test / app.py
Jass0117's picture
Update app.py
a467ba0 verified
raw
history blame
1.52 kB
import cv2
import numpy as np
import gradio as gr
from ultralytics import YOLO
def predict(path:str):
model = YOLO("yolov8s.yaml")
model = YOLO("best-underwater.pt")
imagen = cv2.imread(path)
results = model.predict(source=path)
for r in results:
return r.plot()
image_url = "https://huggingface.co/spaces/Jass0117/test/blob/main/diente.jpg"
css = f"""
.gradio-container {{
background-color: #ADD8E6; /* Fondo azul claro */
background-image: url('{image_url}'),
url('{image_url}'),
url('{image_url}'),
url('{image_url}');
background-position: top left, top right, bottom left, bottom right;
background-repeat: no-repeat;
background-size: 100px 100px; /* Ajusta el tamaño de la imagen si es necesario */
}}
"""
with gr.Blocks(css=css) as demo:
# Encabezado
gr.Markdown("<h1 style='text-align: center;'>Bienvenido al Identificador de Piezas Dentales</h1>"
"<p style='text-align: center;'>Por favor, cargue la radiografía que desea revisar.</p>")
# Contenedor para la carga de imágenes y resultados
with gr.Row():
with gr.Column():
input_image = gr.Image(type="filepath", label="Cargue su radiografía")
with gr.Column():
output_image = gr.Image(type="numpy", label="Análisis")
analyze_button = gr.Button("Analizar")
analyze_button.click(fn=predict, inputs=input_image, outputs=output_image)
demo.launch()