File size: 5,895 Bytes
821daa3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import io
import gdown
import base64
from typing import Optional
import cv2
import numpy as np
from PIL import Image
from fastapi import FastAPI, UploadFile, File, Form
from fastapi.responses import JSONResponse
from fastapi.middleware.cors import CORSMiddleware
from detectron2.engine import DefaultPredictor
from detectron2.config import get_cfg
from detectron2.projects.point_rend import add_pointrend_config

# -------------------------------
# FastAPI setup
# -------------------------------
app = FastAPI(title="Rooftop Segmentation API")

app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

# -------------------------------
# Available epsilons
# -------------------------------
EPSILONS = [0.01, 0.005, 0.004, 0.003, 0.001]

@app.get("/epsilons")
def get_epsilons():
    return {"epsilons": EPSILONS}

# -------------------------------
# Detectron2 model setup
# -------------------------------
def setup_model_rect(weights_path: str):
    cfg = get_cfg()
    add_pointrend_config(cfg)
    cfg_path = "detectron2/projects/PointRend/configs/InstanceSegmentation/pointrend_rcnn_R_50_FPN_3x_coco.yaml"
    cfg.merge_from_file(cfg_path)
    cfg.MODEL.ROI_HEADS.NUM_CLASSES = 2
    cfg.MODEL.POINT_HEAD.NUM_CLASSES = cfg.MODEL.ROI_HEADS.NUM_CLASSES
    cfg.MODEL.WEIGHTS = weights_path
    cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.5
    cfg.MODEL.DEVICE = "cpu"
    return DefaultPredictor(cfg)

def setup_model_irregular(weights_path: str):
    cfg = get_cfg()
    add_pointrend_config(cfg)
    cfg_path = "detectron2/projects/PointRend/configs/InstanceSegmentation/pointrend_rcnn_R_50_FPN_3x_coco.yaml"
    cfg.merge_from_file(cfg_path)
    cfg.MODEL.ROI_HEADS.NUM_CLASSES = 1  # Only irregular-flat
    cfg.MODEL.POINT_HEAD.NUM_CLASSES = cfg.MODEL.ROI_HEADS.NUM_CLASSES
    cfg.MODEL.WEIGHTS = weights_path
    cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.5
    cfg.MODEL.DEVICE = "cpu"
    return DefaultPredictor(cfg)

# Load models
predictor_rect = setup_model_rect("/app/model_rect_final.pth")
predictor_irregular_flat = setup_model_irregular("/app/model_irregular_flat.pth")

# -------------------------------
# Post-processing functions
# -------------------------------
def postprocess_rect(mask: np.ndarray, epsilon: float) -> Optional[np.ndarray]:
    mask_uint8 = (mask * 255).astype(np.uint8)
    contours, _ = cv2.findContours(mask_uint8, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
    if not contours:
        return None
    c = max(contours, key=cv2.contourArea)
    eps = epsilon * cv2.arcLength(c, True)
    approx = cv2.approxPolyDP(c, eps, True)
    simp = np.zeros_like(mask_uint8)
    cv2.fillPoly(simp, [approx], 255)
    return simp

def postprocess_irregular(mask: np.ndarray, epsilon: float) -> Optional[np.ndarray]:
    mask_uint8 = (mask * 255).astype(np.uint8)
    contours, _ = cv2.findContours(mask_uint8, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
    if not contours:
        return None
    c = max(contours, key=cv2.contourArea)
    eps = epsilon * cv2.arcLength(c, True)
    polygon = cv2.approxPolyDP(c, eps, True)
    return polygon.reshape(-1, 2)

def mask_to_polygon(mask: np.ndarray) -> Optional[np.ndarray]:
    contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
    if not contours:
        return None
    largest = max(contours, key=cv2.contourArea)
    return largest.reshape(-1, 2)

def im_to_b64_png(im: np.ndarray) -> str:
    _, buffer = cv2.imencode(".png", im)
    return base64.b64encode(buffer).decode()

def overlay_polygon(im: np.ndarray, polygon: Optional[np.ndarray]) -> np.ndarray:
    overlay = im.copy()
    if polygon is not None:
        cv2.polylines(overlay, [polygon.astype(np.int32)], True, (0,0,255), 2)
    return overlay

# -------------------------------
# API endpoints
# -------------------------------
@app.get("/")
def root():
    return {"message": "Rooftop Segmentation API is running!"}

@app.post("/predict")
async def predict(
    file: UploadFile = File(...),
    rooftop_type: str = Form(...),  # "rectangular" or "irregular"
    epsilon: float = Form(0.004)
):
    contents = await file.read()
    try:
        im_pil = Image.open(io.BytesIO(contents)).convert("RGB")
    except Exception as e:
        return JSONResponse(status_code=400, content={"error": "Invalid image", "detail": str(e)})

    im = np.array(im_pil)[:, :, ::-1].copy()  # RGB -> BGR

    # Choose predictor and post-processing based on rooftop type
    if rooftop_type.lower() == "rectangular":
        predictor = predictor_rect
        post_fn = lambda mask: postprocess_rect(mask, epsilon)
        model_used = "model_rect_final.pth"
    elif rooftop_type.lower() == "irregular":
        predictor = predictor_irregular_flat
        post_fn = lambda mask: postprocess_irregular(mask, epsilon)
        model_used = "model_irregular_flat.pth"
    else:
        return JSONResponse(status_code=400, content={"error": "Invalid rooftop_type. Choose 'rectangular' or 'irregular'."})

    # Run prediction
    outputs = predictor(im)
    instances = outputs["instances"].to("cpu")

    if len(instances) == 0:
        return {"polygon": None, "image": None, "model_used": model_used, "rooftop_type": rooftop_type, "epsilon": epsilon}

    idx = int(instances.scores.argmax().item())
    raw_mask = instances.pred_masks[idx].numpy().astype(np.uint8)

    # Post-process
    result_mask = post_fn(raw_mask)
    polygon = mask_to_polygon(result_mask) if rooftop_type.lower() == "rectangular" else result_mask

    # Overlay
    overlay = overlay_polygon(im, polygon)
    img_b64 = im_to_b64_png(overlay)

    return {
        "polygon": polygon.tolist() if polygon is not None else None,
        "image": img_b64,
        "model_used": model_used,
        "rooftop_type": rooftop_type,
        "epsilon": epsilon
    }