Spaces:
Running
on
Zero
Running
on
Zero
| import torch | |
| from .model import gaussian_diffusion as gd | |
| from .model.dpm_solver import model_wrapper, DPM_Solver, NoiseScheduleVP | |
| def DPMS(model, condition, uncondition, cfg_scale, model_type='noise', noise_schedule="linear", guidance_type='classifier-free', model_kwargs=None, diffusion_steps=1000): | |
| if model_kwargs is None: | |
| model_kwargs = {} | |
| betas = torch.tensor(gd.get_named_beta_schedule(noise_schedule, diffusion_steps)) | |
| ## 1. Define the noise schedule. | |
| noise_schedule = NoiseScheduleVP(schedule='discrete', betas=betas) | |
| ## 2. Convert your discrete-time `model` to the continuous-time | |
| ## noise prediction model. Here is an example for a diffusion model | |
| ## `model` with the noise prediction type ("noise") . | |
| model_fn = model_wrapper( | |
| model, | |
| noise_schedule, | |
| model_type=model_type, | |
| model_kwargs=model_kwargs, | |
| guidance_type=guidance_type, | |
| condition=condition, | |
| unconditional_condition=uncondition, | |
| guidance_scale=cfg_scale, | |
| ) | |
| ## 3. Define dpm-solver and sample by multistep DPM-Solver. | |
| return DPM_Solver(model_fn, noise_schedule, algorithm_type="dpmsolver++") |