doc model is not loaded. Please check the console for loading errors."
|
|
@@ -185,19 +204,15 @@ def get_splade_doc_representation(text):
|
|
| 185 |
if not hasattr(output, "logits"):
|
| 186 |
return "SPLADE-v3-Doc model output structure not as expected. 'logits' not found."
|
| 187 |
|
| 188 |
-
# For SPLADE-v3-Doc, assuming output is designed to be binary and lexical-only.
|
| 189 |
-
# We will derive the output directly from the input tokens themselves,
|
| 190 |
-
# as the model's primary role in this context is as a pre-trained LM feature extractor
|
| 191 |
-
# for a document-side, lexical-only binary sparse representation.
|
| 192 |
vocab_size = tokenizer_splade_doc.vocab_size
|
| 193 |
-
binary_splade_vector = create_lexical_bow_mask(
|
| 194 |
inputs['input_ids'], vocab_size, tokenizer_splade_doc
|
| 195 |
).squeeze()
|
| 196 |
|
| 197 |
indices = torch.nonzero(binary_splade_vector).squeeze().cpu().tolist()
|
| 198 |
if not isinstance(indices, list):
|
| 199 |
indices = [indices] if indices else []
|
| 200 |
-
|
| 201 |
values = [1.0] * len(indices) # All values are 1 for binary representation
|
| 202 |
token_weights = dict(zip(indices, values))
|
| 203 |
|
|
@@ -226,41 +241,243 @@ def get_splade_doc_representation(text):
|
|
| 226 |
return formatted_output
|
| 227 |
|
| 228 |
|
| 229 |
-
# --- Unified Prediction Function for
|
| 230 |
-
def
|
| 231 |
if model_choice == "SPLADE-cocondenser-distil (weighting and expansion)":
|
| 232 |
return get_splade_cocondenser_representation(text)
|
| 233 |
elif model_choice == "SPLADE-v3-Lexical (weighting)":
|
| 234 |
return get_splade_lexical_representation(text)
|
| 235 |
elif model_choice == "SPLADE-v3-Doc (binary)":
|
| 236 |
-
return get_splade_doc_representation(text)
|
| 237 |
else:
|
| 238 |
return "Please select a model."
|
| 239 |
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 266 |
demo.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from transformers import AutoTokenizer, AutoModelForMaskedLM
|
| 3 |
import torch
|
| 4 |
+
import numpy as np
|
| 5 |
+
from tqdm.auto import tqdm
|
| 6 |
+
import os
|
| 7 |
+
import ir_datasets
|
| 8 |
|
| 9 |
+
# --- Model Loading (Keep as is) ---
|
| 10 |
tokenizer_splade = None
|
| 11 |
model_splade = None
|
| 12 |
tokenizer_splade_lexical = None
|
|
|
|
| 18 |
try:
|
| 19 |
tokenizer_splade = AutoTokenizer.from_pretrained("naver/splade-cocondenser-selfdistil")
|
| 20 |
model_splade = AutoModelForMaskedLM.from_pretrained("naver/splade-cocondenser-selfdistil")
|
| 21 |
+
model_splade.eval()
|
| 22 |
print("SPLADE-cocondenser-distil model loaded successfully!")
|
| 23 |
except Exception as e:
|
| 24 |
print(f"Error loading SPLADE-cocondenser-distil model: {e}")
|
|
|
|
| 29 |
splade_lexical_model_name = "naver/splade-v3-lexical"
|
| 30 |
tokenizer_splade_lexical = AutoTokenizer.from_pretrained(splade_lexical_model_name)
|
| 31 |
model_splade_lexical = AutoModelForMaskedLM.from_pretrained(splade_lexical_model_name)
|
| 32 |
+
model_splade_lexical.eval()
|
| 33 |
print(f"SPLADE-v3-Lexical model '{splade_lexical_model_name}' loaded successfully!")
|
| 34 |
except Exception as e:
|
| 35 |
print(f"Error loading SPLADE-v3-Lexical model: {e}")
|
|
|
|
| 40 |
splade_doc_model_name = "naver/splade-v3-doc"
|
| 41 |
tokenizer_splade_doc = AutoTokenizer.from_pretrained(splade_doc_model_name)
|
| 42 |
model_splade_doc = AutoModelForMaskedLM.from_pretrained(splade_doc_model_name)
|
| 43 |
+
model_splade_doc.eval()
|
| 44 |
print(f"SPLADE-v3-Doc model '{splade_doc_model_name}' loaded successfully!")
|
| 45 |
except Exception as e:
|
| 46 |
print(f"Error loading SPLADE-v3-Doc model: {e}")
|
| 47 |
print(f"Please ensure '{splade_doc_model_name}' is accessible (check Hugging Face Hub for potential agreements).")
|
| 48 |
|
| 49 |
|
| 50 |
+
# --- Global Variables for Document Index ---
|
| 51 |
+
document_representations = {} # Stores {doc_id: sparse_vector}
|
| 52 |
+
document_texts = {} # Stores {doc_id: doc_text}
|
| 53 |
+
initial_doc_model_for_indexing = "SPLADE-cocondenser-distil" # Fixed for initial demo index
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
# --- Load SciFact Corpus using ir_datasets ---
|
| 57 |
+
def load_scifact_corpus_ir_datasets():
|
| 58 |
+
global document_texts
|
| 59 |
+
print("Loading SciFact corpus using ir_datasets...")
|
| 60 |
+
try:
|
| 61 |
+
dataset = ir_datasets.load("scifact")
|
| 62 |
+
for doc in tqdm(dataset.docs_iter(), desc="Loading SciFact documents"):
|
| 63 |
+
document_texts[doc.doc_id] = doc.text.strip()
|
| 64 |
+
print(f"Loaded {len(document_texts)} documents from SciFact corpus.")
|
| 65 |
+
except Exception as e:
|
| 66 |
+
print(f"Error loading SciFact corpus with ir_datasets: {e}")
|
| 67 |
+
print("Please ensure 'ir_datasets' is installed and your internet connection is stable.")
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
# --- Helper function for lexical mask (Keep as is) ---
|
| 71 |
def create_lexical_bow_mask(input_ids, vocab_size, tokenizer):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 72 |
bow_mask = torch.zeros(vocab_size, device=input_ids.device)
|
| 73 |
meaningful_token_ids = []
|
| 74 |
for token_id in input_ids.squeeze().tolist():
|
|
|
|
| 80 |
tokenizer.unk_token_id
|
| 81 |
]:
|
| 82 |
meaningful_token_ids.append(token_id)
|
| 83 |
+
|
| 84 |
if meaningful_token_ids:
|
| 85 |
bow_mask[list(set(meaningful_token_ids))] = 1
|
| 86 |
|
| 87 |
return bow_mask.unsqueeze(0)
|
| 88 |
|
| 89 |
|
| 90 |
+
# --- Core Representation Functions (Return Formatted Strings - for Explorer Tab) ---
|
| 91 |
+
# These are your original functions, re-added.
|
| 92 |
|
| 93 |
def get_splade_cocondenser_representation(text):
|
| 94 |
if tokenizer_splade is None or model_splade is None:
|
|
|
|
| 101 |
output = model_splade(**inputs)
|
| 102 |
|
| 103 |
if hasattr(output, 'logits'):
|
|
|
|
| 104 |
splade_vector = torch.max(
|
| 105 |
torch.log(1 + torch.relu(output.logits)) * inputs['attention_mask'].unsqueeze(-1),
|
| 106 |
dim=1
|
|
|
|
| 110 |
|
| 111 |
indices = torch.nonzero(splade_vector).squeeze().cpu().tolist()
|
| 112 |
if not isinstance(indices, list):
|
| 113 |
+
indices = [indices] if indices else []
|
| 114 |
|
| 115 |
values = splade_vector[indices].cpu().tolist()
|
| 116 |
token_weights = dict(zip(indices, values))
|
|
|
|
| 159 |
vocab_size = tokenizer_splade_lexical.vocab_size
|
| 160 |
bow_mask = create_lexical_bow_mask(
|
| 161 |
inputs['input_ids'], vocab_size, tokenizer_splade_lexical
|
| 162 |
+
).squeeze()
|
| 163 |
splade_vector = splade_vector * bow_mask
|
| 164 |
|
| 165 |
indices = torch.nonzero(splade_vector).squeeze().cpu().tolist()
|
| 166 |
if not isinstance(indices, list):
|
| 167 |
+
indices = [indices] if indices else []
|
| 168 |
|
| 169 |
values = splade_vector[indices].cpu().tolist()
|
| 170 |
token_weights = dict(zip(indices, values))
|
|
|
|
| 191 |
return formatted_output
|
| 192 |
|
| 193 |
|
|
|
|
| 194 |
def get_splade_doc_representation(text):
|
| 195 |
if tokenizer_splade_doc is None or model_splade_doc is None:
|
| 196 |
return "SPLADE-v3-Doc model is not loaded. Please check the console for loading errors."
|
|
|
|
| 204 |
if not hasattr(output, "logits"):
|
| 205 |
return "SPLADE-v3-Doc model output structure not as expected. 'logits' not found."
|
| 206 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 207 |
vocab_size = tokenizer_splade_doc.vocab_size
|
| 208 |
+
binary_splade_vector = create_lexical_bow_mask(
|
| 209 |
inputs['input_ids'], vocab_size, tokenizer_splade_doc
|
| 210 |
).squeeze()
|
| 211 |
|
| 212 |
indices = torch.nonzero(binary_splade_vector).squeeze().cpu().tolist()
|
| 213 |
if not isinstance(indices, list):
|
| 214 |
indices = [indices] if indices else []
|
| 215 |
+
|
| 216 |
values = [1.0] * len(indices) # All values are 1 for binary representation
|
| 217 |
token_weights = dict(zip(indices, values))
|
| 218 |
|
|
|
|
| 241 |
return formatted_output
|
| 242 |
|
| 243 |
|
| 244 |
+
# --- Unified Prediction Function for the Explorer Tab ---
|
| 245 |
+
def predict_representation_explorer(model_choice, text):
|
| 246 |
if model_choice == "SPLADE-cocondenser-distil (weighting and expansion)":
|
| 247 |
return get_splade_cocondenser_representation(text)
|
| 248 |
elif model_choice == "SPLADE-v3-Lexical (weighting)":
|
| 249 |
return get_splade_lexical_representation(text)
|
| 250 |
elif model_choice == "SPLADE-v3-Doc (binary)":
|
| 251 |
+
return get_splade_doc_representation(text)
|
| 252 |
else:
|
| 253 |
return "Please select a model."
|
| 254 |
|
| 255 |
+
|
| 256 |
+
# --- Internal Core Representation Functions (Return Raw Vectors - for Retrieval Tab) ---
|
| 257 |
+
# These are the ones ending with _internal, as previously defined.
|
| 258 |
+
|
| 259 |
+
def get_splade_cocondenser_representation_internal(text, tokenizer, model):
|
| 260 |
+
if tokenizer is None or model is None: return None
|
| 261 |
+
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
|
| 262 |
+
inputs = {k: v.to(model.device) for k, v in inputs.items()}
|
| 263 |
+
with torch.no_grad(): output = model(**inputs)
|
| 264 |
+
if hasattr(output, 'logits'):
|
| 265 |
+
splade_vector = torch.max(torch.log(1 + torch.relu(output.logits)) * inputs['attention_mask'].unsqueeze(-1), dim=1)[0].squeeze()
|
| 266 |
+
return splade_vector
|
| 267 |
+
else:
|
| 268 |
+
print("Model output structure not as expected for SPLADE-cocondenser-distil. 'logits' not found.")
|
| 269 |
+
return None
|
| 270 |
+
|
| 271 |
+
def get_splade_lexical_representation_internal(text, tokenizer, model):
|
| 272 |
+
if tokenizer is None or model is None: return None
|
| 273 |
+
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
|
| 274 |
+
inputs = {k: v.to(model.device) for k, v in inputs.items()}
|
| 275 |
+
with torch.no_grad(): output = model(**inputs)
|
| 276 |
+
if hasattr(output, 'logits'):
|
| 277 |
+
splade_vector = torch.max(torch.log(1 + torch.relu(output.logits)) * inputs['attention_mask'].unsqueeze(-1), dim=1)[0].squeeze()
|
| 278 |
+
vocab_size = tokenizer.vocab_size
|
| 279 |
+
bow_mask = create_lexical_bow_mask(inputs['input_ids'], vocab_size, tokenizer).squeeze()
|
| 280 |
+
splade_vector = splade_vector * bow_mask
|
| 281 |
+
return splade_vector
|
| 282 |
+
else:
|
| 283 |
+
print("Model output structure not as expected for SPLADE-v3-Lexical. 'logits' not found.")
|
| 284 |
+
return None
|
| 285 |
+
|
| 286 |
+
def get_splade_doc_representation_internal(text, tokenizer, model):
|
| 287 |
+
if tokenizer is None or model is None: return None
|
| 288 |
+
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
|
| 289 |
+
inputs = {k: v.to(model.device) for k, v in inputs.items()}
|
| 290 |
+
vocab_size = tokenizer.vocab_size
|
| 291 |
+
binary_splade_vector = create_lexical_bow_mask(inputs['input_ids'], vocab_size, tokenizer).squeeze()
|
| 292 |
+
return binary_splade_vector
|
| 293 |
+
|
| 294 |
+
|
| 295 |
+
# --- Document Indexing Function (for Retrieval Tab) ---
|
| 296 |
+
def index_documents(doc_model_choice):
|
| 297 |
+
global document_representations
|
| 298 |
+
if document_representations:
|
| 299 |
+
print("Documents already indexed. Skipping re-indexing.")
|
| 300 |
+
return True
|
| 301 |
+
|
| 302 |
+
tokenizer_to_use = None
|
| 303 |
+
model_to_use = None
|
| 304 |
+
representation_func_to_use = None
|
| 305 |
+
|
| 306 |
+
if doc_model_choice == "SPLADE-cocondenser-distil":
|
| 307 |
+
if tokenizer_splade is None or model_splade is None:
|
| 308 |
+
print("SPLADE-cocondenser-distil model not loaded for indexing.")
|
| 309 |
+
return False
|
| 310 |
+
tokenizer_to_use = tokenizer_splade
|
| 311 |
+
model_to_use = model_splade
|
| 312 |
+
representation_func_to_use = get_splade_cocondenser_representation_internal
|
| 313 |
+
elif doc_model_choice == "SPLADE-v3-Lexical":
|
| 314 |
+
if tokenizer_splade_lexical is None or model_splade_lexical is None:
|
| 315 |
+
print("SPLADE-v3-Lexical model not loaded for indexing.")
|
| 316 |
+
return False
|
| 317 |
+
tokenizer_to_use = tokenizer_splade_lexical
|
| 318 |
+
model_to_use = model_splade_lexical
|
| 319 |
+
representation_func_to_use = get_splade_lexical_representation_internal
|
| 320 |
+
elif doc_model_choice == "SPLADE-v3-Doc":
|
| 321 |
+
if tokenizer_splade_doc is None or model_splade_doc is None:
|
| 322 |
+
print("SPLADE-v3-Doc model not loaded for indexing.")
|
| 323 |
+
return False
|
| 324 |
+
tokenizer_to_use = tokenizer_splade_doc
|
| 325 |
+
model_to_use = model_splade_doc
|
| 326 |
+
representation_func_to_use = get_splade_doc_representation_internal
|
| 327 |
+
else:
|
| 328 |
+
print(f"Invalid model choice for document indexing: {doc_model_choice}")
|
| 329 |
+
return False
|
| 330 |
+
|
| 331 |
+
print(f"Indexing documents using {doc_model_choice}...")
|
| 332 |
+
|
| 333 |
+
doc_items = list(document_texts.items())
|
| 334 |
+
|
| 335 |
+
for doc_id, doc_text in tqdm(doc_items, desc="Indexing Documents"):
|
| 336 |
+
sparse_vector = representation_func_to_use(doc_text, tokenizer_to_use, model_to_use)
|
| 337 |
+
if sparse_vector is not None:
|
| 338 |
+
document_representations[doc_id] = sparse_vector.cpu()
|
| 339 |
+
else:
|
| 340 |
+
print(f"Warning: Failed to get representation for doc_id {doc_id}")
|
| 341 |
+
|
| 342 |
+
print(f"Finished indexing {len(document_representations)} documents.")
|
| 343 |
+
return True
|
| 344 |
+
|
| 345 |
+
# --- Retrieval Function (for Retrieval Tab) ---
|
| 346 |
+
def retrieve_documents(query_text, query_model_choice, indexed_doc_model_name, top_k=5):
|
| 347 |
+
if not document_representations:
|
| 348 |
+
return "Document index is not loaded or empty. Please ensure documents are indexed.", []
|
| 349 |
+
|
| 350 |
+
query_vector = None
|
| 351 |
+
query_tokenizer = None
|
| 352 |
+
query_model = None
|
| 353 |
+
|
| 354 |
+
if query_model_choice == "SPLADE-cocondenser-distil (weighting and expansion)":
|
| 355 |
+
query_tokenizer = tokenizer_splade
|
| 356 |
+
query_model = model_splade
|
| 357 |
+
query_vector = get_splade_cocondenser_representation_internal(query_text, query_tokenizer, query_model)
|
| 358 |
+
elif query_model_choice == "SPLADE-v3-Lexical (weighting)":
|
| 359 |
+
query_tokenizer = tokenizer_splade_lexical
|
| 360 |
+
query_model = model_splade_lexical
|
| 361 |
+
query_vector = get_splade_lexical_representation_internal(query_text, query_tokenizer, query_model)
|
| 362 |
+
elif query_model_choice == "SPLADE-v3-Doc (binary)":
|
| 363 |
+
query_tokenizer = tokenizer_splade_doc
|
| 364 |
+
query_model = model_splade_doc
|
| 365 |
+
query_vector = get_splade_doc_representation_internal(query_text, query_tokenizer, query_model)
|
| 366 |
+
else:
|
| 367 |
+
return "Invalid query model choice.", []
|
| 368 |
+
|
| 369 |
+
if query_vector is None:
|
| 370 |
+
return "Failed to get query representation. Check console for model loading errors.", []
|
| 371 |
+
|
| 372 |
+
query_vector = query_vector.cpu()
|
| 373 |
+
|
| 374 |
+
scores = {}
|
| 375 |
+
for doc_id, doc_vec in document_representations.items():
|
| 376 |
+
score = torch.dot(query_vector, doc_vec).item()
|
| 377 |
+
scores[doc_id] = score
|
| 378 |
+
|
| 379 |
+
sorted_scores = sorted(scores.items(), key=lambda item: item[1], reverse=True)
|
| 380 |
+
top_results = sorted_scores[:top_k]
|
| 381 |
+
|
| 382 |
+
formatted_output = f"Retrieval Results for Query: '{query_text}'\n"
|
| 383 |
+
formatted_output += f"Using Query Model: **{query_model_choice}**\n"
|
| 384 |
+
formatted_output += f"Documents Indexed with: **{indexed_doc_model_name}**\n\n"
|
| 385 |
+
|
| 386 |
+
if not top_results:
|
| 387 |
+
formatted_output += "No documents found or scored.\n"
|
| 388 |
+
else:
|
| 389 |
+
for i, (doc_id, score) in enumerate(top_results):
|
| 390 |
+
doc_text = document_texts.get(doc_id, "Document text not available.")
|
| 391 |
+
formatted_output += f"**{i+1}. Document ID: {doc_id}** (Score: {score:.4f})\n"
|
| 392 |
+
formatted_output += f"> {doc_text[:300]}...\n\n"
|
| 393 |
+
|
| 394 |
+
return formatted_output, top_results
|
| 395 |
+
|
| 396 |
+
# --- Unified Prediction Function for Gradio (for Retrieval Tab) ---
|
| 397 |
+
def predict_retrieval_gradio(query_text, query_model_choice, selected_doc_model_display_only):
|
| 398 |
+
formatted_output, _ = retrieve_documents(query_text, query_model_choice, initial_doc_model_for_indexing, top_k=5)
|
| 399 |
+
return formatted_output
|
| 400 |
+
|
| 401 |
+
# --- Initial Load and Indexing Calls ---
|
| 402 |
+
# This part runs once when the app starts.
|
| 403 |
+
load_scifact_corpus_ir_datasets() # Or load_cranfield_corpus_ir_datasets() if you switch back
|
| 404 |
+
|
| 405 |
+
if initial_doc_model_for_indexing == "SPLADE-cocondenser-distil" and model_splade is not None:
|
| 406 |
+
index_documents(initial_doc_model_for_indexing)
|
| 407 |
+
elif initial_doc_model_for_indexing == "SPLADE-v3-Lexical" and model_splade_lexical is not None:
|
| 408 |
+
index_documents(initial_doc_model_for_indexing)
|
| 409 |
+
elif initial_doc_model_for_indexing == "SPLADE-v3-Doc" and model_splade_doc is not None:
|
| 410 |
+
index_documents(initial_doc_model_for_indexing)
|
| 411 |
+
else:
|
| 412 |
+
print(f"Skipping document indexing: Model '{initial_doc_model_for_indexing}' failed to load or is not a valid choice for indexing.")
|
| 413 |
+
|
| 414 |
+
|
| 415 |
+
# --- Gradio Interface Setup with Tabs ---
|
| 416 |
+
with gr.Blocks(title="SPLADE Demos") as demo:
|
| 417 |
+
gr.Markdown("# 🌌 SPLADE Demos: Sparse Representation Explorer & Document Retrieval")
|
| 418 |
+
gr.Markdown("Explore different SPLADE models and their sparse representation types, or perform document retrieval on a test collection.")
|
| 419 |
+
|
| 420 |
+
with gr.Tabs():
|
| 421 |
+
with gr.TabItem("Sparse Representation Explorer"):
|
| 422 |
+
gr.Markdown("### Explore Raw SPLADE Representations for Any Text")
|
| 423 |
+
gr.Interface(
|
| 424 |
+
fn=predict_representation_explorer,
|
| 425 |
+
inputs=[
|
| 426 |
+
gr.Radio(
|
| 427 |
+
[
|
| 428 |
+
"SPLADE-cocondenser-distil (weighting and expansion)",
|
| 429 |
+
"SPLADE-v3-Lexical (weighting)",
|
| 430 |
+
"SPLADE-v3-Doc (binary)"
|
| 431 |
+
],
|
| 432 |
+
label="Choose Representation Model",
|
| 433 |
+
value="SPLADE-cocondenser-distil (weighting and expansion)"
|
| 434 |
+
),
|
| 435 |
+
gr.Textbox(
|
| 436 |
+
lines=5,
|
| 437 |
+
label="Enter your query or document text here:",
|
| 438 |
+
placeholder="e.g., Why is Padua the nicest city in Italy?"
|
| 439 |
+
)
|
| 440 |
+
],
|
| 441 |
+
outputs=gr.Markdown(),
|
| 442 |
+
allow_flagging="never",
|
| 443 |
+
# Don't show redundant title/description within the tab, as it's above
|
| 444 |
+
# Setting live=True might be slow for complex models on every keystroke
|
| 445 |
+
# live=True
|
| 446 |
+
)
|
| 447 |
+
|
| 448 |
+
with gr.TabItem("Document Retrieval Demo"):
|
| 449 |
+
gr.Markdown("### Retrieve Documents from SciFact Collection")
|
| 450 |
+
gr.Interface(
|
| 451 |
+
fn=predict_retrieval_gradio,
|
| 452 |
+
inputs=[
|
| 453 |
+
gr.Textbox(
|
| 454 |
+
lines=3,
|
| 455 |
+
label="Enter your query text here:",
|
| 456 |
+
placeholder="e.g., Does high-dose vitamin C cure cancer?"
|
| 457 |
+
),
|
| 458 |
+
gr.Radio(
|
| 459 |
+
[
|
| 460 |
+
"SPLADE-cocondenser-distil (weighting and expansion)",
|
| 461 |
+
"SPLADE-v3-Lexical (weighting)",
|
| 462 |
+
"SPLADE-v3-Doc (binary)"
|
| 463 |
+
],
|
| 464 |
+
label="Choose Query Representation Model",
|
| 465 |
+
value="SPLADE-cocondenser-distil (weighting and expansion)"
|
| 466 |
+
),
|
| 467 |
+
gr.Radio(
|
| 468 |
+
[
|
| 469 |
+
"SPLADE-cocondenser-distil",
|
| 470 |
+
"SPLADE-v3-Lexical",
|
| 471 |
+
"SPLADE-v3-Doc"
|
| 472 |
+
],
|
| 473 |
+
label=f"Document Index Model (Pre-indexed with: {initial_doc_model_for_indexing})",
|
| 474 |
+
value=initial_doc_model_for_indexing,
|
| 475 |
+
interactive=False # This radio is fixed for simplicity
|
| 476 |
+
)
|
| 477 |
+
],
|
| 478 |
+
outputs=gr.Markdown(),
|
| 479 |
+
allow_flagging="never",
|
| 480 |
+
# live=True # retrieval is too heavy for live
|
| 481 |
+
)
|
| 482 |
+
|
| 483 |
demo.launch()
|