Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import numpy as np
|
| 3 |
+
from pykrige.ok import OrdinaryKriging
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
def fonction_api(lat, lon, debit_min, date):
|
| 7 |
+
# requete d'acces à x; y ,z:debit
|
| 8 |
+
echelle = 10
|
| 9 |
+
x = np.array(x)
|
| 10 |
+
y = np.array(y)
|
| 11 |
+
z = np.array(z)
|
| 12 |
+
grid_x_min = x.min()
|
| 13 |
+
grid_x_max = x.max()
|
| 14 |
+
grid_y_min = y.min()
|
| 15 |
+
grid_y_max = y.max()
|
| 16 |
+
delta_x, delta_y = (grid_x_max - grid_x_min) / \
|
| 17 |
+
echelle, (grid_y_max - grid_y_min)/echelle
|
| 18 |
+
grid_x = np.linspace(grid_x_min, grid_x_max, echelle, dtype="float64")
|
| 19 |
+
grid_y = np.linspace(grid_y_min, grid_y_max, echelle, dtype="float64")
|
| 20 |
+
OK = OrdinaryKriging(x, y, z, variogram_model="exponential",)
|
| 21 |
+
zstar, ss = OK.execute("grid", grid_x, grid_y)
|
| 22 |
+
mask = zstar > debit_min # mask debit sup à debit_min
|
| 23 |
+
lat_pred = []
|
| 24 |
+
lon_pred = []
|
| 25 |
+
debit_pred = []
|
| 26 |
+
for i in range(echelle):
|
| 27 |
+
for j in range(echelle):
|
| 28 |
+
if mask[i, j] == True:
|
| 29 |
+
lat_pred.append(
|
| 30 |
+
((grid_x_min + (i-1)*delta_x)+(grid_x_min + i*delta_x))/2)
|
| 31 |
+
lon_pred.append(
|
| 32 |
+
((grid_y_min + (j-1)*delta_y)+(grid_y_min + j*delta_y))/2)
|
| 33 |
+
debit_pred.append(zstar[i, j])
|
| 34 |
+
data = {}
|
| 35 |
+
for i in range(len(lat_pred)):
|
| 36 |
+
data["point " + str(i)] = [lat_pred[i], lon_pred[i], debit_pred[i]]
|
| 37 |
+
return data
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
demo = gr.Interface(fn=fonction_api, inputs=[
|
| 41 |
+
"number", "number", "number", "text"], outputs="json")
|
| 42 |
+
demo.launch()
|