Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,110 +1,83 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
-
import pandas as pd
|
| 3 |
import torch
|
| 4 |
-
import
|
| 5 |
-
|
| 6 |
-
|
| 7 |
import pdfplumber
|
| 8 |
-
import
|
| 9 |
from sklearn.metrics.pairwise import cosine_similarity
|
| 10 |
|
| 11 |
-
# Load
|
| 12 |
-
tokenizer = RagTokenizer.from_pretrained("facebook/rag-
|
| 13 |
-
retriever = RagRetriever.from_pretrained("facebook/rag-
|
| 14 |
-
model =
|
| 15 |
|
| 16 |
-
# Function to get embeddings
|
| 17 |
-
def
|
| 18 |
-
|
| 19 |
-
|
|
|
|
|
|
|
| 20 |
|
| 21 |
-
|
| 22 |
-
index = faiss.IndexFlatL2(embeddings.shape[1]) # L2 distance
|
| 23 |
-
index.add(embeddings)
|
| 24 |
-
return index, embeddings
|
| 25 |
-
|
| 26 |
-
# Extract text and tables from PDF (with OCR fallback)
|
| 27 |
def extract_text_from_pdf(pdf_file):
|
| 28 |
-
text = ""
|
| 29 |
with pdfplumber.open(pdf_file) as pdf:
|
| 30 |
-
|
|
|
|
| 31 |
page_text = page.extract_text()
|
| 32 |
-
if page_text:
|
| 33 |
text += page_text + "\n"
|
| 34 |
-
else:
|
| 35 |
-
st.warning(f"No extractable text found on page {page_num}. Using OCR...")
|
| 36 |
-
page_image = page.to_image().original
|
| 37 |
-
ocr_text = pytesseract.image_to_string(page_image)
|
| 38 |
-
if ocr_text.strip():
|
| 39 |
-
text += ocr_text + "\n"
|
| 40 |
-
else:
|
| 41 |
-
st.error(f"Even OCR couldn't extract text from page {page_num}.")
|
| 42 |
return text
|
| 43 |
|
| 44 |
-
#
|
| 45 |
-
def
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
|
|
|
|
|
|
| 50 |
|
| 51 |
-
# Streamlit app
|
| 52 |
-
st.title("
|
| 53 |
|
| 54 |
# CSV file upload
|
| 55 |
csv_file = st.file_uploader("Upload a CSV file", type=["csv"])
|
| 56 |
-
csv_data = None
|
| 57 |
-
|
| 58 |
if csv_file:
|
| 59 |
csv_data = pd.read_csv(csv_file)
|
| 60 |
-
st.
|
| 61 |
-
st.write("### CSV Data:")
|
| 62 |
st.write(csv_data)
|
| 63 |
|
| 64 |
# PDF file upload
|
| 65 |
pdf_file = st.file_uploader("Upload a PDF file", type=["pdf"])
|
| 66 |
-
pdf_text = ""
|
| 67 |
-
data_chunks = []
|
| 68 |
-
|
| 69 |
if pdf_file:
|
| 70 |
pdf_text = extract_text_from_pdf(pdf_file)
|
| 71 |
-
|
| 72 |
-
if not pdf_text.strip():
|
| 73 |
-
st.error("The extracted PDF text is empty. Please upload a PDF with extractable text.")
|
| 74 |
-
else:
|
| 75 |
st.success("PDF loaded successfully!")
|
| 76 |
-
st.
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
# Split the extracted text into chunks for FAISS
|
| 80 |
-
data_chunks = pdf_text.split('\n')
|
| 81 |
-
st.write("### Extracted Chunks:")
|
| 82 |
-
for chunk in data_chunks[:5]: # Display first 5 chunks
|
| 83 |
-
st.write(chunk)
|
| 84 |
|
| 85 |
# User input for chatbot
|
| 86 |
-
user_input = st.text_input("Ask a question
|
| 87 |
|
|
|
|
| 88 |
if st.button("Get Response"):
|
| 89 |
-
if csv_data is None
|
| 90 |
-
st.warning("Please upload
|
| 91 |
-
elif not user_input.strip():
|
| 92 |
-
st.warning("Please enter a question.")
|
| 93 |
else:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
try:
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
if not csv_response.empty:
|
| 99 |
-
st.write("### CSV Response:")
|
| 100 |
-
st.write(csv_response)
|
| 101 |
-
else:
|
| 102 |
-
st.write("No relevant data found in the CSV.")
|
| 103 |
-
|
| 104 |
-
if data_chunks:
|
| 105 |
-
# Generate response using RAG for PDF content
|
| 106 |
-
response = generate_rag_response(user_input, data_chunks)
|
| 107 |
-
st.write("### PDF Response:")
|
| 108 |
-
st.write(response)
|
| 109 |
except Exception as e:
|
| 110 |
-
st.error(f"Error while processing
|
|
|
|
|
|
| 1 |
import streamlit as st
|
|
|
|
| 2 |
import torch
|
| 3 |
+
from transformers import RagTokenizer, RagRetriever, RagSequenceForGeneration
|
| 4 |
+
from datasets import load_dataset
|
| 5 |
+
import pandas as pd
|
| 6 |
import pdfplumber
|
| 7 |
+
import numpy as np
|
| 8 |
from sklearn.metrics.pairwise import cosine_similarity
|
| 9 |
|
| 10 |
+
# Load RAG model, tokenizer, and retriever
|
| 11 |
+
tokenizer = RagTokenizer.from_pretrained("facebook/rag-sequence-nq")
|
| 12 |
+
retriever = RagRetriever.from_pretrained("facebook/rag-sequence-nq", use_dummy_dataset=True)
|
| 13 |
+
model = RagSequenceForGeneration.from_pretrained("facebook/rag-sequence-nq", retriever=retriever)
|
| 14 |
|
| 15 |
+
# Function to get RAG embeddings
|
| 16 |
+
def get_rag_embeddings(question, context):
|
| 17 |
+
inputs = tokenizer(question, context, return_tensors="pt", truncation=True)
|
| 18 |
+
with torch.no_grad():
|
| 19 |
+
output = model.generate(input_ids=inputs['input_ids'], attention_mask=inputs['attention_mask'])
|
| 20 |
+
return tokenizer.batch_decode(output, skip_special_tokens=True)[0]
|
| 21 |
|
| 22 |
+
# Extract text from PDF
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
def extract_text_from_pdf(pdf_file):
|
|
|
|
| 24 |
with pdfplumber.open(pdf_file) as pdf:
|
| 25 |
+
text = ""
|
| 26 |
+
for page in pdf.pages:
|
| 27 |
page_text = page.extract_text()
|
| 28 |
+
if page_text: # Check if the page has extractable text
|
| 29 |
text += page_text + "\n"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
return text
|
| 31 |
|
| 32 |
+
# Load dataset (wiki_dpr) and set trust_remote_code=True
|
| 33 |
+
def load_wiki_dpr():
|
| 34 |
+
return load_dataset('wiki_dpr', trust_remote_code=True)
|
| 35 |
+
|
| 36 |
+
# Store the PDF text and embeddings
|
| 37 |
+
pdf_text = ""
|
| 38 |
+
pdf_embeddings = None
|
| 39 |
+
csv_data = None
|
| 40 |
|
| 41 |
+
# Streamlit app UI
|
| 42 |
+
st.title("RAG-Powered PDF & CSV Chatbot")
|
| 43 |
|
| 44 |
# CSV file upload
|
| 45 |
csv_file = st.file_uploader("Upload a CSV file", type=["csv"])
|
|
|
|
|
|
|
| 46 |
if csv_file:
|
| 47 |
csv_data = pd.read_csv(csv_file)
|
| 48 |
+
st.write("CSV file loaded successfully!")
|
|
|
|
| 49 |
st.write(csv_data)
|
| 50 |
|
| 51 |
# PDF file upload
|
| 52 |
pdf_file = st.file_uploader("Upload a PDF file", type=["pdf"])
|
|
|
|
|
|
|
|
|
|
| 53 |
if pdf_file:
|
| 54 |
pdf_text = extract_text_from_pdf(pdf_file)
|
| 55 |
+
if pdf_text.strip():
|
|
|
|
|
|
|
|
|
|
| 56 |
st.success("PDF loaded successfully!")
|
| 57 |
+
st.text_area("Extracted Text from PDF", pdf_text, height=200)
|
| 58 |
+
else:
|
| 59 |
+
st.warning("No extractable text found in the PDF.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
|
| 61 |
# User input for chatbot
|
| 62 |
+
user_input = st.text_input("Ask a question related to the PDF or CSV:")
|
| 63 |
|
| 64 |
+
# Get response on button click
|
| 65 |
if st.button("Get Response"):
|
| 66 |
+
if not pdf_text and csv_data is None:
|
| 67 |
+
st.warning("Please upload a PDF or CSV file first.")
|
|
|
|
|
|
|
| 68 |
else:
|
| 69 |
+
# Combine PDF text and CSV content for context in RAG
|
| 70 |
+
combined_context = ""
|
| 71 |
+
if pdf_text:
|
| 72 |
+
combined_context += pdf_text
|
| 73 |
+
if csv_data is not None:
|
| 74 |
+
combined_context += "\n" + csv_data.to_string()
|
| 75 |
+
|
| 76 |
+
# Get RAG-generated response
|
| 77 |
try:
|
| 78 |
+
response = get_rag_embeddings(user_input, combined_context)
|
| 79 |
+
st.write("### Response:")
|
| 80 |
+
st.write(response)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 81 |
except Exception as e:
|
| 82 |
+
st.error(f"Error while processing the question: {e}")
|
| 83 |
+
|