import cv2 import numpy as np import gradio as gr from ultralytics import YOLO def predict(path:str): model = YOLO("yolov8s.yaml") model = YOLO("best-underwater.pt") imagen = cv2.imread(path) results = model.predict(source=path) for r in results: return r.plot() image_url = "https://huggingface.co/spaces/Jass0117/test/blob/main/diente.jpg" css = """ .gradio-container { background-color: #ADD8E6; /* Fondo azul claro */ background-image: url('{image_url}'), url('{image_url}'), url('{image_url}'), url('{image_url}'); background-position: top left, top right, bottom left, bottom right; background-repeat: no-repeat; } """ with gr.Blocks(css=css) as demo: # Encabezado gr.Markdown("

Bienvenido al Identificador de Piezas Dentales

" "

Por favor, cargue la radiografía que desea analizar.

") # Contenedor para la carga de imágenes y resultados with gr.Row(): with gr.Column(): input_image = gr.Image(type="filepath", label="Cargue su radiografía") with gr.Column(): output_image = gr.Image(type="numpy", label="Análisis") analyze_button = gr.Button("Analizar") analyze_button.click(fn=predict, inputs=input_image, outputs=output_image) demo.launch()