import io import gdown import base64 from typing import Optional import cv2 import numpy as np from PIL import Image from fastapi import FastAPI, UploadFile, File, Form from fastapi.responses import JSONResponse from fastapi.middleware.cors import CORSMiddleware from detectron2.engine import DefaultPredictor from detectron2.config import get_cfg from detectron2.projects.point_rend import add_pointrend_config # ------------------------------- # FastAPI setup # ------------------------------- app = FastAPI(title="Rooftop Segmentation API") app.add_middleware( CORSMiddleware, allow_origins=["*"], allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) # ------------------------------- # Available epsilons # ------------------------------- EPSILONS = [0.01, 0.005, 0.004, 0.003, 0.001] @app.get("/epsilons") def get_epsilons(): return {"epsilons": EPSILONS} # ------------------------------- # Detectron2 model setup # ------------------------------- def setup_model_rect(weights_path: str): cfg = get_cfg() add_pointrend_config(cfg) cfg_path = "detectron2/projects/PointRend/configs/InstanceSegmentation/pointrend_rcnn_R_50_FPN_3x_coco.yaml" cfg.merge_from_file(cfg_path) cfg.MODEL.ROI_HEADS.NUM_CLASSES = 2 cfg.MODEL.POINT_HEAD.NUM_CLASSES = cfg.MODEL.ROI_HEADS.NUM_CLASSES cfg.MODEL.WEIGHTS = weights_path cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.5 cfg.MODEL.DEVICE = "cpu" return DefaultPredictor(cfg) def setup_model_irregular(weights_path: str): cfg = get_cfg() add_pointrend_config(cfg) cfg_path = "detectron2/projects/PointRend/configs/InstanceSegmentation/pointrend_rcnn_R_50_FPN_3x_coco.yaml" cfg.merge_from_file(cfg_path) cfg.MODEL.ROI_HEADS.NUM_CLASSES = 1 # Only irregular-flat cfg.MODEL.POINT_HEAD.NUM_CLASSES = cfg.MODEL.ROI_HEADS.NUM_CLASSES cfg.MODEL.WEIGHTS = weights_path cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.5 cfg.MODEL.DEVICE = "cpu" return DefaultPredictor(cfg) # Load models predictor_rect = setup_model_rect("/app/model_rect_final.pth") predictor_irregular_flat = setup_model_irregular("/app/model_irregular_flat.pth") # ------------------------------- # Post-processing functions # ------------------------------- def postprocess_rect(mask: np.ndarray, epsilon: float) -> Optional[np.ndarray]: mask_uint8 = (mask * 255).astype(np.uint8) contours, _ = cv2.findContours(mask_uint8, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) if not contours: return None c = max(contours, key=cv2.contourArea) eps = epsilon * cv2.arcLength(c, True) approx = cv2.approxPolyDP(c, eps, True) simp = np.zeros_like(mask_uint8) cv2.fillPoly(simp, [approx], 255) return simp def postprocess_irregular(mask: np.ndarray, epsilon: float) -> Optional[np.ndarray]: mask_uint8 = (mask * 255).astype(np.uint8) contours, _ = cv2.findContours(mask_uint8, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) if not contours: return None c = max(contours, key=cv2.contourArea) eps = epsilon * cv2.arcLength(c, True) polygon = cv2.approxPolyDP(c, eps, True) return polygon.reshape(-1, 2) def mask_to_polygon(mask: np.ndarray) -> Optional[np.ndarray]: contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) if not contours: return None largest = max(contours, key=cv2.contourArea) return largest.reshape(-1, 2) def im_to_b64_png(im: np.ndarray) -> str: _, buffer = cv2.imencode(".png", im) return base64.b64encode(buffer).decode() def overlay_polygon(im: np.ndarray, polygon: Optional[np.ndarray]) -> np.ndarray: overlay = im.copy() if polygon is not None: cv2.polylines(overlay, [polygon.astype(np.int32)], True, (0,0,255), 2) return overlay # ------------------------------- # API endpoints # ------------------------------- @app.get("/") def root(): return {"message": "Rooftop Segmentation API is running!"} @app.post("/predict") async def predict( file: UploadFile = File(...), rooftop_type: str = Form(...), # "rectangular" or "irregular" epsilon: float = Form(0.004) ): contents = await file.read() try: im_pil = Image.open(io.BytesIO(contents)).convert("RGB") except Exception as e: return JSONResponse(status_code=400, content={"error": "Invalid image", "detail": str(e)}) im = np.array(im_pil)[:, :, ::-1].copy() # RGB -> BGR # Choose predictor and post-processing based on rooftop type if rooftop_type.lower() == "rectangular": predictor = predictor_rect post_fn = lambda mask: postprocess_rect(mask, epsilon) model_used = "model_rect_final.pth" elif rooftop_type.lower() == "irregular": predictor = predictor_irregular_flat post_fn = lambda mask: postprocess_irregular(mask, epsilon) model_used = "model_irregular_flat.pth" else: return JSONResponse(status_code=400, content={"error": "Invalid rooftop_type. Choose 'rectangular' or 'irregular'."}) # Run prediction outputs = predictor(im) instances = outputs["instances"].to("cpu") if len(instances) == 0: return {"polygon": None, "image": None, "model_used": model_used, "rooftop_type": rooftop_type, "epsilon": epsilon} idx = int(instances.scores.argmax().item()) raw_mask = instances.pred_masks[idx].numpy().astype(np.uint8) # Post-process result_mask = post_fn(raw_mask) polygon = mask_to_polygon(result_mask) if rooftop_type.lower() == "rectangular" else result_mask # Overlay overlay = overlay_polygon(im, polygon) img_b64 = im_to_b64_png(overlay) return { "polygon": polygon.tolist() if polygon is not None else None, "image": img_b64, "model_used": model_used, "rooftop_type": rooftop_type, "epsilon": epsilon }